首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is concerned with the mechanisms of dust storm development in East Asia and the characteristics of the responsible synoptic systems. Two severe East Asian dust storms which occurred in spring 2002 are analyzed using synoptic and remote sensing data. The relationships between the formation and the movement of the dust storms and the evolution of the synoptic systems are examined. It is shown that a dust storm may develop when a synoptic system moves to the desert area of Northeast Asia with a surface wind speed exceeding 6 m s− 1. Numerical simulations of the two dust storms are carried out using a dust storm forecasting model. The performance of the model is verified with observations. The dust sources are found to be consistent with the desert regions in Northeast Asia, but cover a somewhat larger area than the observations suggest. Finally, we present a conceptual model of dust storm generation and movement in East Asia on the basis of numerical modeling and synoptic analysis.  相似文献   

2.
The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan–China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004.The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei. (3) Studies on the aerosol concentration indicated that size distributions of aerosols in downwind regions have bimodal peaks. One peak was in the submicron range and the other in the supermicron range. The main soluble components of the supermicron peak were Na+, Ca2+, NO3, and Cl. In the downwind region in Japan, the dust, sea salt, and a mixture of the two were found to be dominant in coarse particles in the mixed boundary layer. (4) Observation of the optical properties of dust by sky-radiometer, particle shoot absorption photometer (PSAP), and Nephelometer indicated that unpolluted dust at source region has a weaker absorption than originally believed.A sensitivity experiment of direct RF by dust indicated that single scattering albedo is the most important of the optical properties of dust and that the sensitivity of instantaneous RF in the shortwave region at the top of the atmosphere to the refractive index strongly depends on surface albedo. A global scale dust model, MASINGAR, was used for evaluation of direct RF due to dust. The results indicated the global mean RF at the top and the bottom of the atmosphere were − 0.46 and − 2.13 W m− 2 with cloud and were almost half of the RF with cloud-free condition.  相似文献   

3.
Modeling mineral dust emissions from Chinese and Mongolian deserts   总被引:6,自引:0,他引:6  
The present study investigates the frequency and intensity of mineral dust emissions over the deserts of eastern Asia from 1996 to 2001. Mineral dust emissions are simulated using a physical dust emission scheme over a region extending from 35.5°N to 47°N and from 73°E to 125°E. The input parameters required by the dust emission model are (1) surface features data including aerodynamic roughness length, soil dry size distribution and texture; and (2) meteorological surface data, mainly wind speed, soil moisture and snow cover. The way by which these surface features and meteorological data can be assessed is described and discussed. The influence of soil moisture and snow cover is taken into account and their effects on simulated dust emission are quantified.The simulations reproduce on a daily basis the location and intensity of the severe events of April 1998 and spring 2001 as recorded by the meteorological stations and/or described in various studies. Based on 6 yr of simulations, the main dust source regions are identified and their relative contributions to the total dust emissions are quantified.The seasonal cycle of the dust storms frequency is well reproduced with a maximum in spring. The simulations suggest that it is mainly controlled by the emissions occurring in the Taklimakan desert in latter spring and in summer, and by those occurring in the northern deserts of China in winter. The Taklimakan desert appears to be the most frequent and steady source of dust emissions during the studied period. On the other hand, in the Gobi desert, only a few dust emission events are simulated, but the dust amount emitted during each event is generally very large. In the northern deserts of China, dust emissions are frequent and their intensity is variable.These results show an important annual and inter-annual variability of the emitted dust (between 100 Mt yr− 1 and 460 Mt yr− 1), mainly controlled by the occurrence of severe events in the Gobi desert and in the northern deserts of China.  相似文献   

4.
The characteristics of Asian dust events that occurred in Northeast Asia during the springtime from 1993 to 2004 are investigated using 3-hourly SYNOP reports (World Meteorological Organization). Occurrences of blowing sand and dust storm are low in 1997 and 1999, but have increased rapidly since 2000. The maximum occurrence was recorded in 2002. Wind velocity of 6.5 m s− 1 as a threshold wind velocity is not so exactly consistent with the occurrence of blowing sand. However, wind velocity of 14 m s− 1 as a strong wind causing dust storm had similar tendency to those of dust storm and Dust Storm Index.Source regions of Asian dust are divided into three regions (A: dry arid, B: semi-arid, and C: cultivated), based upon the occurrence of blowing sand and dust storm. Eight meteorological stations are selected in three regions, which have frequent occurrences of blowing sand. Source regions of Asian dust that affect the Korean peninsula are gradually extending eastward. Positive anomalies of NDVI occurred in 1994, 1995, and 1998 when temperature was high and precipitation was heavy. However, the frequent occurrence of the dust phenomena is not always consistent with lots of vegetation, high temperature, and much precipitation in this study.  相似文献   

5.
An integrated dust storm modeling system is developed for the prediction of dust storms. The system couples a wind erosion scheme, a dust transportation model and the Penn State/UCAR modeling system (MM5) with a geographic information database. The system can be used for the prediction of dust emission rate and dust concentration associated with individual dust storm events. Two severe dust storm events occurred in spring 2002, one on the 19th–22nd of March and the other on the 6th–9th of April. The integrated modeling system is used to simulate the two events. The numerical results are compared with surface weather records and satellite images and good agreement is found between the model results and observation in dust concentration distribution and evolutions. The Gobi Desert in southern Mongolia and the Badain Jaran Desert, Tengger Desert and Hunshandake sandy land in Inner Mongolia (China) are identified to be the dust sources for the two events. The dominant modes of dust particles over western Inner Mongolia and Mongolia are from 2 to 11 μm in size, and 2 to 22 μm over Beijing and its surrounding area. The emission of particles in the 2–11 μm size range is found to be most important for Northeast Asian dust storms.  相似文献   

6.
Bulk precipitation and stream water chemistry data from 1993 to 2005 are used to analyze the relationship between Eurasian dust storms and nutrient deposition rates in the Kutsuki experimental forest (near Lake Biwa). From 2000 to 2005, atmospheric deposition, total nitrogen (TN), total phosphorus (TP) and dissolved silica (DSi) deposition rates increased by 26%, 132%, and 38%, respectively in the Kutsuki experimental forest. These TN and TP increases are associated with three seasonal factors: the increasing frequency and intensity of Eurasian spring dust events (March/April); the annual typhoon period (late August/September); and autumn/early winter (October to December) monsoons. The annual typhoon and monsoon winter periods are drivers for atmospheric TP and DSi deposition due to the correlation between the deposition and precipitation. In addition, increased spring dust deposition is a primarily driver for TN deposition changes. Increased emissions from urbanized areas in China (and likely Korea) affect the chemical properties of aerosols reaching downwind Japanese regions. Aerosol processes are responsible for increasing TN in aerosols, which are affected primarily by anthropogenic emissions. From 2000 to 2005, coal burning emissions from East Asia have contributed to an increase in TP (and possibly DSi) deposition rates. The observed increase in nutrient deposition did not noticeably impact short-term (5 year) stream water fluxes in the Kutsuki experimental forest. Due to plant uptake, the forest ecosystem retained atmospherically deposited N and P. Finally, the observed increases in nutrient deposition rates over the East China Sea and the Sea of Japan may significantly influence intra-annual net primary production. It is recommended that earth system modelling incorporate changes in atmospheric nutrient deposition rates and their impacts on the regional carbon cycle as well as aquatic and terrestrial ecosystems.  相似文献   

7.
Characterization of Asian Dust during ACE-Asia   总被引:4,自引:1,他引:3  
ACE-Asia was a multi-national collaboration organized to investigate and understand the chemistry, radiative properties, and climatic effects of mineral dust and other aerosol particles in the East Asia/Northwest Pacific region. Studies conducted at the Gosan and Zhenbeitai surface supersites show striking variations in aerosol concentrations and properties that were affected by the occurrence and origins of the Asian dust storms, air mass pathways, and mixing during the transport. Investigations conducted on the R/V Ronald H. Brown (RHB) showed that dust had a pervasive influence on the chemical composition, size distribution, and optical properties of the aerosol. Analyses using an aerosol time-of-flight mass spectrometer on the RHB showed that most of the coarse-particle nitrate and sulfate in post-frontal air was associated with dust, and more remarkably, that competitive or exclusionary processes evidently are involved in the uptake or production of these substances. Studies conducted onboard the NCAR C-130 aircraft showed that coarse-mode dust was less absorbing and less hygroscopic than pollution aerosol and that there was little correlation in light scattering and absorption by the sub- vs. super-micrometer aerosol. Below 2 km, dust was commonly mixed with pollutants, and this had a stronger influence on the optical properties of the submicrometer particles than the coarse-mode dust; at higher altitudes, the dust was less affected by pollution. Single particle analyses of C-130 samples showed that the mixing of black carbon (BC) with dust was common, but only certain types of BC particles were aggregated. Models were used in the planning, execution and interpretative phases of ACE-Asia; and summaries of modeling results are presented to illustrate the progress being made in identifying new dust sources; in depicting the time-varying, three-dimensional structure of dust plumes; and in quantifying the production, transport, and deposition of Asian dust.  相似文献   

8.
Mongolian cyclones are important to the outbreaks of severe dust storms in Northeast Asia. In this paper, we conduct a diagnostic study and a numerical simulation of a rapidly developing Mongolian cyclone that produced the April 5 to 7, 2000 severe dust storm in East Asia. The surface pressure of the cyclone decreased rapidly on April 5 to 6 causing strong surface winds. The diagnosis shows that the cyclone was a “dry cyclone”, as the convergence of moisture flux was weak and the baroclinic forcing was strong. The analysis of the Q vectors also reveals that ageostrophic wind was significant in the middle and upper part of the cyclone, resulting in strong vertical motion in the lower part. The three-dimensional structure of the cyclone is characterized by an ascending southern warm current and a descending northern cold current. This structure is favorable to the release of available potential energy and the intensification of the cyclone. In the second part of this study, we develop a coupled system of a dust emission scheme and a mesoscale numerical model (MM5V3) and applied the system to the simulation of the Mongolian cyclone. The main features of the cyclone identified from the diagnostic analysis are successfully reproduced. The predicted dust storm-affected area is found to be consistent with the meteorological observations and satellite remote sensing. It is shown that the coupled system is capable of predicting the spatial and temporal variations of the dust storm.  相似文献   

9.
The precipitation and low-level air temperature in East Asia from a regional climate model (RCM) hindcast for the 22-year period 1979–2000 is evaluated against observational data in preparation for the model use in regional climate change research. Emphasis of the evaluation is placed on the RCM capability in capturing the temporal and spatial variability of precipitation and low-level temperature, especially in conjunction with important climatological events such as, ENSO and East Asian monsoon, at three spatial scales of continental, subcontinental, and river basins.Spatial anomaly correlation time series of geopotential height and temperature show that the simulated upper-air fields remain consistent with the driving large-scale fields, NCEP Reanalysis 2 (R2), throughout the period. The simulated seasonal shifts in 850 hPa winds also agree well with R2 over eastern China and the western Pacific Ocean although the magnitudes of the shifts are overestimated, especially over the eastern slope of the Tibetan Plateau and in northern Manchuria. The simulated precipitation climatology agrees reasonably with that from two analysis datasets based on station- and remote-sensing data. Outstanding characteristics of precipitation including the location of the main rainband, climatological means, and the spatiotemporal variability in association with East Asian Monsoon, ENSO, and extreme events, are well represented in the hindcast. The most notable bias in the simulated precipitation is an overestimation of winter rainfall in southwestern coast of China, near the border with Vietnam. The simulation overestimates the interannual variability of seasonal precipitation especially in southern China, however, the corresponding coefficients of variation agree reasonably with observations except in very dry regions. This suggests that climate sensitivity of scaled precipitation can be useful for projecting climate change signals. The simulated low-level temperature climatology agrees reasonably with observational data as well. The most noticeable biases in the simulated low-level temperature are the warm (cold) biases in southern Siberia (northeastern China) during winter (summer) and the systematic underestimation of low-level temperature in the Tibetan Plateau for all seasons. The daily maximum temperature is underestimated for all seasons by 2−3 K with the largest biases in spring and fall except in the northwestern Mongolia region where it has been overestimated during winter. The daily minimum temperature biases ranges from 0.3 K in spring to 2 K in winter, and are much smaller than those in daily maximum temperature. The evaluation of the multidecadal hindcast shows that model errors mostly confined in the region near the lateral boundaries of the model domain with only minor biases in eastern China. This allows us to be cautiously optimistic about the RCM usefulness for studies of precipitation and low-level temperature changes in East Asia induced by increased emissions of greenhouse gases.  相似文献   

10.
We obtained the high-resolution record of terrestrial biomarkers (C29 and C31 n-alkanes) for the last 26,000 years from Oki Ridge in the south Japan Sea that enabled us to discuss millennial scale climate changes. Our sampling resolution for the biomarker during the major deglaciation period (10–19.5 cal ka BP) is 300 years and for the elemental analyses (total organic carbon and total nitrogen) is as good as ca 200 years. The estimated mass accumulation rate of these molecules during the last glacial period is substantially higher than during the Holocene. They also exhibited two distinct peaks at 17.6 cal ka BP and 11.4 cal ka BP, which are coincident with Heinrich Event 1 and the latest stage of the Younger Dryas, respectively. The unique oceanographic setting of the Japan Sea tends to preferentially preserve organic material of aeolian origin. The nature of our biomarker record in fact suggests a strong aeolian signal, and hence their flux to the Japan Sea potentially reflects the climate conditions of the dust source regions and transport intensity. Our results are consistent with previously reported monsoon variations based on other proxies that is indicative of a strong linkage between North Atlantic climate and Asian monsoon intensity.  相似文献   

11.
A review on East Asian dust storm climate, modelling and monitoring   总被引:8,自引:1,他引:7  
In arid and semi-arid area of Asia, dust storms occur frequently. Asian dust storms have a major impact on the air quality of the densely populated areas of China, Korea and Japan, and are important to the global dust cycle. In extreme cases, they result in the loss of human lives and disruptions of social and economic activities. In recent years, systematic research on Asian dust storms has been carried out. Much progress has been made in the development of integrated dust storm monitoring and modeling systems by making use of advanced numerical models, satellite remote sensing and GIS data. In this paper, we summarize the recent achievements in Asian dust storm research with an emphasis on dust climatology, modeling and satellite monitoring. The concept of integrated dust storm monitoring and modeling system is described and a summary of the developments in key research areas is given, including new dust models and techniques in satellite remote sensing and system integration. We then discuss the current research frontiers and the challenges for future studies.  相似文献   

12.
The impacts of dynamic vegetation on interannual and interdecadal variability of Asian summer monsoon in modern (0 kyr) and mid-Holocene (6 kyr) climates are investigated by contrasting simulations with and without dynamic vegetation in a coupled ocean-atmosphere model.According to a dynamic index of South Asian summer monsoon, it has been found that the strengths of interannual and interdecadal westerly wind tend not to be affected by the dynamic vegetation over South Asia in the lower troposphere for 0 kyr and 6 kyr. However, based on a dynamic index of western North Pacific (WNP) monsoon, the strengths of tropical westerly wind and south–north cross-equatorial transport are weakened over the tropical western Pacific in the lower troposphere for 0 kyr and 6 kyr. It suggests the impact of dynamic vegetation is more obvious for the WNP monsoon than for the South Asian monsoon. Also, it implies the impact of dynamic vegetation on the interannual and interdecadal circulations is distinctly regional.Singular value decomposition (SVD) analysis shows that the impact of dynamic vegetation can remodel the leading correlation mode (SVD1) between precipitation and surface temperature. All of the interannual and interdecadal precipitation patterns with and without the impact of dynamic vegetation are associated with positive anomalies over India and southeastern China. However, the impact of dynamic vegetation tends to enhance (keep) the positive interannual temperature anomalies of SVD1 over the midlatitudinal Eurasia (WNP) for 0 kyr, but to reduce the anomalies over the midlatitudinal Eurasia and WNP for 6 kyr. Furthermore, the La Niña-like sea surface temperature (SST) anomalies always dominate the tropics for 0 kyr and 6 kyr. It suggests La Niña-like SST anomalies are the important mechanism to induce the above-mentioned precipitation pattern no matter whether for 0 kyr or for 6 kyr. For the interdecadal surface temperature pattern of SVD1, the impact of dynamic vegetation tends to enhance (reduce) positive anomalies over the midlatitudinal Eurasia (WNP) for 0 kyr, but to reduce (keep) positive anomalies over the midlatitudinal Eurasia (WNP) for 6 kyr. Also, all of the above implies the impact of dynamic vegetation is a mechanism to induce the long-term change of leading interannual and interdecadal surface temperature pattern over the midlatitudinal Eurasia and/or WNP.  相似文献   

13.
We follow the evolution of the infrared excess and the dustshell of Sakurai's Object by modelling the dust emission. The optical depth,dust temperature, and shell thickness parameters from the models are presented.Fits of DUSTY models to infrared spectra between 1997 May and 1999September illustrate the development of the dust from small grains to a rangeof grain sizes with an almost constant 60% graphite – 40% amorphous carbonmixture. The size of the infrared emitting region continues to growand may now be big enough to resolve. This may help to answerquestions such as the morphology of the dust shell, and whether the dustshell is `blobby' or smooth.  相似文献   

14.
Whether or not supernovae contribute significantly to the overall dust budget is a controversial subject. Submillimetre (sub-mm) observations, sensitive to cold dust, have shown an excess at 450 and 850 μm in young remnants Cassiopeia A (Cas A) and Kepler. Some of the sub-mm emission from Cas A has been shown to be contaminated by unrelated material along the line of sight. In this paper, we explore the emission from material towards Kepler using sub-mm continuum imaging and spectroscopic observations of atomic and molecular gas, via H  i , 12CO( J = 2–1) and 13CO( J = 2–1). We detect weak CO emission (peak   T *A  = 0.2–1 K, 1–2 km s−1 full width at half-maximum) from diffuse, optically thin gas at the locations of some of the sub-mm clumps. The contribution to the sub-mm emission from foreground molecular and atomic clouds is negligible. The revised dust mass for Kepler's remnant is  0.1–1.2 M  , about half of the quoted values in the original study by Morgan et al., but still sufficient to explain the origin of dust at high redshifts.  相似文献   

15.
The effect of gateways on ocean circulation patterns in the Cenozoic   总被引:1,自引:0,他引:1  
Both geological data and climate model studies indicate that substantially different patterns of the global ocean circulation have existed throughout the Cenozoic. In a climate model study of the late Oligocene [von der Heydt, A., Dijkstra, H.A. (2006). Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography, 21, PA1011] a “northern sinking” type of circulation was found, with (shallow) deep water formation in both the North Pacific Ocean and the North Atlantic Ocean. This is in contrast to the present-day “conveyor” circulation, where there is deep water formation in the North Atlantic but not in the North Pacific. In order to explain these differences, we use an ocean general circulation model for idealized two-basin flows and study the effect of asymmetries in the continental geometry on the circulation patterns. Two types of asymmetry are considered: (i) the relative northward extent of the Pacific and the Atlantic basin, and (ii) the existence of a circum-global gateway at low latitudes. The more northward extent of the Pacific basin in the Oligocene makes the Conveyor solution less likely and facilitates deep water formation in the North Pacific compared to the North Atlantic. The low-latitude gateway on the other hand, allows salinity and heat exchange between the two main ocean basins and therefore leads to deep water formation in both the North Atlantic and the North Pacific.  相似文献   

16.
William T. Reach 《Icarus》2010,209(2):848-850
Interplanetary dust particles from comets and asteroids pervade the Solar System and become temporarily trapped into orbital resonances with Earth, leading to a circumsolar dust ring. Using the unique vantage point of the Spitzer Space Telescope from its Earth-trailing solar orbit, we have measured for the first time the azimuthal structure of the Earth’s resonant dust ring. There is a relative paucity of particles within 0.1 AU of the Earth, followed by an enhancement in a cloud that is centered 0.2 AU behind Earth with a width of 0.08 AU along the Earth’s orbit. The North ecliptic pole is ∼3% brighter at 8 μm wavelength when viewed from inside the enhancement. The presence of azimuthal asymmetries in debris disks around other stars is considered strong evidence for planets. By measuring the properties of the Earth’s resonant ring, we can provide “ground truth” to models for interactions of planets and debris disks, possibly leading to improved predictions for detectability of life-bearing planets. The low amplitude of the azimuthal asymmetry in the Earth’s circumsolar ring suggests significant contributions to the zodiacal light from particles that are large (>30 μm) or have large orbital eccentricity that makes capture into mean motion resonances inefficient.  相似文献   

17.
Element composition of dust from a shallow Dunde ice core, Northern China   总被引:1,自引:0,他引:1  
The Dunde ice cap (38°06'N, 96°24'E, with a summit of 5325 m) is situated at the centre of the northern Chinese deserts and receives dust from these regions. Here, we present the trace and rare earth element (REE) compositions of dust extracted from a shallow ice core from the Dunde ice cap, which provide a framework to trace the source of Dunde dust. Trace and REE parameters of Dunde dust show characteristics of a typical eolian deposit, with an average La/Th ratio of 2.6, a Th/U ratio of 3.7, and a strong negative Eu anomaly (0.61). The dirty layers in the ice core section have the same element characteristics as in the clear layers, indicating that the dust in Dunde is well-mixed and has a stable composition. Trace element and REE ratio plots show that Dunde dust has a similar composition to the finer fraction materials in the Taklimakan desert, suggesting that the Tarim Basin might be an important source for Dunde dust under the present circulation, but not favoring a material contribution from Badain Jaran. Our results reveal distinct differences in composition between Dunde dust and Chinese loess materials, which suggests that they have different sources.  相似文献   

18.
The characteristics of four wet deposition schemes widely used in dust modeling studies are examined within the framework of a regional scale dust model. Since these schemes are based on different formulations, the scavenging coefficients of them deviate by a factor of 103 depending on precipitation rate and particle size. The four schemes coupled with the dust model are applied to simulate a 2002 Asian dust event. The corresponding wet deposition patterns and scavenging efficiencies are compared. It is found that apart from the scheme derived from scavenging coefficient measurements, the other three schemes give similar wet deposition patterns although their scavenging efficiencies are different depending on the particle-size range. The results suggest that the performances of these schemes are affected by the particle size distribution of the dust emission, together with the model's performance of precipitation prediction.  相似文献   

19.
More than 400 Moderate Resolution Imaging Spectroradiometer (MODIS) images of dust storm events were collected and analyzed, and individual events were tracked back to their origins. Dust tracks were determined from color composite images, brightness temperature difference (BTD) and the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory model. The results showed that five regions (sandy lands in central Inner Mongolia and the adjacent area of Mongolia; the Gobi Desert in Xinjiang and Gansu provinces, western Inner Mongolia, and the adjacent southwestern area of Mongolia; the Gobi Desert in southern Mongolia and the adjoining area of northern Inner Mongolia; sandy lands and deserts around the middle reaches of the Yellow River; and the area rimming the Taklimakan Desert) were the main contributors to long-lived mineral dusts in northern China and Mongolia. Of these dust production areas, sandy lands and stony deserts, rather than the sandy deserts of Inner Mongolia and Mongolia, were found to be the dominant dust sources, accounting for more than 75% of regional dust emission events. Dust events in the Taklimakan Desert were often local phenomena, although they could also be transported eastward if they were uplifted high enough to escape the enclosing topographic highs. Dust sources in northwestern China are mainly alluvial fans and dry lake and river beds. Success in identifying the sources and trajectories of Asian dust storms would guide future ground-based research and steppe degradation countermeasures and help reduce the uncertainties in modern modeling of Asian dust.  相似文献   

20.
We present an analysis of the observations of the Deep Impact event performed by the OSIRIS narrow angle camera aboard the Rosetta spacecraft over two weeks, in an effort to characterize the cometary dust grains ejected from the nucleus of Comet 9P/Tempel 1. We adopt a Monte Carlo approach to generate calibrated synthetic images, and a linear combination of them is fitted to the calibrated images so as to determine the physical parameters of the dust cloud. Our model considers spherical olivine particles with a density of 3780 kg m−3. It incorporates constraints on the direction of the cone of emission coming from additional images obtained at Pic du Midi observatory, and constraints on the dust terminal velocities coming from the physics of the impact. We find that the slope of the differential dust size distribution of grains with radii <20 μm (β>0.008) is 3.1±0.3, a value typical of cometary dust tails. This shows that there is no evidence in our data for an enhancement in sub-micron particles in the ejecta compared to the typical dust distribution of active comets. We estimate the mass of particles with radii <1.4 μm (β>0.14) to be 1.5±0.2×105 kg. These particles represent more than 80% of the cross-section of the observed dust cloud. The mass carried by larger particles depends whether the gas significantly increases the kinetic energy of the grains in the inner coma; it lies in the range 1-14×106 kg for particles with radii <100 μm (β>0.002). We obtain the distribution of terminal velocities reached by the dust after the dust-gas interaction which is very well constrained between 10 and 600 m s−1. It is characterized by Gaussian with a maximum at about 190 m s−1 and a width at half maximum of 150 m s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号