首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Radar estimates of rainfall are being increasingly applied to flood forecasting applications. Errors are inherent both in the process of estimating rainfall from radar and in the modelling of the rainfall–runoff transformation. The study aims at building a framework for the assessment of uncertainty that is consistent with the limitations of the model and data available and that allows a direct quantitative comparison between model predictions obtained by using radar and raingauge rainfall inputs. The study uses radar data from a mountainous region in northern Italy where complex topography amplifies radar errors due to radar beam occlusion and variability of precipitation with height. These errors, together with other error sources, are adjusted by applying a radar rainfall estimation algorithm. Radar rainfall estimates, adjusted and not, are used as an input to TOPMODEL for flood simulation over the Posina catchment (116 km2). Hydrological model parameter uncertainty is explicitly accounted for by use of the GLUE (Generalized Likelihood Uncertainty Estimation). Statistics are proposed to evaluate both the wideness of the uncertainty limits and the percentage of observations which fall within the uncertainty bounds. Results show the critical importance of proper adjustment of radar estimates and the use of radar estimates as close to ground as possible. Uncertainties affecting runoff predictions from adjusted radar data are close to those obtained by using a dense raingauge network, at least for the lowest radar observations available. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
High resolution radar rainfall fields and a distributed hydrologic model are used to evaluate the sensitivity of flood and flash flood simulations to spatial aggregation of rainfall and soil properties at catchment scales ranging from 75 to 983 km2. Hydrologic modeling is based on a Hortonian infiltration model and a network-based representation of hillslope and channel flow. The investigation focuses on three extreme flood and flash flood events occurred on the Sesia river basin, North Western Italy, which are analysed by using four aggregation lengths ranging from 1 to 16 km. The influence of rainfall spatial aggregation is examined by using the flow distance as a spatial coordinate, hence emphasising the role of river network in the averaging of space–time rainfall. The effects of reduced and distorted rainfall spatial variability on peak discharge have been found particularly severe for the flash flood events, with peak errors up to 35% for rainfall aggregation of 16 km and at 983 km2 catchment size. Effects are particularly remarkable when significant structured rainfall variability combines with relatively important infiltration volumes due to dry initial conditions, as this emphasises the non-linear character of the rainfall–runoff relationship. In general, these results confirm that the correct estimate of rainfall volume is not enough for the accurate reproduction of flash flood events characterised by large and structured rainfall spatial variability, even at catchment scales around 250 km2. However, accurate rainfall volume estimation may suffice for less spatially variable flood events. Increasing the soil properties aggregation length exerts similar effects on peak discharge errors as increasing the rainfall aggregation length, for the cases considered here and after rescaling to preserve the rainfall volume. Moreover, peak discharge errors are roughly proportional to runoff volume errors, which indicates that the shape of the flood wave is influenced in a limited way by modifying the detail of the soil property spatial representation. Conversely, rainfall aggregation may exert a pronounced influence on the discharge peak by reshaping the spatial organisation of the runoff volumes and without a comparable impact on the runoff volumes.  相似文献   

3.
Hydrological models are recognized as valid scientific tools to study water quantity and quality and provide support for the integrated management and planning of water resources at different scales. In common with many catchments in the Mediterranean, the study catchment has many problems such as the increasing gap between water demand and supply, water quality deterioration, scarcity of available data, lack of measurements and specific information. The application of hydrological models to investigate hydrological processes in this type of catchments is of particular relevance for water planning strategies to address the possible impact of climate and land use changes on water resources. The distributed catchment scale model (DiCaSM) was selected to study the impact of climate and land use changes on the hydrological cycle and the water balance components in the Apulia region, southern Italy, specifically in the Candelaro catchment (1780 km2). The results obtained from this investigation proved the ability of DiCaSM to quantify the different components of the catchment water balance and to successfully simulate the stream flows. In addition, the model was run with the climate change scenarios for southern Italy, i.e. reduced winter rainfall by 5–10%, reduced summer rainfall by 15–20%, winter temperature rise by 1·25–1·5 °C and summer temperature rise by 1·5–1·75 °C. The results indicated that by 2050, groundwater recharge in the Candelaro catchment would decrease by 21–31% and stream flows by 16–23%. The model results also showed that the projected durum wheat yield up to 2050 is likely to decrease between 2·2% and 10·4% due to the future reduction in rainfall and increase in temperature. In the current study, the reliability of the DiCaSM was assessed when applied to the Candelaro catchment; those parameters that may cause uncertainty in model output were investigated using a generalized likelihood uncertainty estimation (GLUE) methodology. The results showed that DiCaSM provided a small level of uncertainty and subsequently, a higher confidence level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Different approaches used in hydrological modelling are compared in terms of the way each one takes the rainfall data into account. We examine the errors associated with accounting for rainfall variability, whether in hydrological modelling (distributed vs lumped models) or in computing catchment rainfall, as well as the impact of each approach on the representativeness of the parameters it uses. The database consists of 1859 rainfall events, distributed on 500 basins, located in the southeast of France with areas ranging from 6.2 to 2851 km2. The study uses as reference the hydrographs computed by a distributed hydrological model from radar rainfall. This allows us to compare and to test the effects of various simplifications to the process when taking rainfall information (complete rain field vs sampled rainfall) and rainfall–runoff modelling (lumped vs distributed) into account. The results appear to show that, in general, the sampling effect can lead to errors in discharge at the outlet that are as great as, or even greater than, those one would get with a fully lumped approach. We found that small catchments are more sensitive to the uncertainties in catchment rainfall input generated by sampling rainfall data as seen through a raingauge network. Conversely, the larger catchments are more sensitive to uncertainties generated when the spatial variability of rainfall events is not taken into account. These uncertainties can be compensated for relatively easily by recalibrating the parameters of the hydrological model, although such recalibrations cause the parameter in question to completely lose physical meaning.

Citation Arnaud, P., Lavabre, J., Fouchier, C., Diss, S. & Javelle, P. (2011) Sensitivity of hydrological models to uncertainty of rainfall input. Hydrol. Sci. J. 56(3), 397–410.  相似文献   

5.
Catchment modelling for water resources assessment is still mainly based on rain gauge measurements as these are more easily available and cover longer periods than radar and satellite-based measurements. Rain gauges however measure the rain falling on an extremely small proportion of the catchment and the areal rainfall obtained from these point measurements are consequently substantially uncertain. These uncertainties in areal rainfall estimation are generally ignored and the need to assess their impact on catchment modelling and water resources assessment is therefore imperative. A method that stochastically generates daily areal rainfall from point rainfall using multiplicative perturbations as a means of dealing with these uncertainties is developed and tested on the Berg catchment in the Western Cape of South Africa. The differences in areal rainfall obtained by alternately omitting some of the rain gauges are used to obtain a population of plausible multiplicative perturbations. Upper bounds on the applicable perturbations are set to prevent the generation of unrealistically large rainfall and to obtain unbiased stochastic rainfall. The perturbations within the set bounds are then fitted into probability density functions to stochastically generate the perturbations to impose on areal rainfall. By using 100 randomly-initialized calibrations of the AWBM catchment model and Sequent Peak Analysis, the effects of incorporating areal rainfall uncertainties on storage-yield-reliability analysis are assessed. Incorporating rainfall uncertainty is found to reduce the required storage by up to 20%. Rainfall uncertainty also increases flow-duration variability considerably and reduces the median flow-duration values by an average of about 20%.  相似文献   

6.
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution and errors. When using these rainfall datasets as input for hydrological models, their errors and uncertainties propagate through the hydrological system. The aim of this study is to investigate the effect of differences between rainfall measurement techniques on groundwater and discharge simulations in a lowland catchment, the 6.5‐km2 Hupsel Brook experimental catchment. We used five distinct rainfall data sources: two automatic raingauges (one in the catchment and another one 30 km away), operational (real‐time and unadjusted) and gauge‐adjusted ground‐based C‐band weather radar datasets and finally a novel source of rainfall information for hydrological purposes, namely, microwave link data from a cellular telecommunication network. We used these data as input for the, a recently developed rainfall‐runoff model for lowland catchments, and intercompared the five simulated discharges time series and groundwater time series for a heavy rainfall event and a full year. Three types of rainfall errors were found to play an important role in the hydrological simulations, namely: (1) Biases, found in the unadjusted radar dataset, are amplified when propagated through the hydrological system; (2) Timing errors, found in the nearest automatic raingauge outside the catchment, are attenuated when propagated through the hydrological system; (3) Seasonally varying errors, found in the microwave link data, affect the dynamics of the simulated catchment water balance. We conclude that the hydrological potential of novel rainfall observation techniques should be assessed over a long period, preferably a full year or longer, rather than on an event basis, as is often done. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.  相似文献   

7.
The use of precipitation estimates from weather radar reflectivity has become widespread in hydrologic predictions. However, uncertainty remains in the use of the nonlinear reflectivity–rainfall (Z‐R) relation, in particular for mountainous regions where ground validation stations are often lacking, land surface data sets are inaccurate and the spatial variability in many features is high. In this study, we assess the propagation of rainfall errors introduced by different Z‐R relations on distributed hydrologic model performance for four mountain basins in the Colorado Front Range. To do so, we compare spatially integrated and distributed rainfall and runoff metrics at seasonal and event time scales during the warm season when convective storms dominate. Results reveal that the basin simulations are quite sensitive to the uncertainties introduced by the Z‐R relation in terms of streamflow, runoff mechanisms and the water balance components. The propagation of rainfall errors into basin responses follows power law relationships that link streamflow uncertainty to the precipitation errors and streamflow magnitude. Overall, different Z‐R relations preserve the spatial distribution of rainfall relative to a reference case, but not the precipitation magnitude, thus leading to large changes in streamflow amounts and runoff spatial patterns at seasonal and event scales. Furthermore, streamflow errors from the Z‐R relation follow a typical pattern that varies with catchment scale where higher uncertainties exist for intermediate‐sized basins. The relatively high error values introduced by two operational Z‐R relations (WSR‐57 and NEXRAD) in terms of the streamflow response indicate that site‐specific Z‐R relations are desirable in the complex terrain region, particularly in light of other uncertainties in the modelling process, such as model parameter values and initial conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper examines the impacts of climate change on future water yield with associated uncertainties in a mountainous catchment in Australia using a multi‐model approach based on four global climate models (GCMs), 200 realisations (50 realisations from each GCM) of downscaled rainfalls, 2 hydrological models and 6 sets of model parameters. The ensemble projections by the GCMs showed that the mean annual rainfall is likely to reduce in the future decades by 2–5% in comparison with the current climate (1987–2012). The results of ensemble runoff projections indicated that the mean annual runoff would reduce in future decades by 35%. However, considerable uncertainty in the runoff estimates was found as the ensemble results project changes of the 5th (dry scenario) and 95th (wet scenario) percentiles by ?73% to +27%, ?73% to +12%, ?77% to +21% and ?80% to +24% in the decades of 2021–2030, 2031–2040, 2061–2070 and 2071–2080, respectively. Results of uncertainty estimation demonstrated that the choice of GCMs dominates overall uncertainty. Realisation uncertainty (arising from repetitive simulations for a given time step during downscaling of the GCM data to catchment scale) of the downscaled rainfall data was also found to be remarkably high. Uncertainty linked to the choice of hydrological models was found to be quite small in comparison with the GCM and realisation uncertainty. The hydrological model parameter uncertainty was found to be lowest among the sources of uncertainties considered in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Testing competing conceptual model hypotheses in hydrology is complicated by uncertainties from a wide range of sources, which result in multiple simulations that explain catchment behaviour. In this study, the limits of acceptability uncertainty analysis approach used to discriminate between 78 competing hypotheses in the Framework for Understanding Structural Errors for 24 catchments in the UK. During model evaluation, we test the model's ability to represent observed catchment dynamics and processes by defining key hydrologic signatures and time step‐based metrics from the observed discharge time series. We explicitly account for uncertainty in the evaluation data by constructing uncertainty bounds from errors in the stage‐discharge rating curve relationship. Our study revealed large differences in model performance both between catchments and depending on the type of diagnostic used to constrain the simulations. Model performance varied with catchment characteristics and was best in wet catchments with a simple rainfall‐runoff relationship. The analysis showed that the value of different diagnostics in constraining catchment response and discriminating between competing conceptual hypotheses varies according to catchment characteristics. The information content held within water balance signatures was found to better capture catchment dynamics in chalk catchments, where catchment behaviour is predominantly controlled by seasonal and annual changes in rainfall, whereas the information content in the flow‐duration curve and time‐step performance metrics was able to better capture the dynamics of rainfall‐driven catchments. We also investigate the effect of model structure on model performance and demonstrate its (in)significance in reproducing catchment dynamics for different catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

The effect of land-use or land-cover change on stream runoff dynamics is not fully understood. In many parts of the world, forest management is the major land-cover change agent. While the paired catchment approach has been the primary methodology used to quantify such effects, it is only possible for small headwater catchments where there is uniformity in precipitation inputs and catchment characteristics between the treatment and control catchments. This paper presents a model-based change-detection approach that includes model and parameter uncertainty as an alternative to the traditional paired-catchment method for larger catchments. We use the HBV model and data from the HJ Andrews Experimental Forest in Oregon, USA, to develop and test the approach on two small (<1 km2) headwater catchments (a 100% clear-cut and a control) and then apply the technique to the larger 62 km2 Lookout catchment. Three different approaches are used to detect changes in stream peak flows using: (a) calibration for a period before (or after) change and simulation of runoff that would have been observed without land-cover changes (reconstruction of runoff series); (b) comparison of calibrated parameter values for periods before and after a land-cover change; and (c) comparison of runoff predicted with parameter sets calibrated for periods before and after a land-cover change. Our proof-of-concept change detection modelling showed that peak flows increased in the clear-cut headwater catchment, relative to the headwater control catchment, and several parameter values in the model changed after the clear-cutting. Some minor changes were also detected in the control, illustrating the problem of false detections. For the larger Lookout catchment, moderately increased peak flows were detected. Monte Carlo techniques used to quantify parameter uncertainty and compute confidence intervals in model results and parameter ranges showed rather wide distributions of model simulations. While this makes change detection more difficult, it also demonstrated the need to explicitly consider parameter uncertainty in the modelling approach to obtain reliable results.

Citation Seibert, J. & McDonnell, J. J. (2010) Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty. Hydrol. Sci. J. 55(3), 316–332.  相似文献   

11.
This paper analyses the effect of rain data uncertainty on the performance of two hydrological models with different spatial structures: a semidistributed and a fully distributed model. The study is performed on a small catchment of 19.6 km2 located in the north‐west of Spain, where the arrival of low pressure fronts from the Atlantic Ocean causes highly variable rainfall events. The rainfall fields in this catchment during a series of storm events are estimated using rainfall point measurements. The uncertainty of the estimated fields is quantified using a conditional simulation technique. Discharge and rain data, including the uncertainty of the estimated rainfall fields, are then used to calibrate and validate both hydrological models following the generalized likelihood uncertainty estimation (GLUE) methodology. In the storm events analysed, the two models show similar performance. In all cases, results show that the calibrated distribution of the input parameters narrows when the rain uncertainty is included in the analysis. Otherwise, when rain uncertainty is not considered, the calibration of the input parameters must account for all uncertainty in the rainfall–runoff transformation process. Also, in both models, the uncertainty of the predicted discharges increase in similar magnitude when the uncertainty of rainfall input increase.  相似文献   

12.
This paper addresses the application of a data‐based mechanistic (DBM) modelling approach using transfer function models (TFMs) with non‐linear rainfall filtering to predict runoff generation from a semi‐arid catchment (795 km2) in Tanzania. With DBM modelling, time series of rainfall and streamflow were allowed to suggest an appropriate model structure compatible with the data available. The model structures were evaluated by looking at how well the model fitted the data, and how well the parameters of the model were estimated. The results indicated that a parallel model structure is appropriate with a proportion of the runoff being routed through a fast flow pathway and the remainder through a slow flow pathway. Finally, the study employed a Generalized Likelihood Uncertainty Estimation (GLUE) methodology to evaluate the parameter sensitivity and predictive uncertainty based on the feasible parameter ranges chosen from the initial analysis of recession curves and calibration of the TFM. Results showed that parameters that control the slow flow pathway are relatively more sensitive than those that control the fast flow pathway of the hydrograph. Within the GLUE framework, it was found that multiple acceptable parameter sets give a range of predictions. This was found to be an advantage, since it allows the possibility of assessing the uncertainty in predictions as conditioned on the calibration data and then using that uncertainty as part of the decision‐making process arising from any rainfall‐runoff modelling project. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Most conceptual rainfall–runoff models use as input spatially averaged rainfall fields which are typically associated with significant errors that affect the model outcome. In this study, it was hypothesised that a simple spatially and temporally averaged event-dependent rainfall multiplier can account for errors in the rainfall input. The potentials and limitations of this lumped multiplier approach were explored by evaluating the effects of multipliers on the accuracy and precision of the predictive distributions. Parameter sets found to be behavioural across a range of different flood events were assumed to be a good representation of the catchment dynamics and were used to identify rainfall multipliers for each of the individual events. An effect of the parameter sets on identified multipliers was found; however, it was small compared to the differences between events. Accounting for event-dependent multipliers improved the reliability of the predictions. At the cost of a small decrease in precision, the distribution of identified multipliers for past events can be used to account for possible rainfall errors when predicting future events. By using behavioural parameter sets to identify rainfall multipliers, the method offers a simple and computationally efficient way to address rainfall errors in hydrological modelling.  相似文献   

14.
J. Ndiritu 《水文科学杂志》2013,58(8):1704-1717
Abstract

Raingauge measurements are commonly used to estimate daily areal rainfall for catchment modelling. The variation of rainfall between the gauges is usually inadequately captured and areal rainfall estimates are therefore very uncertain. A method of quantifying these uncertainties and incorporating them into ensembles of areal rainfall is demonstrated and tested. The uncertainties are imposed as perturbations based on the differences in areal rainfall that result when half of the raingauges are alternately omitted. Also included is a method of: (a) estimating the proportion rainfall that falls on areas where no gauges are located that are consequently computed as having zero rain, and (b) replacing them with plausible non-zero rainfalls. The model is tested using daily rainfall from two South African catchments and is found to exhibit the expected behaviour. One of the two parameters of the model is obtained from the rainfall data, while the other has direct physical interpretation.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Ndiritu, J., 2013. Using data-derived perturbations to incorporate uncertainty in generating stochastic areal rainfall from point rainfall. Hydrological Sciences Journal, 58 (8), 1704–1717.  相似文献   

15.
There is a growing appreciation of the uncertainties in the estimation of snow-melt and glacier-melt as a result of climate change in high elevation catchments. Through a detailed examination of three hydrological models in two catchments, and interpretation of results from previous studies, we observed that many variations in estimated streamflow could be explained by the selection of a best parameter set from the possible good model parameters. The importance of understanding changing glacial dynamics is critically important for our study areas in the Upper Indus Basin where Pakistan's policymakers are planning infrastructure to meet the future energy and water needs of hundreds of millions of people downstream. Yet, the effect of climate on glacial runoff and climate on snowmelt runoff is poorly understood. With the HBV model, for example, we estimated glacial melt as between 56% and 89% for the Hunza catchment. When rainfall was a scaled parameter, the models estimated glacial melt as between 20% and 100% of streamflow. These parameter sets produced wildly different projections of future climate for RCP8.5 scenarios in 2046–2075 compared to 1976–2005. Assuming no glacial shrinkage, for one climate projection, we found that the choice among good parameter sets resulted in projected values of future streamflow across a range from +54% to +125%. Parameter selection was the most significant source of uncertainty in the glaciated catchment and amplified climate model uncertainty, whereas climate model choice was more important in the rainfall dominated catchment. Although the study focuses on Pakistan, the overall conclusions are instructive for other similar regions in the world. We suggest that modellers of glaciated catchments should present results from at least the book-ends: models with low sensitivity to ice-melt and models with high sensitivity to ice-melt. This would reduce confusion among decision makers when they are faced with similar contrasting results.  相似文献   

16.
Nearby catchments in the same landscape are often assumed to have similar specific discharge (runoff per unit catchment area). Five years of streamflow from 14 nested catchments in a 68 km2 landscape was used to test this assumption, with the hypothesis that the spatial variability in specific discharge is smaller than the uncertainties in the measurement. The median spatial variability of specific discharge, defined as subcatchment deviation from the catchment outlet, was 33% at the daily scale. This declined to 24% at a monthly scale and 19% at an annual scale. These specific discharge differences are on the same order of magnitude as predicted for major land‐use conversions or a century of climate change. Spatial variability remained when considering uncertainties in specific discharge, and systematic seasonal patterns in specific discharge variation further provide confidence that these differences are more than just errors in the analysis of catchment area, rainfall variability or gauging. Assuming similar specific discharge in nearby catchments can thus lead to spurious conclusions about the effects of disturbance on hydrological and biogeochemical processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The error in physically-based rainfall-runoff modelling is broken into components, and these components are assigned to three groups: (1) model structure error, associated with the model’s equations; (2) parameter error, associated with the parameter values used in the equations; and (3) run time error, associated with rainfall and other forcing data. The error components all contribute to “integrated” errors, such as the difference between simulated and observed runoff, but their individual contributions cannot usually be isolated because the modelling process is complex and there is a lack of knowledge about the catchment and its hydrological responses. A simple model of the Slapton Wood Catchment is developed within a theoretical framework in which the catchment and its responses are assumed to be known perfectly. This makes it possible to analyse the contributions of the error components when predicting the effects of a physical change in the catchment. The standard approach to predicting change effects involves: (1) running “unchanged” simulations using current parameter sets; (2) making adjustments to the sets to allow for physical change; and (3) running “changed” simulations. Calibration or uncertainty-handling methods such as GLUE are used to obtain the current sets based on forcing and runoff data for a calibration period, by minimising or creating statistical bounds for the “integrated” errors in simulations of runoff. It is shown that current parameter sets derived in this fashion are unreliable for predicting change effects, because of model structure error and its interaction with parameter error, so caution is needed if the standard approach is to be used when making management decisions about change in catchments.  相似文献   

18.
End users face a range of subjective decisions when evaluating climate change impacts on hydrology, but the importance of these decisions is rarely assessed. In this paper, we evaluate the implications of hydrologic modelling choices on projected changes in the annual water balance, monthly simulated processes, and signature measures (i.e. metrics that quantify characteristics of the hydrologic catchment response) under a future climate scenario. To this end, we compare hydrologic changes computed with four different model structures – whose parameters have been obtained using a common calibration strategy – with hydrologic changes computed with a single model structure and parameter sets from multiple options for different calibration decisions (objective function, local optima, and calibration forcing dataset). Results show that both model structure selection and the parameter estimation strategy affect the direction and magnitude of projected changes in the annual water balance, and that the relative effects of these decisions are basin dependent. The analysis of monthly changes illustrates that parameter estimation strategies can provide similar or larger uncertainties in simulations of some hydrologic processes when compared with uncertainties coming from model choice. We found that the relative effects of modelling decisions on projected changes in catchment behaviour depend on the signature measure analysed. Furthermore, parameter sets with similar performance, but located in different regions of the parameter space, provide very different projections for future catchment behaviour. More generally, the results obtained in this study prompt the need to incorporate parametric uncertainty in multi‐model frameworks to avoid an over‐confident portrayal of climate change impacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.  相似文献   

20.
Abstract

In catchments characterized by spatially varying hydrological processes and responses, the optimal parameter values or regions of attraction in parameter space may differ with location-specific characteristics and dominating processes. This paper evaluates the value of semi-distributed calibration parameters for large-scale streamflow simulation using the spatially distributed LISFLOOD model. We employ the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm to infer the calibration parameters using daily discharge observations. The resulting posterior parameter distribution reflects the uncertainty about the model parameters and forms the basis for making probabilistic flow predictions. We assess the value of semi-distributing the calibration parameters by comparing three different calibration strategies. In the first calibration strategy uniform values over the entire area of interest are adopted for the unknown parameters, which are calibrated against discharge observations at the downstream outlet of the catchment. In the second calibration strategy the parameters are also uniformly distributed, but they are calibrated against observed discharges at the catchment outlet and at internal stations. In the third strategy a semi-distributed approach is adopted. Starting from upstream, parameters in each subcatchment are calibrated against the observed discharges at the outlet of the subcatchment. In order not to propagate upstream errors in the calibration process, observed discharges at upstream catchment outlets are used as inflow when calibrating downstream subcatchments. As an illustrative example, we demonstrate the methodology for a part of the Morava catchment, covering an area of approximately 10 000 km2. The calibration results reveal that the additional value of the internal discharge stations is limited when applying a lumped parameter approach. Moving from a lumped to a semi-distributed parameter approach: (i) improves the accuracy of the flow predictions, especially in the upstream subcatchments; and (ii) results in a more correct representation of flow prediction uncertainty. The results show the clear need to distribute the calibration parameters, especially in large catchments characterized by spatially varying hydrological processes and responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号