首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
In a coastal zone an understanding of the distance of the fresh water–salt water interface and its extension inland is important for prevention of sea water intrusion. In this article estimating methods are described for calculating the distance of a fresh water–salt water interface in a coastal confined aquifer based on the submarine fresh groundwater discharge. This groundwater discharge is controlled not only by the aquifer properties and hydraulic head difference, but also by the position of the fresh water–salt water interface in the coastal zone. A homogeneous and isotropic coastal confined aquifer is considered and fresh groundwater flow in the confined aquifer is thought to be at a steady state. Two observation wells at different distances in a profile perpendicular to the coastline are required in calculation of the distance of the interface toe in the coastal zone. Four coastal confined aquifers with horizontal and sloping confining beds and with varying thickness are also considered. Reasonable results are obtained when examples are used to illustrate the application of the methods. The methods require hydraulic head data at the two wells and thickness of the confined aquifers, but the hydraulic conductivity and fresh groundwater flow rate of the confined aquifers are not needed.  相似文献   

2.
The present study concerns the application of a numerical approach to describe the influence of anthropogenic modifications in surface flows (operation of a projected reservoir) on the freshwater-seawater relationships in a downstream coastal aquifer which has seasonal seawater intrusion problems (River Verde alluvial aquifer, Almuñécar, southern Spain). A steady-state finite element solution to the partial differential equation governing the regional motion of a phreatic surface and the resulting sharp interface between fresh water and salt water was used to predict the regional behavior of the River Verde aquifer under actual surface flow conditions. The present model approximates, with simple triangular elements, the regional behavior of a coastal aquifer under appropriate sinks, sources, Neumann and open boundary conditions. A steady-state solution to this numerical approach has been shown to precisely calculate freshwater heads, saltwater thicknesses, and freshwater discharges along steeply sloping coasts. Hence, the adequate treatment and interpretation of the hydrogeological data which are available for the River Verde aquifer have been of main concern in satisfactorily applying the proposed numerical model. Present simulated conditions consider steady-state yearly averaged amounts of external supplies of fresh water in order to determine the influences of the projected Otívar reservoir on the further behavior of the River Verde coastal aquifer. When recharges occur at the coastline, essentially because of freshwater deficits due to groundwater overexploitation, a hypothesis of mixing for the freshwater-saltwater transition zone is made in order to still allow the model to continue calculating groundwater heads under the sea level, and, as a consequence, the resulting seawater intrusion and recharges of saltwater from the sea. Simulations show that a considerable advance in seawater intrusion would be expected in the coastal aquifer if current rates of groundwater pumping continue and a significant part of the runoff from the River Verde is channeled from the Otívar reservoir for irrigation purposes.  相似文献   

3.
海岸带咸淡水界面位置确定方法的介绍   总被引:1,自引:1,他引:0  
周训 《现代地质》2008,22(1):123-128
Ghyben-Herzberg公式依赖潜水位确定海岸带咸淡水界面位置,被广泛应用但存在误差。Hubbert公式严格描述突变界面问题的水头和界面位置之间的关系,但在实际中难以应用。通过考察咸淡水界面之下咸水带任意点的压力平衡关系和咸水带及淡水带任意点的水头描述得知,当地下水流处于稳定状态且满足Dupuit假设时,可以根据同一垂直线上界面之下咸水带任意点(含界面)的咸水测压水头和界面之上淡水带任意点(自潜水面至界面)的淡水测压水头确定滨海均质各向同性潜水含水层咸淡水界面的位置。Ghyben-Herzberg公式是这一方法的特例,描述界面位置的Hubbert公式也是该方法的一个特例。这一方法需要两个相邻的分别揭露淡水带和咸水带的测压孔。  相似文献   

4.
基于FEFLOW的海水入侵数值模拟   总被引:3,自引:1,他引:2  
卢薇  朱照宇  刘卫平 《地下水》2010,32(3):19-21,129
在系统分析珠江口东岸地区地质及水文地质条件的基础上,建立了研究区海水入侵三维溶质模型,利用基于有限元原理的FEFLOW软件对建立的模型进行求解,用地下水位和浓度的动态观测资料对模型进行了识别和校验。运用识别后的模型预测了在不同开采条件下,研究区海水入侵的趋势。研究结果表明减少地下水开采量,海水入侵面积可逐步减少,入侵可得到有效控制;在减少开采量的情况下,相较于基岩裂隙含水层,第四系含水层海水入侵面积收缩较慢。  相似文献   

5.
The Latrobe aquifer in the Gippsland Basin in southeastern Australia is a prime example for emerging resource conflicts in Australian sedimentary basins. The Latrobe Group forms a major freshwater aquifer in the onshore Gippsland Basin, and is an important reservoir for oil and gas in both onshore and offshore parts of the basin. The Latrobe Group and overlying formations contain substantial coal resources that are being mined in the onshore part of the basin. These may have coal-seam-gas potential and, in addition, the basin is considered prospective for its geothermal energy and CO2 storage potential. The impacts of groundwater extraction related to coal-mine dewatering, public water supply, and petroleum production on the flow of variable-density formation water has been assessed using freshwater hydraulic heads and impelling force vectors. Groundwater flows from the northern and western edges towards the central part of the basin. Groundwater discharge occurs mainly offshore along the southern margin. Post-stress hydraulic heads show significant declines near the petroleum fields and in the coal mining areas. A hydrodynamic model of the Latrobe aquifer was used to simulate groundwater recovery in the Latrobe aquifer from different scenarios of cessation of groundwater and other fluid extractions.  相似文献   

6.
7.
Control of sea-water intrusion by salt-water pumping: Coast of Oman   总被引:2,自引:1,他引:1  
A shallow alluvial coastal aquifer in the Batinah area of Oman, with sea-water intrusion that extends several kilometres inland, has been studied experimentally, analytically and numerically. The water table is proved to have a trough caused by intensive pumping from a fresh groundwater zone and evaporation from the saline phreatic surface. Resistivity traverses perpendicular to the shoreline indicated no fresh groundwater recharge into the sea. Using an analytical Dupuit-Forchheimer model, developed for the plain part of the catchment, explicit expressions for the water table, sharp interface location and stored volume of fresh water are obtained. It is shown that by the pumping of salt water from the intruded part of the aquifer, this intrusion can be mitigated. Different catchment sizes, intensities of fresh groundwater pumping, evaporation rates, water densities, sea level, incident fresh water level in the mountains and hydraulic conductivity are considered. SUTRA code is applied to a hypothetical case of a leaky aquifer with line sinks modeling fresh water withdrawal and evaporation. The numerical code also shows that pumping of saline water can pull the dispersion zone back to the shoreline.  相似文献   

8.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

9.
我国城市海岸带地下水类型和分布主要受控于陆地地质作用,尤以大地构造作用和河流地质作用为主导。松散沉积物类海岸带地下水为孔隙水,含水介质单一,空间变化大,地下水的赋存和分布规律亦相应复杂。以距今78万年晚更新世为界线,可将第四纪松散沉积物含水层组划分为上(浅)下(深)两层(部)。下部的全新统(Q4)和上更新统(Q3)含水岩组以微咸水、咸水多见;上部的中更新统(Q2)和下更新统(Q1)分布有淡水,部分地下淡水资源有一定的供水意义。基岩类海岸带地下水主要为裂隙水和岩溶水,多为淡水,其水资源量与当地的降水量和基岩入渗系数的大小有直接关系。除砂砾石台地的基岩类海岸带、少数溺谷型泥质海岸带的河谷内和碳酸盐岩分布区外,一般无集中供水意义。  相似文献   

10.
Numerical simulation of sea water intrusion near Beihai, China   总被引:6,自引:0,他引:6  
 A leaky aquifer system occurs in the coastal plain near Beihai, China. Seawater intrusion into the confined aquifer took place along the northern coast. Chloride concentrations at some observation wells increased steadily from 1988 and were at their peak in 1993. A quasi-three-dimensional element model has been developed to simulate the spatial and temporal evolution of hydraulic heads and chloride concentrations of the groundwater near the northern coast. The simulation model was based on the transition zone approach, which requires simultaneous solution of the governing water flow and solute transport equations. An irregular grid of a quadrangle was used to discretize the flow domain. Various aquifer parameters were verified with the numerical model in order to obtain satisfactory matches between computed values and observed data from an investigation. Three pumpage schemes were designed to use the calibrated model for prediction of future changes in water levels and chloride concentrations in groundwater in the study area. Results show that seawater intrusion would worsen in the confined aquifer if the current rates of groundwater pumpage continue. The alternative, to eliminate pumpage in the intruded area and to moderate pumpage rates from water supply wells far from the seashore, may limit seawater intrusion significantly and is considered attractive in the area. Received: 27 September 1999 · Accepted: 27 December 1999  相似文献   

11.
A multi-methodological approach based on monitoring and spatio-temporal analysis of groundwater quality changes is proposed. The presented tools are simple, quick and cost-effective to give service to all sorts of users. The chief purpose of the monitoring network is the detection of the piezometric or potenziometric level in the aquifer. The spatial and multi-temporal analysis of usual chemical and physical data provides both an assessment of the spatial vulnerability of the aquifer to seawater intrusion, defining a salinity threshold between fresh groundwater and brackish groundwater and of the water quality trend in terms of salinity. The evaluation of the salinity trend or of salinity-correlated parameters highlights the effects of groundwater mismanagement. The multiparameter logging provides a rapid groundwater quality classification for each well. The whole approach allows evaluating the effects of current management criteria and designing more appropriate management targets. The Apulian karstic coastal aquifers have been selected as a case study (Southern Italy). Three types of aquifer zones can be distinguished: (1) areas with low vulnerability to seawater intrusion, (2) areas with high vulnerability and (3) areas with variable vulnerability in which the salt degradation largely depends on the ability to manage the well discharge. The water quality degradation caused by seawater intrusion appears to be a combined effect of an anomalous succession of drought periods observed from about 1980 onwards and increased groundwater pumping, particularly during drought periods. A management criterion based on aquifer zones is proposed.  相似文献   

12.
Agua Amarga coastal aquifer in southern Spain has been the subject of chemical and physical measurements since May 2008 in order to monitor the potential effects of water withdrawal for the Alicante desalination plants on the salt marsh linked to the aquifer. Electrical conductivity contour maps and depth profiles, piezometric-head contour maps, hydrochemical analyses, isotopic characterizations and temperature depth profiles show not only the saltwater intrusion caused by water abstraction, but also the presence of a pronounced convective density-driven flow below the salt marsh; this flow was a consequence of saltwork activity in the early 1900s which generated saline groundwater contamination. The influence of a seawater recharge programme, carried out over the salt marsh in 2009–2010, on the diminishing groundwater salinity and the recovery of groundwater levels is also studied. Based on collected field data, the project provides a deeper understanding of how these successive anthropogenic interventions have modified flow and mixing processes in Agua Amarga aquifer.  相似文献   

13.
Sea water intrusion is an environmental problem cause by the irrational exploitation of coastal groundwater resources and has attracted the attention of many coastal countries. In this study, we used time series monitoring data of groundwater levels and tidal waves to analyze the influence of tide flow on groundwater dynamics in the southern Laizhou Bay. The auto-correlation and cross-correlation coefficients between groundwater level and tidal wave level were calculated specifically to measure the boundary conditions along the coastline. In addition, spectrum analysis was employed to assess the periodicity and hysteresis of various tide and groundwater level fluctuations. The results of time series analysis show that groundwater level fluctuation is noticeably influenced by tides, but the influence is limited to a certain distance and cannot reach the saltwater-freshwater interface in the southern Laizhou Bay. There are three main periodic components of groundwater level in tidal effect range (i.e. 23.804 h, 12.500 h and 12.046 h), the pattern of which is the same as the tides. The affected groundwater level fluctuations lag behind the tides. The dynamic analysis of groundwater indicates that the coastal aquifer has a hydraulic connection with seawater but not in a direct way. Owing to the existence of the groundwater mound between the salty groundwater (brine) and fresh groundwater, the maximum influencing distance of the tide on the groundwater is 8.85 km. Considering that the fresh-saline groundwater interface is about 30 km away from the coastline, modern seawater has a limited contribution to sea-salt water intrusion in Laizhou Bay. The results of this study are expected to provide a reference for the study on sea water intrusion.  相似文献   

14.
Hydrochemistry and salt-water intrusion in the Van aquifer,east Turkey   总被引:1,自引:0,他引:1  
Groundwater in the Van coastal aquifer is one of the main sources of potable, industrial and irrigational water in Van City, because of its semi-arid climate. Groundwater extraction has been in excess of replenishment owing to increased agricultural and economic activities and a growing population during the last 20 years. A hydrochemical survey of the Van aquifer provided data on the groundwater chemistry patterns and the main mineralization processes. The main processes influencing the groundwater chemistry are salinisation from salt-water intrusion, silicate mineral dissolution, cation exchange and human activity. Deterioration in water quality has resulted from intrusion of the salt water of Lake Van along the coastal regions into the Van plain. At present, the mixing rate of salt water in the Van aquifer is between 1 and 5.5% and salt water has already invaded about 5 km inland in the iskele and the airport region.  相似文献   

15.
A monitoring system, including five groups of piezometers and five vertical multielectrode profiling probes (VMEP), has been installed in an aquifer beneath a coastal dune in Denmark. In order to assess the salinity distribution within the aquifer, geoelectrical data were gathered in March, June and September 2008, by measuring a dipole-dipole and gradient array using multielectrode profiling. Interpretation of the processed resistivity data was performed by regularized inversion using a one-dimensional, horizontally layered model of formation resistivity. The standard deviation on estimated layer log-resistivity was 0.01–0.03. By estimating two parameters of a power function, observed fluid conductivities derived from samples of porewater were related to corresponding estimated formation resistivities. The conductivity profiles correlate with a winter situation in March with high sea level, active recharge and significant wave activity, causing increased hydraulic heads, a thicker freshwater lens and salt water overlying freshwater close to the sea. In June, the thickness of the freshwater lens is reduced due to less recharge and prevailing offshore winds, imposing density-stable conditions and a sharper transition between fresh and brackish water. During the autumn, aquifer recharge is enhanced and hydraulic heads increase, resulting in a thicker freshwater lens.  相似文献   

16.
Saltwater intrusion in coastal aquifers depends on the distribution of hydraulic properties, on the climate, and on human interference such as land reclamation. In order to analyze the key processes that control saltwater intrusion, a hypothetical steady-state salt distribution in a representative cross-section perpendicular to the coastline was calculated using a two-dimensional density-dependent solute transport model. The effects of changes in groundwater recharge, lowering of drainage levels, and a rising sea level on the shape and position of the freshwater/saltwater interface were modeled in separate simulations. The results show that the exchange of groundwater and surface water in the marsh areas is one of the key processes influencing saltwater intrusion. A rising sea level causes rapid progression of saltwater intrusion, whereas the drainage network compensates changes in groundwater recharge. The time scale of changes resulting from altered boundary conditions is on the order of decades and centuries, suggesting that the present-day salt distribution does not reflect a steady-state of equilibrium.  相似文献   

17.
Seawater intrusion is a major problem to freshwater resources especially in coastal areas where fresh groundwater is surrounded and could be easily influenced by seawater. This study presents the development of a conceptual and numerical model for the coastal aquifer of Karareis region (Karaburun Peninsula) in the western part of Turkey. The study also presents the interpretation and the analysis of the time series data of groundwater levels recorded by data loggers. The SEAWAT model is used in this study to solve the density-dependent flow field and seawater intrusion in the coastal aquifer that is under excessive pumping particularly during summer months. The model was calibrated using the average values of a 1-year dataset and further verified by the average values of another year. Five potential scenarios were analyzed to understand the effects of pumping and climate change on groundwater levels and the extent of seawater intrusion in the next 10 years. The result of the analysis demonstrated high levels of electrical conductivity and chloride along the coastal part of the study area. As a result of the numerical model, seawater intrusion is simulated to move about 420 m toward the land in the next 10 years under “increased pumping” scenario, while a slight change in water level and TDS concentrations was observed in “climate change” scenario. Results also revealed that a reduction in the pumping rate from Karareis wells will be necessary to protect fresh groundwater from contamination by seawater.  相似文献   

18.
Changes in hydraulic heads with space and time and evolution of the location of fresh water–salt water interface are important for groundwater development in coastal aquifers. Measurements of piezometric heads at 11 well clusters consisting of three piezometric wells of different depths with a 5-day interval for 15 months show that the piezometric heads at nearly all the wells near the northwestern coast in Beihai decrease with increasing depth and increase with increasing distance from the coast. Changes in piezometric heads at the wells during the measurement period were caused by seasonal precipitation and induced by the tide. The depth of the sharp interface between fresh water–salt water can be estimated based on measurements of piezometric heads at a piezometric well tapping at a point in the salt water zone below the interface and measurements of the water table at the same well. The calculations of the interface for well H5 range from 40 to 80 m below sea level in the measurement period, which are believed to be more reasonable than those estimated with the Ghyben–Herzberg relation. An erratum to this article can be found at  相似文献   

19.
Overuse of groundwater in coastal areas, due to high population and agricultural activity results in seawater intrusion into the coastal aquifer. This paper presents the control measures taken to manage aquifer recharge (MAR) and also to overcome the problem of seawater intrusion into the coastal aquifer along the Kalangi river, Nellore district of Andhra Pradesh, India having connectivity with Pulicat (saltwater) lake estuary. Due to overexploitation of groundwater and less rainfall in past years, adjacent seawater has started intruding in the Kalangi river sub-surface and deteriorating groundwater quality up to 11.6 km from the confluence of the river with Pulicat lake. To prevent this situtation, subsurface dams were constructed in traditional manner using local earth material in three different places across the Kalangi river near Sullurpet town. The water storage capacities calculated after the sub-surface dams’ construction are 1.28 mcft at GK Engineering College, 6.23 mcft at Challamagudi and 3.143 mcft at Holy Cross School sites. The Holy Cross School sub-surface dam is the first full scale dam-cum-check dam constructed to prevent salt water intrusion in the Kalangi river at Sullurpet, Nellore district, Andhra Pradesh. At the Kalangi river estuary portion (at the mouth of sea) a groyne was reconstructed over old groyne site with the introduction of clay bed and wooden sheet piles at down stream. Apart from prevention of sea water entry into Kalangi river sub-surface (during seasons) the groyne top level was raised to prevent mixing of high sea water tides with fresh water and ensuring additional storage of fresh water at upstream side. The reconstructed groyne was serving the purpose of obstructing the surface seawater entry in the Kalangi river and water quality has improved in the river as well as in the wells. After construction of sub-surface dam, as per the Simpson ratio classification, there is substantial improvement of water quality in the SHAR infiltration well situated near the Holy Cross School sub-surface dam.  相似文献   

20.

Three-dimensional transient groundwater flow and saltwater transport models were constructed to assess the impacts of groundwater abstraction and climate change on the coastal aquifer of Tra Vinh province (Vietnam). The groundwater flow model was calibrated with groundwater levels (2007–2016) measured in 13 observation wells. The saltwater transport model was compared with the spatial distribution of total dissolved solids. Model performance was evaluated by comparing observed and simulated groundwater levels. The projected rainfalls from two climate models (MIROC5 and CRISO Mk3.6) were subsequently used to simulate possible effects of climate changes. The simulation revealed that groundwater is currently depleted due to overabstraction. Towards the future, groundwater storage will continue to be depleted with the current abstraction regime, further worsening in the north due to saltwater intrusion from inland trapped saltwater and on the coast due to seawater intrusion. Notwithstanding, the impact from climate change may be limited, with the computed groundwater recharge from the two climate models revealing no significant change from 2017 to 2066. Three feasible mitigation scenarios were analyzed: (1) reduced groundwater abstraction by 25, 35 and 50%, (2) increased groundwater recharge by 1.5 and 2 times in the sand dunes through managed aquifer recharge (reduced abstraction will stop groundwater-level decline, while increased recharge will restore depleted storage), and (3) combining 50% abstraction reduction and 1.5 times recharge increase in sand dune areas. The results show that combined interventions of reducing abstraction and increasing recharge are necessary for sustainable groundwater resources development in Tra Vinh province.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号