首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The minimum dissipative rate (MDR) method for deriving a coronal non-force-free magnetic field solution is partially evaluated. These magnetic field solutions employ a combination of three linear (constant-α) force-free-field solutions with one being a potential field (i.e., α=0). The particular case of the solutions where the other two α’s are of equal magnitude but of opposite sign is examined. This is motivated by studying the SOLIS (Synoptic Optical Long-term Investigation of the Sun (SOLIS), a National Solar Observatory facility) vector magnetograms of AR 10987, which show a global α value consistent with an α=0 value as evaluated by (×B) z /B z over the region. Typical of the current state of the observing technology, there is no definitive twist for input into the general MDR method. This suggests that the special α case, of two α’s with equal magnitudes and opposite signs, is appropriate given the data. Only for an extensively twisted active region does a dominant, nonzero α normally emerge from a distribution of local values. For a special set of conditions, is it found that (i) the resulting magnetic field is a vertically inflated magnetic field resulting from the electric currents being parallel to the photosphere, similar to the results of Gary and Alexander (Solar Phys. 186:123, 1999), and (ii) for α≈(α max /2), the Lorentz force per unit volume normalized by the square of the magnetic field is on the order of 1.4×10−10 cm−1. The Lorentz force (F L) is a factor of ten higher than that of the magnetic force d(B 2/8π)/dz, a component of F L. The calculated photospheric electric current densities are an order of magnitude smaller than the maximum observed in all active regions. Hence both the Lorentz force density and the generated electric current density seem to be physically consistent with possible solar dynamics. The results imply that the field could be inflated with an overpressure along the neutral line. However, the implementation of this or any other extrapolation method using the electric current density as a lower boundary condition must be done cautiously, with the current magnetography.  相似文献   

2.
I describe briefly the status of an ongoing mini-survey for molecular hydrogen in high-redshift Damped Lyman-α systems using UVES at the VLT. H2 is detected in about 30% of the cases. When H2 is not detected the molecular fraction f = 2N(H2)/(2N(H2)+N(HI) is smaller than 10-5. Therefore, most of the DLA systems arise in warm (T > 3000 K) and diffuse neutral gas embedded in a strong UV flux. The very recent detection of HD molecules in a Damped Lyman-α system at z abs = 2.337 demonstrates the possibility to discuss the high redshift chemistry. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

3.
A statistical study of the dependence of the star formation rate in the nuclear regions of 39 Kazarian galaxies on the integral parameters of these galaxies is carried out on the basis of spectra from SDSS DR6. The value of SFR/kpc2 for our sample lies in the range 0.013÷2.04M year−1kpc−2 (with the maximum value of 2.04 corresponding to the Kaz 98 (merger)). It is found that the surface density of the rate of star formation correlates positively with the bar structure parameter and EW(Hα), and that, for spiral galaxies of early morphological types, SFR/kpc2 is greater than for the later types. It is shown that the color B-R for the galaxies and the color (ug) nucl for the nuclear region correlate positively with the total absorption A(Hα) in the Ha line for the nuclear region. The average value of A(Hα) for our samples is found to be A(Hα)=1.3±0.09 magnitudes. Translated from Astrofizika, Vol. 52, No. 2, pp. 211–224 (May 2009).  相似文献   

4.
The present paper is devoted to the interpretation of linear polarization data obtained in 14 quiescent prominences with the Pic-du-Midi coronagraph-polarimeter by J. L. Leroy, in the two lines Hei D3 andH quasi-simultaneously. The linear polarization of the lines is due to scattering of the anisotropic photospheric radiation, modified by the Hanle effect due to the local magnetic field. The interpretation of the polarization data in the two lines is able to provide the 3 components of the magnetic field vector, and one extra parameter, namely the electron density, because the linear polarization of H is also sensitive to the depolarizing effect of collisions with the electrons and protons of the medium. Moreover, by using two lines with different optical thicknesses, namely Hei D3, which is optically thin, and H, which is optically thick ( = 1), it is possible to solve the fundamental ambiguity, each line providing two field vector solutions that are symmetrical in direction with respect to the line of sight in the case of the optically thin line, and which have a different symmetry in the case of the optically thick line.It is then possible to determine without ambiguity the polarity of the prominence magnetic field with respect to that of the photospheric field: 12 prominences are found to be Inverse polarity prominences, whereas 2 prominences are found to be Normal polarity prominences. It must be noticed that in 12 of the 14 cases, the line-of-sight component of the magnetic field vector has a Normal polarity (to the extent that the notion of polarity of a vector component is meaningful; no polarity can be derived in the 2 remaining cases); this may explain the controversy between the results obtained with methods based on the Hanle effect with results obtained through the Zeeman effect. A dip of the magnetic field lines across the prominence has been assumed, to which the optically thick H line is sensitive, and the optically thin Hei D3 line is insensitive.For the Inverse prominences, the average field strength is 7.5±1.2 G, the average angle,, between the field vector and the prominence long axis is 36° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 29° ± 20°, and the average electron density is 2.1 × 1010 ± 0.7 × 1010 cm–3. For the Normal prominences, the average field strength is 13.2±2.0 G, the average angle,, between the field vector and the prominence long axis is 53° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 0° ± 20° (horizontal field), and the average electron density is 8.7 × 109 ± 3.0 × 109 cm–3.  相似文献   

5.
The inertial range of incompressible MHD turbulence is most conveniently described in terms of counter propagating waves. Shear Alfvén waves control the cascade dynamics. Slow waves play a passive role and adopt the spectrum set by the shear Alfvén waves. Cascades composed entirely of shear Alfvén waves do not generate a significant measure of slow waves. MHD turbulence is anisotropic with energy cascading more rapidly along k than along k . Anisotropy increases with k such that the excited modes are confined inside a cone bounded by k k perp 2/3. The opening angle of the cone, θ(k )∝ k -1/3, defines the scale dependent anisotropy. MHD turbulence is generically strong in the sense that the waves which comprise it are critically damped. Nevertheless, deep inside the inertial range, turbulent fluctuations are small. Their energy density is less than that of the background field by a factor θ2(k )≪. MHD cascades are best understood geometrically. Wave packets suffer distortions as they move along magnetic field lines perturbed by counter propagating wave packets. Field lines perturbed by unidirectional waves map planes perpendicular to the local field into each other. Shear Alfvén waves are responsible for the mapping's shear and slow waves for its dilatation. The former exceeds the latter by θ-1(k )≫ 1 which accounts for dominance of the shear Alfvén waves in controlling the cascade dynamics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Makarov  V.I.  Tlatov  A.G.  CALLEBaUT  D.K.  Obridko  V.N.  Shelting  B.D. 《Solar physics》2001,198(2):409-421
Hα magnetic synoptic charts of the Sun are processed for 1915–1999 and the spherical harmonics are calculated. It is shown that the polarity distribution of the magnetic field on Hα charts is similar to the polarity distribution of the Stanford magnetic field observations during 1975–1999. The index of activity of the large-scale magnetic field A(t), representing the sum of the intensities of dipole and octupole components, is introduced. It is shown that the cycle of the large-scale magnetic field of the Sun precedes on the average by 5.5 years the sunspot activity cycle, W(t). This means that the weak large-scale magnetic fields of the Sun do not result from decay and diffusion of strong fields from active regions as it is supposed in all modern theories of the solar cycle. On the basis of the new data the intensity of the current solar cycle 23 is predicted and some aspects of the theory of the solar cycle are discussed.  相似文献   

7.
In this paper, we consider the effect of Landau levels on the decay of superhigh magnetic fields of magnetars. Applying 3 P 2 anisotropic neutron superfluid theory yield a second-order differential equation for a superhigh magnetic field B and its evolutionary timescale t. The superhigh magnetic fields may evolve on timescales ∼(106–107) yrs for common magnetars. According to our model, the activity of a magnetar may originate from instability caused by the high electron Fermi energy.  相似文献   

8.
Melrose  Don 《Solar physics》2004,221(1):121-133
A model for a solar flare, involving magnetic reconnection transferring flux and current between current-carrying magnetic loops connecting two pairs of footpoints, is generalized to include conservation of magnetic helicity during reconnection, as well as conservation of current at all four footpoints. For a set of force-free loops, with the ith loop having flux F i and current I i, the self and mutual helicities are proportional to the self and mutual inductances with the constant of proportionality determined by αi=F i0 I i. In a constant-α model, the change in magnetic energy is proportional to the change in helicity, and conservation of helicity implies conservation of magnetic energy, so that a flare cannot occur. In a quadrupolar model, with α12 initially, α1 increases and α2 decreases when flux and current are transferred from loops 1 and 2 to loops 3 and 4. A model that conserves both current and helicity is constructed; it depends on the initial αs, and otherwise is somewhat simpler than when helicity is neglected.  相似文献   

9.
We studied the behavior of magnetic field, horizontal motion and helicity in a fast emerging flux region NOAA 10488 which eventually forms a δ spot. It is found that the rotation of photospheric footpoints forms in the earlier stage of magnetic flux emergence and the relative shear motion of different magnetic flux systems appears later in this active region (AR). Therefore the emerging process of the AR can be separated into two phases: rotation and shear. We have computed the magnetic helicity injected into the corona using the local correlation tracking (LCT) technique. Furthermore we determined the vertical component of current helicity density and the vertical component of induction electric fields Ez = (V× B)z in the photosphere. Particularly we have presented the comparison of the injection rate of magnetic helicity and the variation of the current helicity density. The main results are as follows: (1) The strong shear motion (SSM) between the new emerging flux system and the old one brings more magnetic helicity into the corona than the twisting motions. (2) After the maturity of the main bipolar spots, their twist decreases and the SSM becomes dominant and the major contributor of magnetic non-potentiality in the solar atmosphere in this AR. (3) The positions of the maxima of Ez (about 0.1 ∼ 0.2 V cm−1) shift from the twisting areas to the areas showing SSMs as the AR evolved from the rotation phase to the shear one, but no obvious correlation is found between the kernels of Hα flare and Ez for the M1.6 flare in this AR. (4) The coronal helicity inferred from the horizontal motion of this AR amounts to −6 × 1043 Mx2. It is comparable with the coronal helicity of ARs producing flares with coronal mass ejections (CMEs) or helicity carried away by magnetic clouds (MCs) reported in previous studies (Nindos, Zhang, and Zhang, 2003; Nindos and Andrews, 2004). In addition, the formation of the δ configuration in this AR belongs to the third formation type indicated by Zirin and Liggett (1987), i.e., collision of opposite polarities from different dipoles, and can be naturally explained by the SSM.  相似文献   

10.
Optical CCD imaging with Hα and [SII] filters and spectroscopic observations of the galactic supernova remnant G85.9-0.6 have been performed for the first time. The CCD image data are taken with the 1.5 m Russian-Turkish Telescope (RTT150) at TüBİTAK National Observatory (TUG) and spectral data are taken with the Bok 2.3 m telescope on Kitt Peak, AZ. The images are taken with narrow-band interference filters Hα, [SII] and their continuum. [SII]/Hα ratio image is performed. The ratio obtained from [SII]/Hα is found to be ∼0.42, indicating that the remnant interacts with HII regions. G85.9-0.6 shows diffuse-shell morphology. [SII]λ λ6716/6731 average flux ratio is calculated from the spectra, and the electron density N e is obtained to be 395 cm−3. From [OIII]/Hβ ratio, shock velocity has been estimated, pre-shock density of n c =14 cm−3, explosion energy of E=9.2×1050 ergs, interstellar extinction of E(BV)=0.28, and neutral hydrogen column density of N(HI)=1.53×1021 cm−2 are reported.  相似文献   

11.
We investigate the influence of the following parameters on the crust properties of strange stars: the strange quark mass (m s), the strong coupling constant (αc) and the vacuum energy density (B). It is found that the mass density at the crust base of strange stars cannot reach the neutron drip density. For a conventional parameter set of m s=200 MeV, B 1/4 = 145 MeV and αc = 0.3, the maximum density at the crust base of a typical strange star is only 5.5 × 1010 gcm-3, and correspondingly the maximum crust mass is 1.4 ×10-6 M. Subsequently, we present the thermal structure and the cooling behavior of strange stars with crusts of different thickness, and under different diquark pairing gaps. Our work might provide important clues for distinguishing strange stars from neutron stars.  相似文献   

12.
Bianchi Type I string dust cosmological models in presence and absence of magnetic field following the techniques used by Letelier and Stachel, are investigated. To get the deterministic solution, we have assumed that σ 11 is proportional to the expansion (θ) where σ 11 is the eigen value of shear tensor (σ i j ) and which leads to A=N(BC)n , n>0 where A,B,C are metric potentials and , N and are constants. The behaviour of the models in presence and absence of magnetic field are discussed. The other physical and geometrical aspects of the model are also discussed.  相似文献   

13.
Using a well-known method for calculating the propagation of waves in an inhomogeneous medium, we have managed to reduce the problem of wave propagation in pulsar magnetospheres to a system of two ordinary differential equations that allow the polarization characteristics of the radio emission to be quantitatively described for any magnetic field structure and an arbitrary density profile of the outflowing plasma. We confirm that for ordinary pulsars (period P ∼ 1 s, magnetic field B 0 ∼ 1012 G, particle production multiplicity parameter λ ∼ 104), the polarization is formed inside the light cylinder at a distance of the order of a thousand neutron star radii. For reasonable magnetic field strengths and plasma densities on the emission propagation path, the degree of circular polarization is found to be ∼5–20%, in good agreement with observations.  相似文献   

14.
A possible correlation between the magnetic and velocity fields has been analyzed based on the SOHO/MDI magnetograms and Dopplergrams. It is found that the observed large-scale weak magnetic field (weaker than 50 G (gauss)) is correlated with the velocity statistically. The curves of ub with latitude, where u and b are the velocity and magnetic fields in a rectangular region (±15 in longitude, ±45 in latitude) on the Sun, show the same patterns in the years 2000, 2004, and 2007. The patterns indicate that u and b are positively correlated near the equator but are anti-correlated at the middle latitudes. For a strong magnetic field between 50 G and 3000 G, the curves of ub with latitude show the same tendencies at the middle latitudes. Near the equator, however, the slope of the curve is positive in 2000 and is negative in 2004 and 2007. In addition, we give an estimation for the amplitude of the cross helicity h χ (hc=[`(u·b)]h_{\chi}=\overline{\mathbf{u}\cdot\mathbf{b}}) inferred from the MDI data, which is of the order of 103 G m s−1 near the center of the solar disk.  相似文献   

15.
High-resolution Fourier Transform Spectrometer sunspot umbral spectra of the National Solar Observatory/National Optical Astronomy Observatory at Kitt Peak were used to detect rotational lines from 19 electronic transition bands of the molecules LaO, ScO and VO, in the wavenumber range of 11 775 to 20 600 cm−1. The presence of lines from the following transitions is confirmed: A 2 Π r1/2 – X 2 Σ +(0, 0; 0, 1), A 2 Π r3/2 – X 2 Σ +(1, 0), B 2 Σ + – X 2 Σ +(0, 0; 0, 1; 1, 0) and C 2 Π r1/2 – A2Δ r3/2(0, 0; 1, 1) of LaO; A 2 Π r3/2 – X 2 Σ +(0, 0), A 2 Π r1/2 – X 2 Σ +(0, 0) and B 2 Σ + – X 2 Σ +(0, 0) of ScO; and C 4 Σ  – X 4 Σ (0, 1; 1, 0; 0, 2) and (2, 0) of VO. However, the presence of A 2 Π r3/2 – X 2 Σ +(0, 0) and C 2 Π r3/2 – A2Δ r5/2(0, 0; 1, 1) of LaO and C 4 Σ  – X 4 Σ (0, 0) of VO are found to be doubtful because the lines are very weak, and detections are difficult owing to heavy blending by strong rotational lines of other molecules. Equivalent widths are measured for well-resolved lines and, thereby, the effective rotational temperatures are estimated for the systems for which the presence is confirmed.  相似文献   

16.
We have studied the structure of hot accretion flow bathed in a general large-scale magnetic field. We have considered magnetic parameters , where are the Alfvén sound speeds in three direction of cylindrical coordinate (r,φ,z). The dominant mechanism of energy dissipation is assumed to be the magnetic diffusivity due to turbulence and viscosity in the accretion flow. Also, we adopt a more realistic model for kinematic viscosity (ν=αc s H), with both c s and H as a function of magnetic field. As a result in our model, the kinematic viscosity and magnetic diffusivity (η=η 0 c s H) are not constant. In order to solve the integrated equations that govern the behavior of the accretion flow, a self-similar method is used. It is found that the existence of magnetic resistivity will increase the radial infall velocity as well as sound speed and vertical thickness of the disk. However the rotational velocity of the disk decreases by the increase of magnetic resistivity. Moreover, we study the effect of three components of global magnetic field on the structure of the disk. We found out that the radial velocity and sound speed are Sub-Keplerian for all values of magnetic field parameters, but the rotational velocity can be Super-Keplerian by the increase of toroidal magnetic field. Also, Our numerical results show that all components of magnetic field can be important and have a considerable effect on velocities and vertical thickness of the disk.  相似文献   

17.
In this work we propose cyclical reversible transitions as the scenario in which the universe evolves, through a series consisting of reversible expansion, temporary stability, and contraction. Our model is based on the comparison between local and global time-dependent densities {ρ 0(τ 0),ρ(τ)} instead of the critical density ρ c, local and global time-dependent Hubble parameters {H 0(τ 0),H(τ)}, and the variations {Δρ(τ),ΔH(τ)} due to cosmological chaotic fluctuations, which are generally ignored in certain oscillating models. By taking into account all these factors, a rate equation in the form of (H 0/H)2 (ρ 0/ρ) has been established, and from it we derive some others, to provide a mechanism that is responsible for the cyclical reversible transitions. Also, the problems of singularities, black hole overproduction, and the second law of thermodynamics arising in oscillating universe models are conceptually resolved.  相似文献   

18.
The energy density of Vaidya-Tikekar isentropic superdense star is found to be decreasing away from the center, only if the parameter K is negative. The most general exact solution for the star is derived for all negative values of K in terms of circular and inverse circular functions. Which can further be expressed in terms of algebraic functions for K = 2-(n/δ)2 < 0 (n being integer andδ = 1,2,3 4). The energy conditions 0 ≤ p ≤ αρc 2, (α = 1 or 1/3) and adiabatic sound speed conditiondp dρ ≤ c 2, when applied at the center and at the boundary, restricted the parameters K and α such that .18 < −K −2287 and.004 ≤ α ≤ .86. The maximum mass of the star satisfying the strong energy condition (SEC), (α = 1/3) is found to be3.82 Mq· at K=−2/3, while the same for the weak energy condition (WEC), (α =1) is 4.57 M_ atK=−>5/2. In each case the surface density is assumed to be 2 × 1014 gm cm-3. The solutions corresponding to K>0 (in fact K>1) are also made meaningful by considering the hypersurfaces t= constant as 3-hyperboloid by replacing the parameter R 2 by −R2 in Vaidya-Tikekar formalism. The solutions for the later case are also expressible in terms of algebraic functions for K=2-(n/δ2 > 1 (n being integer or zero and δ =1,2,3 4). The cases for which 0 < K < 1 do not possess negative energy density gradient and therefore are incapable of representing any physically plausible star model. In totality the article provides all the physically plausible exact solutions for the Buchdahl static perfect fluid spheres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Scalar field as dark energy accelerating expansion of the Universe   总被引:1,自引:1,他引:0  
The features of a homogeneous scalar field ϕ with classical Lagrangian L = ϕ;i ϕ;i /2 − V(ϕ) and tachyon field Lagrangian L = −V(ϕ)√1 − ϕ;i ϕ;i causing the observable accelerated expansion of the Universe are analyzed. The models with constant equation-of-state parameter w de = p dede < −1/3 are studied. For both cases the fields ϕ(a) and potentials V(a) are reconstructed for the parameters of cosmological model of the Universe derived from the observations. The effect of rolling down of the potential V(ϕ) to minimum is shown. Published in Ukrainian in Kinematika i Fizika Nebesnykh Tel, 2008, Vol. 24, No. 5, pp. 345–359. The article was translated by the authors.  相似文献   

20.
The longitudinal magnetic field measured using the Fe I λ 525 and Fe I λ 524.7 nm lines and global magnetic field of the sun differ depending on the observatory. To study the cause of these discrepancies, we calculate the H (525)/H (524.7) ratios for various combinations of magnetic elements and compare them with the corresponding observed values. We use the standard quiet model of the solar photosphere suggesting that there are magnetic fields of different polarities in the range between zero and several kilogauss. The magnetic element distribution is found as a function of magnetic field strength and the parameters of this distribution are determined for which the calculated H (525)/H (524.7) ratio agrees with the observed one. The sigma-components are found to be shifted differently for various points of the Fe I λ 525 nm profile calculated for the inhomogeneous magnetic field. The farther the point is from the line center, the larger the sigma-components shift. Such a peculiarity of the profiles may be responsible for the discrepancies in the measured values of the global magnetic field obtained at different observatories. The increase in modulus of the global magnetic field during the maxima of solar activity can be due to a larger fraction of magnetic elements with kilogauss magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号