首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectra were acquired on a series of natural and synthetic sulfide minerals, commonly found in enstatite meteorites: oldhamite (CaS), niningerite or keilite ((Mg,Fe)S), alabandite (MnS), troilite (FeS), and daubreelite (Cr2FeS4). Natural samples come from three enstatite chondrites, three aubrites, and one anomalous ungrouped enstatite meteorite. Synthetic samples range from pure endmembers (CaS, FeS, MgS) to complex solid solutions (Fe, Mg, Ca)S. The main Raman peaks are localized at 225, 285, 360, and 470 cm?1 for the Mg‐rich sulfides; at 185, 205, and 285 cm?1 for the Ca‐rich sulfides; at 250, 370, and 580 cm?1 for the Mn‐rich sulfides; at 255, 290, and 365 cm?1 for the Cr‐rich sulfides; and at 290 and 335 cm?1 for troilite with, occasionally, an extra peak at 240 cm?1. A peak at 160 cm?1 is present in all Raman spectra and cannot be used to discriminate between the different sulfide compositions. According to group theory, none of the cubic monosulfides oldhamite, niningerite, or alabandite should present first‐order Raman spectra because of their ideal rocksalt structure. The occurrence of broad Raman peaks is tentatively explained by local breaking of symmetry rules. Measurements compare well with the infrared frequencies calculated from first‐principles calculations. Raman spectra arise from activation of certain vibrational modes due to clustering in the solid solutions or to coupling with electronic transitions in semiconductor sulfides.  相似文献   

2.
Moderate dispersion (25-35 Å mm–1) spectra were obtained from two carbon stars, V Cyg and WZ Cas, in a wide range of wavelengths (3400-6800 Å) with the echelle-spectrometer, ZEBRA, of the 6 m telescope and two-dimensional photon-counting system. Spectral feature identification was carried out from 3850 to 6200 Å. Most of the bands are due to C2, SiC2, and CN, however, particularly in WZ Cas, moderate atomic lines of the iron peak and s-process elements are also found. WZ Cas is a so-called lithium star, however, we have found no evidence for a strong line of Li. The spectra of V Cyg contain an emission line of H.  相似文献   

3.
We investigate accelerated electron energy spectra for different sources in a large flare using simultaneous observations obtained with two instruments, the Nobeyama Radio Heliograph (NoRH) at 17 and 34 GHz, and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) at hard X-rays. This flare is one of the few in which emission up to energies exceeding 200 keV can be imaged in hard X-rays. Furthermore, we can investigate the spectra of individual sources up to this energy. We discuss and compare the HXR and microwave spectra and morphology. Although the event overall appears to correspond to the standard scenario with magnetic reconnection under an eruptive filament, several of its features do not seem to be consistent with popular flare models. In particular we find that (1) microwave emissions might be optically thick at high frequencies despite a low peak frequency in the total flux radio spectrum, presumably due to the inhomogeneity of the emitting source; (2) magnetic fields in high-frequency radio sources might be stronger than sometimes assumed; (3) sources spread over a very large volume can show matching evolution in their hard X-ray spectra that may provide a challenge to acceleration models. Our results emphasize the importance of studies of sunspot-associated flares and total flux measurements of radio bursts in the millimeter range.  相似文献   

4.
We present color ratio curves of the S-Asteroid 15 Eunomia, which have been extracted from high-precision photometric lightcurves obtained in three different VNIR wavelength bands at the Bochum Telescope, La Silla. The measured color ratio curves and near infrared spectra were used to derive a detailed surface composition model whose shape has been computed by V-lightcurve inversions. According to this analysis, the asteroid shows on one hemisphere a higher concentration of pyroxene, which causes an increased 440/700 nm and a reduced 940/700 nm reflectance ratio as well as a pronounced 2-μm absorption band. The remaining surface shows a higher concentration of olivine, leading to a reduced 440/700 nm and slightly increased 940/700 nm color ratio. In addition, we found that the maximum of the 440/700 nm color ratio curve coincide with the minimum of the 940/700 nm color ratio curve and vice versa. We demonstrate on the basis of USGS laboratory spectra that this anti-cyclical behavior can be explained by choosing Fe-rich olivine and a pyroxene with moderate Fe content as varying mineral phases. Furthermore, our observations confirm that 15 Eunomia is an irregular elongated and at least partially differentiated body. Previous spectral investigations of several smaller fragments of the Eunomia asteroid family revealed that the amount of fragments showing an increased pyroxene content exceeds the amount of pyroxene-poor fragments (Nathues, 2000, DLR Forschungsbericht, ISSN 1434-8454). This finding together with the observation that the major fraction of Eunomia's surface is enriched in olivine let us claim that a large fraction of the original pyroxene-enriched crust layer has been lost due to a major collision that created the Eunomia asteroid family. Significant spectral evidences, consistent with high concentrations of metals have been found neither in the rotational resolved spectra of 15 Eunomia nor in its fragments. This led to the conclusion that either no core consisting mainly of metals exists or that an eventual one has not been unearthed by the impact.  相似文献   

5.
The power spectra of temperature and vertical velocity variations in the solar photosphere are calculated using the data obtained through observations of a nonperturbed region near the solar disk center in the neutral iron line λ ≈ 639.3 nm conducted at the 70 cm German Vacuum Tower Telescope (VTT) located in the Canary Islands (Spain). The variations of these spectra with altitude are analyzed. It is found that the primary power in the lower photosphere is localized in the range of frequencies that correspond to granulation with a peak at the λ ≈ 1.5–2.0 Mm scale and is reduced with altitude, the power spectrum maximum in the upper photospheric layers is shifted towards larger scales (Δλ ≤ 1 Mm), and the power of variations of the vertical supergranulation velocity (λ ≈ 20–30 Mm) virtually does not change with altitude. An isolated mesogranulation regime (λ ≈ 5–12 Mm) is not found at any of the studied altitudes. The obtained results suggest that the convective structure of the solar photosphere at mesogranulation scales behaves like granulation: the mesostructures are a part of an extended distribution of granulation scales. It is shown that the supergranulation flows are stable throughout the entire photosphere and reach much higher altitudes than the granulation flows.  相似文献   

6.
We have observed the Red Rectangle nebula with the Multi-Object Spectrograph on the WIYN telescope. Moderate-resolution spectra (Δ λ =0.4 Å) in the region of 5800 Å were obtained in 3-arcsec apertures at over 50 positions in the nebula. Accurate and precise wavelength calibrations were obtained against a thorium–argon lamp and the sodium lines in the sky and nebula. The peak position and full width at half-maximum of the 5800-Å Red Rectangle band (RRB) were measured to beyond 15 arcsec from the star. The shortest wavelength of the band is found to be 5799.10±0.15 Å in the rest frame of the nebula. None of the emission bands has intensity coincident with the wavelength of the diffuse interstellar band (DIB) at 5797.11±0.05 Å. The 2-Å offset cannot be explained by an instrumental, spectroscopic or photophysical effect. The hypothesis that the same molecule may be the carrier of the RRB and the DIB is contradicted by these observations. As a further test of the hypothesis, absorption has been sought that would be due to a potential DIB carrier in the nebula. Tentative evidence for absorption is found in the RRB spectra taken within 9 arcsec of the star; but any absorption has a peak position essentially coincident in wavelength with the band maximum of the emission band.  相似文献   

7.
Meridiani Planum is the first officially recognized meteorite find on the surface of Mars. It was discovered at and named after the landing site of the Mars Exploration Rover Opportunity. Based on its composition, it was classified as a IAB complex iron meteorite. Mössbauer spectra obtained by Opportunity are dominated by kamacite (α‐Fe‐Ni) and exhibit a small contribution of ferric oxide. Several small features in the spectra have been neglected to date. To shed more light on these features, five iron meteorite specimens were investigated as analogs to Meridiani Planum with a laboratory Mössbauer setup. Measurements were performed on (1) their metallic bulk, (2) troilite (FeS) inclusions, (3) cohenite ((Fe,Ni,Co)3C) and schreibersite ((Fe,Ni)3P), and (4) corroded rims. In addition to these room‐temperature measurements, a specimen from the Mundrabilla IAB‐ungrouped meteorite was measured at Mars‐equivalent temperatures. Based on these measurements, the features in Meridiani Planum spectra can be explained with the presence of small amounts of schreibersite and/or cohenite and iron oxides. The iron oxides can be attributed to a previously reported coating on Meridiani Planum. Their presence indicates weathering through the interaction of the meteorite with small amounts of water.  相似文献   

8.
Saturn's icy satellites are among the main scientific objectives of the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment. This paper contains a first systematic and comparative analysis of the full-disk spectral properties of Dione, Enceladus, Epimetheus, Hyperion, Iapetus, Mimas, Phoebe, Rhea and Tethys as observed by VIMS from July 2004 to June 2005. The disk integrated properties (350-5100 nm reflectance spectra and phase curves at 550-2232 nm) and images of satellites are reported and discussed in detail together with the observed geometry. In general, the spectra in the visible spectral range are almost featureless and can be classified according to the spectral slopes: from the bluish Enceladus and Phoebe to the redder Iapetus, Hyperion and Epimetheus. In the 1000-1300 nm range the spectra of Enceladus, Tethys, Mimas and Rhea are characterized by a negative slope, consistent with a surface largely dominated by water ice, while the spectra of Iapetus, Hyperion and Phoebe show a considerable reddening pointing out the relevant role played by darkening materials present on the surface. In between these two classes are Dione and Epimetheus, which have a flat spectrum in this range. The main absorption bands identified in the infrared are the 1520, 2020, 3000 nm H2O/OH bands (for all satellites), although Iapetus dark terrains show mostly a deep 3000 nm band while the 1520 and 2020 nm bands are very faint. In this spectral range, the Iapetus spectrum is characterized by a strong reddening. The CO2 band at 4260 nm and the Fresnel ice peak around 3100 nm are evident only on Hyperion, Phoebe and Iapetus. The phase curves at 550 and at 2232 nm are reported for all the available observations in the 0°-144° range; Rhea shows an opposition surge at visible wavelengths in the 0.5°-1.17° interval. The improvement on the retrieval of the full-disk reflectance spectra can be appreciated by a direct comparison with ground-based telescopic data available from literature. Finally, data processing strategies and recent upgrades introduced in the VIMS-V calibration pipeline (flat-field and destriping-despiking algorithm) are discussed in appendices.  相似文献   

9.
Two independent sets of high resolution time series spectra of the CaII H and K emission obtained at the Solar Tower and at the Big Dome of the Sacramento Peak Observatory on September 11th, 1971 are reported. The evolutionary behaviour of the emission first reported by Wilson and Evans is confirmed but the detail of the evolution is found to be more complex. In one case, a doubly peaked feature showing some K3 emission evolves into a single K2 (red) peak with no K3 emission. Coincidentally, a neighbouring doubly peaked feature evolves to a very strong blue peak. In an entirely independent sequence a doubly peaked feature evolves into a single red peak. The K2 emission then fades completely although the continuum threads are still strong. Finally a strong K2 blue peak appears. These developments are confirmed by intensity profiles obtained from the spectra.Image motion during the sequences is measured using slit-jaw photographs and changes in the overall pattern of the spectra. It is found to be less than the size of the individual features, i.e. 1–2.While considering that the evolution can be explained by the relative motion of one feature with respect to another during the sequence, it is shown that it is possible to account for all these examples in this way only by invoking coincidence of a very high order.It is concluded that in these cases the observed evolution of the K2 emission is due to temporal variations in the physical conditions which give rise to them.  相似文献   

10.
Energy spectra and angular distributions of auroral electrons in the energy range 0.2–16 keV measured by the low-altitude polar orbiting satellite ESRO 4 are presented. The observations were made in the altitude range 800–1000 km near magnetic midnight. Energy-time spectrograms show inverted-V structures with peaked energy spectra. The inverted-V events are associated with anisotropic electron pitch angle distributions peaked at 0 deg. Frequently these distributions have a maximum also at 90 deg. Measurements of >43 keV electrons indicate that the acceleration probably occurs on closed field lines. It is found that many properties of the observed particle distributions can be explained by acceleration in an electric field parallel to the magnetic field lines, if trapping of particles under an increasing potential drop is included in the model.  相似文献   

11.
The X-ray spectrometer of the Near-Earth Asteroid Rendezvous (NEAR) mission discovered a low abundance of sulfur on the surface of asteroid Eros, which is seemingly inconsistent with the match of the overall surface composition to that of ordinary chondrites. Since troilite, FeS, is the primary sulfur-bearing mineral in ordinary chondrites, we investigated the hypothesis that sulfur loss from surface FeS could result from ‘space weathering’ by impact of solar wind ions and micrometeorites. We performed laboratory studies on the chemical alteration of FeS by 4 keV ions simulating exposure to the solar wind and by nanosecond laser pulses simulating pulsed heating by micrometeorite impact. We found that the combination of laser irradiation followed by ion impact lowers the S:Fe atomic ratio on the surface by a factor of up to 2.5, which is consistent with the value of at least 1.5 deduced from the NEAR measurements. Thus, our results support the hypothesis that the low abundance of sulfur at the surface of Eros is caused by space weathering.  相似文献   

12.
Solar irradiation fluxes are determined between 150 and 210 nm from stigmatic spectra of the Sun obtained by means of a rocket-borne spectrograph. Absolute intensities at the disk center with a spectral resolution of 0.04 nm and a spatial resolution of 7 arc sec are presented. From center-to-limb intensity variations determined from the same spectra, mean full disk intensities of the quiet Sun can be deduced. In order to compare them with other measurements, the new solar fluxes have been averaged over a bandpass of 1 nm.  相似文献   

13.
We present new absorbance spectra of the 3-, 6- and 12-μm features of amorphous and crystalline H2O ice obtained between 10 and 140 K. Three sets of measurements have been made. In series I, the ice film was initially deposited on to a CsI substrate at 10 K and successive spectra were then obtained at intermediate temperatures as the ice was warmed up to 140 K. The second set, series II, comprises spectra for ice films deposited and measured at temperatures between 10 and 140 K. In the third set of measurements, series III, spectra were obtained for an ice film deposited at 140 K and then at intermediate temperatures as the film was cooled down to 10 K. The series I and II results show that the ice undergoes an amorphous-to-crystalline phase transition in the 110–120 K range. The 3- and 12-μm bands have similar trends in full width at half-maximum (FWHM) and opposite peak wavelength shifts. The temperature behaviour of the 6-μm band is different, as no clear phase transition temperature can be discerned from its FWHM and peak wavelength position data. In the series III spectra the peak wavelength positions and FWHM of the three bands remain relatively constant, thus demonstrating the stability of the crystalline phase against thermal cycling. A comparison between the laboratory results and astronomical spectra suggests that the identification of the librational band of H2O ice in OH 231.8 + 4.2 may be incorrect.  相似文献   

14.
Balloon observations of solar irradiance between 200 and 240 nm have been performed in 1976 and 1977 corresponding to minimum conditions of solar activity. Ultraviolet spectra have been recorded for different zenith angles at an altitude of 41 km by means of a spectrometer with a spectral bandpass of 0.4 nm. Solar irradiances at 1 a.u. confirm previous values obtained by balloon. They are compared with other measurements and discussed in term of possible long-term variability.  相似文献   

15.
A preliminary study of the surface of the asteroid 21 Lutetia with ground-based methods is of significant importance, because this object is included into the Rosetta space mission schedule. From August 31 to November 20, 2000, about 50 spectra of Lutetia and the same number of spectra of the solar analog HD10307 (G2V) and regional standards were obtained with a resolution of 4 and 3 nm at the MTM-500 telescope television system of the Crimean astrophysical observatory. From these data, the synthetic magnitudes of the asteroid in the BRV color system have been obtained, the reflected light fluxes have been determined in absolute units, and its reflectance spectra have been calculated for a range of 370–740 nm. In addition, from the asteroid reflectance spectra obtained at different rotation phases, the values of the equivalent width of the most intensive absorption band centered at 430–440 nm and attributed to hydrosilicates of the serpentine type have been calculated. A frequency analysis of the values V(1, 0) confirmed the rotation period of Lutetia 0.d3405 (8.h172) and showed a two-humped light curve with a maximal amplitude of 0.m25. The color indices B-V and V-R showed no noticeable variations with this period. A frequency analysis of the equivalent widths of the absorption band of hydrosilicates near 430–440 nm points to the presence of many significant frequencies, mainly from 15 to 20 c/d (c/d is the number of cycles per day), which can be caused by a heterogeneous distribution of hydrated material on the surface of Lutetia. The sizes of these heterogeneities (or spots) on the asteroid surface have been estimated at 3–5 to 70 km with the most frequent value between 30 and 40 km.  相似文献   

16.
Energy spectra and pitch angle distributions of auroral electrons in the energy range 2.5–11 keV observed on a rocket flight launched from Andøya on 13 November 1970 are presented. Strong rapidly fluctuating fluxes during the first part of the flight were succeeded by fluxes below or close to the level of detectability. Before the rocket passed through the northern precipitation boundary two spectral events of “inverted V” character occurred. Both events were associated with field aligned pitch angle distributions. While anisotropies with the flux peaked near 0° were in general associated with the spectral peak energy, isotropy over the upper hemisphere was the dominant distribution for other energies. The observations made during these events provide strong support for the theory of a parallel potential drop close to the ionosphere as an important accelerating mechanism for auroral electrons in connection with “inverted V” events.  相似文献   

17.
Type IV radio bursts with wide band from microwave to metric-wave frequency are generally associated with solar proton flares. Recently, Castelli et al. (1967, 1968) have shown that the type IV radio bursts associated with solar proton flares show the U-shaped peak flux spectra with the minimum flux at decimetric frequencies. In this paper, the center-to-limb variation of such peak flux spectra is investigated in order to examine the effect of decrease of the peak flux at metric frequencies with increase of the angular distance from the central meridian of the Sun. It is shown that the U-shaped spectra are obtained independent of the position of proton flares, although the spectral form changes significantly in the case of the flares near the limb. It is further suggested that the U-shaped spectra consist of the two essentially independent components for microwave and metric-wave frequencies, respectively.  相似文献   

18.
An analysis of solar radio burst spectra in the range 3–80 GHz is carried out using measurements of the observatories at Bern and Nobeyama supplemented by data from worldwide network stations. Special interest was focused on strong events at frequencies above 30 GHz. It is found that there exists an extended group of events with a flattening of the spectra at millimeter wavelengths. In particular, two types of flattening are observed: (i) a high-frequency flattening either following a monotonic spectral flux increase at cm-waves or forming a flat broad-band spectrum at mm-wavelengths ; (ii) a millimetric flattening as a decrease of the slope (i.e., a hardening) of the descending branch of the spectrum having a peak in the microwave range. Besides this, in complicated bursts a strong temporal evolution of millimeter spectra may occur resulting in either type of the flattening. Some factors capable of producing the millimeter flattening are considered: (1) superposition of multiple source regions of gyrosynchrotron radiation, (2) gyromagnetic radiation from a two-component energy spectrum of the accelerated electrons at high energies, or by a temporal hardening of the electron spectrum during extended flares, and (3) optically thin bremsstrahlung of evaporated plasma.Presented at the CESRA Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

19.
Kuebler et al. (2006) identified variations in olivine Raman spectra based on the composition of individual olivine grains, leading to identification of olivine composition from Raman spectra alone. However, shock on a crystal lattice has since been shown to result in a structural change to the original material, which produces a shift in the Raman spectra of olivine grains compared with the original unshocked olivine (Foster et al. 2013). This suggests that the use of the compositional calculations from the Raman spectra, reported in Kuebler et al. (2006), may provide an incorrect compositional value for material that has experienced shock. Here, we have investigated the effect of impact speed (and hence peak shock pressure) on the shift in the Raman spectra for San Carlos olivine (Fo91) impacting Al foil. Powdered San Carlos olivine (grain size 1–10 μm) was fired at a range of impact speeds from 0.6 to 6.1 km s?1 (peak shock pressures 5–86 GPa) at Al foil to simulate capture over a wide range of peak shock pressures. A permanent change in the Raman spectra was found to be observed only for impact speeds greater than ~5 km s?1. The process that causes the shift is most likely linked to an increase in the peak pressure produced by the impact, but only after a minimum shock pressure associated with the speed at which the effect is first observed (here 65–86 GPa). At speeds around 6 km s?1 (peak shock pressures ~86 GPa), the shift in Raman peak positions is in a similar direction (red shift) to that observed by Foster et al. (2013) but of twice the magnitude.  相似文献   

20.
《Planetary and Space Science》1987,35(11):1359-1366
The Low Energy Charged Particle (LECP) experiment on the Voyager 2 spacecraft in the outer heliosphere ( > 10 a.u.) has observed several occasions when there was a peak in the interplanetary ion spectra for ions of energies ∼ 0.5–1.0 MeV. Such enhancements can last for several days, suggesting that at these times particles of these energies dominate the low energy cosmic population in this region of the heliosphere. Two specific cases are discussed. The enhancements seem to be associated with the passage of transient interplanetary shock events, with the ion anisotropies generally showing outflow. The most straight-forward explanation for the observations seems to involve only a propagation effect of ions from the inner to the outer solar system. This conclusion is supported by simple modeling of the propagation of an event observed at 1 a.u. to the spacecraft at ∼ 12 a.u.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号