首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We studied the late June–August fish community in extant and former eelgrass (Zostera marina L.) habitats in 15 estuaries of Buzzards Bay, and in Waquoit Bay, Massachusetts, U.S. Our objective was to quantify the effects of eelgrass habitat loss on fish abundance, biomass, species composition and richness, life-history characteristics, and habitat use by examining the response of the fish community to eelgrass loss in Waquoit and Buttermilk Bays over an 11-yr period (1988–1999) and in 14 other embayments of Buzzards Bay during 1993, 1996, and 1998. Sampling sites were located in present-day or historical eelgrass beds and were classified according to eelgrass habitat complexity (zero complexity: no eelgrass; low complexity: <100 eelgrass shoots or <100 g wet weight m−2; high complexity: ≥100 shoots and ≥100 g wet weight m−2). Habitats that had lost eelgrass included a variety of substratum types, from bare mud bottom to dense accumulations of red, brown, and green macroalgae (up to 7,065 g wet weight m−2). Contemporaneous sampling of fish (by otter trawl) and vegetated habitat (by divers) was conducted at each site. Overall, fish abundance, biomass, species richness, dominance, and life history diversity decreased significantly along the gradient of decreasing eelgrass habitat complexity. Loss of eelgrass was accompanied by significant declines in these measures of fish community integrity. Ten of the 13 most common species collected from 1988–1996 in Waquoit and Buttermilk Bays showed maximum abundance and biomass in sites with high eelgrass habitat complexity. All but two common species declined in abundance and biomass with the complete loss of eelgrass.  相似文献   

2.
Estuarine seagrass ecosystems provide important habitat for fish and invertebrates and changes in these systems may alter their ability to support fish. The response of fish assemblages to alteration of eelgrass (Zostera marina) ecosystems in two ecoregions of the Mid-Atlantic Bight (Buzzards Bay and Chesapeake Bay) was evaluated by sampling historical eelgrass sites that currently span a broad range of stress and habitat quality. In two widely separated ecoregions with very different fish faunas, degradation and loss of submerged aquatic vegetation (SAV) habitat has lead to declines in fish standing stock and species richness. The abundance, biomass, and species richness of the fish assemblage were significantly higher at sites that have high levels of eelgrass habitat complexity (biomass >100 wet g m?2; density <100 shotts m?2) compared to sites that have reduced eelgrass (biomass <100 wet g m?2; density <100 shoots m?2) or that have completely lost eelgrass. Abundance, biomass, and species richness at reduced eelgrass complexity sites also were more variable than at high eelgrass complexity habitats. Low SAV complexity sites had higher proportions of pelagic species that are not dependent on benthic habitat structure for feeding or refuge. Most species had greater abundance and were found more frequently at sites that have eelgrass. The replacement of SAV habitats by benthic macroalgae, which occurred in Buzzards Bay but not Chesapeake Bay, did not provide an equivalent habitat to seagrass. Nutrient enrichment-related degradation of eelgrass habitat has diminished the overall capacity of estuaries to support fish populations.  相似文献   

3.
Development and validation of an estuarine biotic integrity index   总被引:1,自引:0,他引:1  
We tested hypotheses about how estuarine fish assemblages respond to habitat degradation and then integrated these responses into an overall index, the Estuarine Biotic Integrity Index (EBI), which summarized observed changes. Fish assemblages (based on trawl catches) and habitat quality were measured monthly or biweekly at nine sites in two estuaries from March 1988 to June 1990. Submerged aquatic vegetation habitats were classified as low or medium quality based on year-round measurements of chemical and physical characteristics (phytoplankton blooms; macroalgae; dissolved oxygen; nutrients; dredged channels). We tested 15 metrics and selected 8 for inclusion in the EBI: total number of species, dominance, fish abundance (number or biomass), number of nursery species, number of estuarine spawning species, number of resident species, proportion of benthic-associated fishes, and proportion abnormal or diseased. Fish assemblages in low-quality sites had lower number of species, density, biomass, and dominance compared with medium-quality sites. Fish abundance peaked in July and August, and was lowest in January to March. The seasonal cycle in low-quality sites was damped compared with medium-quality sites. Abundances of fishes using estuaries as a spawning and nursery area and of benthic species were lower in low-quality sites compared to medium-quality sites. The individual metrics and the overall index correlated with habitat degradation. The EBI based on biomass did not do better than the EBI based on number, indicating that the extra effort to obtain biomass may not be warranted. We suggest the EBI is a useful indicator of estuarine ecosystem status because it reflects the relationship between anthropogenic alterations in estuarine ecosystems and the status of higher trophic levels.  相似文献   

4.
Comparison of the relative abundance of fish species from different life-history groups and their temporal patterns of estuarine habitat use from two estuaries north and south of Cape Cod indicates that the Cape acts as a zoogeographic boundary. Between April 1988 and December 1989, monthly seine and trawl samples were collected from nearshore, shallow-water marsh, and beach and deeper open-water habitats in Wells Harbor, Maine, and Waquoit Bay, Massachusetts. Forty-eight species and 80,341 individuals were collected from Waquoit Bay compared to 24 species and 22,561 individuals from Wells Harbor. Waquoit Bay had proportionally fewer resident species and more marine, nursery, and occasional species than Wells Harbor. Annual density and biomass values were greater across all habitats in Waquoit Bay, with the summer values from the marsh habitat an order of magnitude higher than comparable summer data from the Wells habitats. We suggest that marsh and beach habitats provide a nursery area for young-of-the-year fishes, while deeper, open-water habitats serve as a corridor for fishes moving to nearshore habitats or serve as a refuge during low tide.  相似文献   

5.
Change analysis of eelgrass distribution in Waquoit Bay demonstrated a rapid decline of eelgrass habitat between 1987 and 1992. Aerial photography and ground-truth assessments of eelgrass distribution in the Waquoit Bay National Estuarine Research Reserve documented progressive loss in eelgrass acreage and fragmentation of eelgrass beds that we relate to the degree of housing development and associated nitrogen loading, largelyvia groundwater, within various sub-basins of the estuary. The sub-basins with greater housing density and higher nitrogen loading rates showed more rapid rates of eelgrass decline. In eelgrass mesocosm studies at the Jackson Estuarine Laboratory, excessive nitrogen loading stimulated proliferation of algal competitors (epiphytes, macroalgae, and phytoplankton) that shade and thereby stress eelgrass. We saw domination by each of these three algal competitors in our field observations of eelgrass decline in Waquoit Bay. Our study is the first to relate housing development and nitrogen loading rates to eelgrass habitat loss. These results for the Waquoit Bay watershed provide supporting evidence for management to limit development that results in groundwater nitrogen loading and to initiate remedial action in order to reverse trends in eelgrass habitat loss.  相似文献   

6.
We compared distribution and abundance by habitat for age-0, young-of-the-year (YOY) winter flounder,Pseudopleuronectes americanus, in three estuaries (Hammonasset River, Navesink River, and Great Bay-Little Egg Harbor) in the northeastern United States to better define essential fish habitat (EFH). Two replicates of five representative habitats were sampled in most estuaries: eelgrass (Zostera marina), unvegetated areas adjacent to eelgrass, macroalgae, (primarilyUlva lactuca), unvegetated areas adjacent to macroalgae, and tidal marsh creeks. Fish were sampled every two weeks, May through October 1995 and 1996, with a beam-trawl (1-m width, 3-mm mesh net). Abundance of YOY winter flounder was highest in the Navesink River estuary and similar between years, but was significantly lower and differed between years in the Great Bay-Little Egg Harbor and Hammonasset River estuaries. Annual temperature differences appear to influence estuary use by YOY. In the years and estuaries studied, where habitat-related differences in abundance were significant, YOY were found in higher densities in unvegetated areas adjacent to eelgrass. The exception was in the Hammonasset River in 1995 when densities were higher in eelgrass. We conclude that the type of habitat most important to YOY winter flounder varies among estuaries and as a result, care should be taken in defining EFH, based only on limited spatial and temporal sampling.  相似文献   

7.
Environmental factors that influence annual variability and spatial differences (within and between estuaries) in eelgrass meadows (Zostera marine L.) were examined within Willapa Bay, Washington, and Coos Bay, Oregon, over a period of 4 years (1998–2001). A suite of eelgrass metrics were recorded annually at field sites that spanned the estuarine gradient from the marine-dominated to mesohaline region of each estuary. Plant density (shoots m?2) of eelgrass was positively correlated with summer estuarine salinity and inversely correlated with water temperature gradients in the estuaries. Eelgrass density, biomass, and the incidence of flowering plants all increased substantially in Willapa Bay, and less so in Coos Bay, over the duration of the study. Warmer winters and cooler summers associated with the transition from El Niño to La Niña ocean conditions during the study period corresponded with this increase in eelgrass abundance and flowering. Large-scale changes in climate and nearshore ocean conditions may exert a strong regional influence on eelgrass abundance that can vary annually by as much as 700% in Willapa Bay. Lower levels of annual variability observed in Coos Bay may be due to the stronger and more direct influence of the nearshore Pacific Ocean on the Coos Bay study sites. The results suggest profound effects of climate variation on the abundance and flowering of eelgrass in Pacific Northwest coastal estuaries.  相似文献   

8.
Gillichthys mirabilis population static measurements (abundance, age, and size class structures) and vital rates (growth, mortality, recruitment) were monitored on an annual basis from 2002 to 2007. Population-level metrics were used to gauge habitat quality at two study sites (a contaminated site and a reference site) in two large northern California estuaries (San Francisco and Tomales Bays). San Francisco Bay populations exhibited slower growth and higher mortality rates and contained higher amounts of contaminants than Tomales Bay. Recruitment rates were highest at contaminated sites (Stege Marsh and Walker Creek) in 3 years out of 5 years, suggesting low adult survival. This study suggests that population-level effects on a residential fish may be attributed to estuarine contamination on the US Pacific coast.  相似文献   

9.
We examined the community structure of fish and selected decapod crustaceans and tested for within estuary differences among habitats at depths of 0.6 m to 7.9 m, in Great Bay and Little Egg Harbor in southern New Jersey. Several habitat types were identified a priori (e.g., eelgrass, sea lettuce, and marsh creeks) and sampled by trawl (4.9 m headrope, 19-mm mesh wings, 6.3-mm mesh liner), monthly, from June 1988 through October 1989. Repetitive (n=4) 2-min trawl tows were taken at each habitat type from 13 locations. The fishes and decapod crustaceans collected were typical of other Mid-Atlantic Bight estuaries but varied greatly inseasonal abundance and species. In the years sampled, bay anchovy (Anchoa mitchilli) was the dominant species (50.5% of the total number), followed by spot (Leiostomus xanthurus) (10.7%), Atlantic silverside (Menidia menidia) (9.7%), fourspine stickleback (Apeltes quadracus) (5.9%), blue crab (Callinectes sapidus) (4.6%), and northern pipefish (Syngnathus fuscus) (4.2%). The biota were examined by multi-dimensional scaling (MDS) for habitat associations and “best abiotic predictor” of community structure. Percent silt combined with salinity was the most important abiotic determinant of the faunal distributions among habitats. Temperature was a major factor influencing seasonal occurrence of the biota but had less effect on habitat comparisons. The analysis confirmed the distinct nature of the assemblages associated with the habitats, that is, eelgrass, upper estuary subtidal creeks, channels, and open bay areas. Several species were associated with specific habitats: for example,A. quadracus andS. fuscus with eelgrass, clupeids with subtidal creek stations,L. xanthurus with marsh channels, and black sea bass (Centropristis striata) and spotted hake (Urophycis regia) with sponge-peat habitat. Species richness appeared to be positively related to habitat structural heterogeneity. Thus, the best predictors for these estuarine fish and decapod crustacean assemblages were seasonal temperature, percent silt and salinity combined, and the physical heterogeneity of the habitat.  相似文献   

10.
11.
We evaluated nekton habitat quality at 5 shallow-water sites in 2 Rhode Island systems by comparing nekton densities and biomass, number of species, prey availability and feeding, and abundance of winter flounderPseudopleuronectes americanus. Nekton density and biomass were compared with a 1.75-m2 drop ring at 3 sites (marsh, intertidal, and subtidal) in Coggeshall Cove in Narragansett Bay and two subtidal sites (eelgrass and macroalgae) in Ninigret Pond, a coastal lagoon. We collected benthic core samples and examined nekton stomach contents in Coggeshall Cove. We identified 16 species of fish, 16 species of crabs, and 3 species of shrimp in our drop ring samples. A multivariate analysis of variance indicated differences in total nekton, invertebrates, fish, and winter flounder across the five sites. Relative abundance of benthic invertebrate taxa did not match relative abundance of prey taxa identified in the stomachs. Nonmetric multidimensional scaling plots showed groupings in nekton and benthic invertebrate prey assemblages among subtidal, intertidal, and marsh sites in Coggeshall Cove. Stepwise multiple regression indicated that biomass of macroalgae was the most important variable predicting abundance of nekton in Coggeshall Cove, followed by elevation and depth. In Rhode Island systems that do not experience chronic hypoxia, macroalgae adds structure to unvegetated areas and provides refuge for small nekton. All sites sampled were characterized by high abundance and diversity of nekton pointing to the importance of shallow inshore areas for production of fishes and decapods. Measurements of habitat quality should include assessment of the functional significance of a habitat (this can be done by comparing nekton numbers and biomass), some measure of habitat diversity, and a consideration of how habitat quality varies in time and space.  相似文献   

12.
Three quarters of the global human population will live in coastal areas in the coming decades and will continue to develop these areas as population density increases. Anthropogenic stressors from this coastal development may lead to fragmented habitats, altered food webs, changes in sediment characteristics, and loss of near-shore vegetated habitats. Seagrass systems are important vegetated estuarine habitats that are vulnerable to anthropogenic stressors, but provide valuable ecosystem functions. Key to maintaining these habitats that filter water, stabilize sediments, and provide refuge to juvenile animals is an understanding of the impacts of local coastal development. To assess development impacts in seagrass communities, we surveyed 20 seagrass beds in lower Chesapeake Bay, VA. We sampled primary producers, consumers, water quality, and sediment characteristics in seagrass beds, and characterized development along the adjacent shoreline using land cover data. Overall, we could not detect effects of local coastal development on these seagrass communities. Seagrass biomass varied only between sites, and was positively correlated with sediment organic matter. Epiphytic algal biomass and epibiont (epifauna and epiphyte) community composition varied between western and eastern regions of the bay. But, neither eelgrass (Zostera marina) leaf nitrogen (a proxy for integrated nitrogen loading), crustacean grazer biomass, epifaunal predator abundance, nor fish and crab abundance differed significantly among sites or regions. Overall, factors operating on different scales appear to drive primary producers, seagrass-associated faunal communities, and sediment properties in these important submerged vegetated habitats in lower Chesapeake Bay.  相似文献   

13.
Artificial fertilizers are contributing to the replacement of eelgrass (Zostera marina) by sea lettuce (Ulva lactuca) in estuaries of Prince Edward Island (PEI), Canada. In this study, we found that the nearshore fish community differed between areas dominated by these two vegetations within an estuary in every month sampled (April–August). Adult northern pipefish (Syngnathus fuscus), threespine stickleback (Gasterosteus aculeatus), blackspotted stickleback (Gasterosteus wheatlandi), and Atlantic silverside (Menidia menidia) were most strongly associated with eelgrass, while mummichog (Fundulus heteroclitus), ninespine stickleback (Pungitius pungitius), and American eel (Anguilla rostrata) were often more numerous in sea lettuce. Sea lettuce stations tended to have more young-of-the-year mummichog, fourspine stickleback (Apeltes quadracus), and Gasterosteus sp. than eelgrass stations but fewer young-of-the-year northern pipefish and Atlantic silverside. Fish richness and abundance were significantly lower in the sea lettuce than eelgrass habitat during August when benthic hypoxia occurred. We conclude that the loss of eelgrass from PEI estuaries will result in significant declines in fish biodiversity.  相似文献   

14.
Species richness and abundance of epibenthic fishes and decapod crustaceans were quantified with day-time beam trawl tows and throw traps to provide information on nekton assemblages inZostera marina and unvegetated sandy habitats in northern latitudes. Sampling at randomly selected stations with a 1.0-m beam trawl occurred in eelgrass (Zostera marina) and unvegetated sandy substrates of two mid-coastal Maine estuaries: Casco Bay and Weskeag River. Random 1.0-m throw trap samples were collected inZostera and adjacent unvegetated sandy substrates in Casco Bay and Weskeag River as well. Species richness and faunal abundances were positively associated with the occurrence ofZostera within Weskeag River and Casco Bay estuaries using both gear types. A total of 17 species of fishes and 6 species of decapods were collected in the two estuaries using both gears. Populations of most species were dominated by young-of-the-year and juvenile life history stages. Number and densities of fishes were higher inZostera, due primarily to the abundances of eelgrass residents such as threespine,Gasterosteus aculeatus, and fourspine sticklebacks,Apeltes quadracus, grubby,Myoxocephalus aenaeus, and cunner,Tautogolabrus adspersus. Crangon septemspinosa dominated decapod catch per unit effort and density in both estuaries and habitats.  相似文献   

15.
In this study, we explored the extent to which secondary production in a well-mixed estuary reflects local differences in biotic and physical characteristics of habitats, or larger-scale, estuary-wide characteristics governed by a freshwater-marine gradient. We addressed the following questions: To what extent do organic components of seston within habitats in an estuary reflect distributions of local autotrophs and to what extent do estuarine consumers such as sessile filter-feeders, respond to small-scale, local differences in habitat characteristics in a wellmixed estuary? We contrasted habitat quality and consumer growth at four sites within Padilla Bay estuary, Washington, representing the major autotrophic sources of organic carbon in Pacific Northwest estuaries (i.e., phytoplankton, eelgrass (Zostera marina), epibenthic and macro-algal species, and marsh macrophytes.) The natural abundances of stable carbon isotopes {ie898-1} were used to resolve origins of organic carbon in diets of blue mussels (Mytilus edulis), a representative suspension feeder. To assess consumer responses to habitat, quality, we combined measures of sestonic food quantity and quality and physical parameters with in situ determination of mussel growth. We used measures of food quality {ie898-2} and consumer response (growth of transplanted mussels) to integrate the effects of high variability in estuarine physical and biological characteristics on primary and secondary production. Using ANOVA, we detected significant differences in the concentrations of sestonic food, seston composition as indicated by {ie898-3}, and mussel {ie898-4} values and growth rates among the four representative habitats. That significant differences in {ie898-5} values of mussel tissue corresponded to the significant differences in {ie898-6} values of local autotrophs and seston among habitats suggests that mussels in Padilla Bay rely primarily on local sources of carbon for food. Mussel growth throughout, the estuary was significantly correlated with both sestonic {ie898-7} and salinity. We conclude that differences in local seston composition and mussel growth rates reflect in part the heterogeneous, distribution of benthic primary producer habitats in Padilla Bay, despite its well-mixed nature. In addition, local differences in salinity levels, as opposed to the bay-wide freshwater-marine, gradient, explained a significant proportion of the variance in mussel growth within the bay. Our results counter the prediction that seston quality and consumer production are comparable throughout well-mixed estuaries, and suggest that the paradigm of physically and chemically determined gradients in estuarine secondary production needs to be broadened to include local biotic factors as well.  相似文献   

16.
Land-based eutrophication is often associated with blooms of green macroalgae, resulting in negative impacts on seagrasses. The generality of this interaction has not been studied in upwelling-influenced estuaries where oceanic nutrients dominate seasonally. We conducted an observational and experimental study with Zostera marina L. and ulvoid macroalgae across an estuarine gradient in Coos Bay, Oregon. We found a gradient in mean summer macroalgal biomass from 56.1 g dw 0.25 m−2 at the marine site to 0.3 g dw 0.25 m−2 at the riverine site. Despite large macroalgal blooms at the marine site, eelgrass biomass exhibited no seasonal or interannual declines. Through experimental manipulations, we found that pulsed additions of macroalgae biomass (+4,000 mL) did not affect eelgrass in marine areas, but it had negative effects in riverine areas. In upwelling-influenced estuaries, the negative effects of macroalgal blooms are context dependent, affecting the management of seagrass habitats subject to nutrient inputs from both land and sea.  相似文献   

17.
A benthic index of biotic integrity was developed for use in estuaries of the mid-Atlantic region of the United States (Delaware Bay estuary through Albemarle-Pamlico Sound). The index was developed for the Mid-Atlantic Integrated Assessment Program (MAIA) of the U.S. Environmental Protection Agency using procedures similar to those applied previously in Chesapeake Bay and southeastern estuaries, and was based on sampling in July through early October. Data from seven federal and state sampling programs were used to categorize sites as degraded or non-degraded based on dissolved oxygen, sediment contaminant, and sediment toxicity criteria. Various metrics of benthic community structure and function that distinguished between degraded and reference (non-degraded) sites were selected for each of five major habitat types defined by classification analysis of assemblages. Each metric was scored according to thresholds established on the distribution of values at reference sites, so that sites with low scoring metrics would be expected to show signs of degradation. For each habitat, metrics that correctly classified at least 50% of the degraded sites in the calibration data set were selected whenever possible to derive the index. The final index integrated the average score of the combination of metrics that performed best according to several criteria. Selected metrics included measures of productivity (abundance), diversity (number of taxa, Shannon-Wiener diversity, percent dominance), species composition and life history (percent abundance of pollution-indicative taxa, percent abundance of pollution-sensitive taxa, percent abundance of Bivalvia, Tanypodinae-Chironomidae abundance ratio), and trophic composition (percent abundance of deep-deposit feeders). The index correctly classified 82% of all sites in an independent data set. Classification efficiencies of sites were higher in the mesohaline and polyhaline habitats (81–92%) than in the oligohaline (71%) and the tidal freshwater (61%). Although application of the index to low salinity habitats should be done with caution, the MAIA index appeared to be quite reliable with a high likelihood of correctly identifying both degraded and non-degraded conditions. The index is expected to be of great utility in regional assessments as a tool for evaluating the integrity of benthic assemblages and tracking their condition over time.  相似文献   

18.
A primary goal of many coastal restoration programs is to increase nekton habitat in terms of both quantity and quality. Using shallow water ponds rehabilitated with a technique called marsh terracing, we examined the quality of nekton habitat created, using and comparing several metrics including nekton density and diversity, functional group composition, and weight-length relationships as indirect measures of habitat quality. We examined three paired terraced and unterraced marsh ponds in southwest Louisiana. Nekton, submerged aquatic vegetation (SAV), and soil and water quality variables were sampled bimonthly from April 2004 through April 2005 at four subtidal habitat types: terraced nearshore, terraced open water, unterraced nearshore, and unterraced open water. Results indicate that terraced ponds had increased the habitat value of degrading unterraced ponds over open water areas for estuarine nekton; nekton density and richness were similar between terraced and unterraced nearshore habitat types, but greater at all nearshore as compared to open water sites. Analysis of the distribution of nekton functional groups and weight:length ratios indicates the terraced and unterraced pond habitats were not functioning similarly: distribution of nekton functional groups differed significantly between habitat types with greater percentages of benthic-oriented species at unterraced open water habitats and higher percentage of open water species in terraced ponds as compared to unterraced ponds, and two of the six numerically dominant fish species had greater weight-length relationships in unterraced ponds as compared to terraced ponds. This lack of functional equivalency may be attributed to environmental differences between terraced and unterraced ponds such as water depth or SAV biomass, or the relatively young age of the terraces studied, which may not have allowed for the development of some critical habitat variables, such as soil organic matter that was found to be significantly lower in terraced versus unterraced ponds (p < 0.05). To properly assess the ecological equivalency of restored or rehabilitated sites for nekton requires that we move beyond measures of nekton density, biomass, and diversity and incorporate measures of functional equivalency, including habitat measures.  相似文献   

19.
Estuarine nursery areas are critical for successful recruitment of tautog (Tautoga onitis), yet they have not been studied over most of this species' range. Distribution, abundance and habitat characteristics of young-of-the-year (YOY, age 0) and age 1+juvenile tautog were evaluated during 1988–1992 in the Narragansett Bay estuary, Rhode Island, using a 16-station, beach-seine survey. Estuary-wide abundance was similar among years. Greatest numbers of juveniles were collected at northern Narragansett Bay stations between July and September. Juvenile abundances varied with density of macroalgal and eelgrass cover; abundances ranged from 0.03 fish per 100 m2 to 8.1 fish per 100 m2. Although juveniles use eelgrass, macroalgae is the dominant vegetative cover in Narragansett Bay. Macroalgal habitats play a previously unrealized, important role and contribute to successful recruitment of juvenile tautog in Narragansett Bay. Juvenile abundances did not vary with sediment type or salinity, but were correlated with surface water temperature. Fish collected in June were age 1+ juveniles from the previous year-class (50–167 mm TL) and these declined in number after July or August. The appearance of YOY (25–30 mm TL) in July and August was coincident with the period of their greatest abundances. A precipitous decline in abundance occurred by October because of the individual or combined effects of mortality and movement to alternative habitats. Based on juvenile abundance, a previously unidentified spawning area was noted in Mount Hope Bay, a smaller embayment attached to the northeastern portion of Narragansett Bay. In August 1991, Hurricane Bob disrupted juvenile sise distribution and abundance, resulting in reduced numbers of YOY collected after the storm and few 1+ juveniles in 1992.  相似文献   

20.
We developed a relative index of fish biomass and size distribution in ultra-shallow waters (< 2 m) of Barataria Bay, Louisiana, based on the comparison of horizontal hydroacoustic data with gill net and push trawl catches in an effort to understand the role that habitat plays in both fish biomass and distribution. Exclosure net experiments indicated that the contribution of acoustic backscattering from sources other than fishes were negligible. Split-beam transducer, gill net, and push trawl sampling were conducted concurrently in Barataria Bay to provide information on fish composition and length distributions and for comparisons among gear types. Results suggest that acoustic fish biomass was generally higher in the low salinity stations and lower at the high salinity stations, at least in March 2004. We observed a greater mean length of fishes associated with oyster shell habitats when compared to adjacent sand-mud habitats. This paper demonstrates the utility of hydroacoustics as a tool to quantify relative acoustic fish biomass and size distribution associated with common estuarine habitats in ultra-shallow waters. This study also illustrates the potential of using acoustics for augmenting traditional sampling procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号