首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Knowledge of the variability of soil water content (SWC) in space and time plays a key role in hydrological and climatic modelling. However, limited attention has been given to arid regions. The focus of this study was to investigate the spatio-temporal variability of surface soil (0–6 cm) water content and to identify its controlling factors in a region of the Gobi Desert (40 km2). The standard deviation of SWC decreased logarithmically as mean water content decreased, and the coefficient of variation of SWC exhibited a convex upward pattern. The spatial variability of SWC also increased with the size of the investigated area. The spatial dependence of SWC changed over time, with stronger patterns of spatial organization in drier and wetter conditions of soil wetness and stochastic patterns in moderate soil water conditions. The dominant factors regulating the variability of SWC changed from combinations of soil and topographical properties (bulk density, clay content and relative elevation) in wet conditions to combinations of soil and vegetation properties (bulk density, clay content and shrub coverage) in dry conditions. This study has important implications for the assessment of soil quality and the sustainability of land management in arid regions.  相似文献   

2.
Inadequate knowledge exists on the distribution of soil moisture and shallow groundwater in intensively cultivated inland valley wetlands in tropical environments, which are required for determining the hydrological regime. This study investigated the spatial and temporal variability of soil moisture along 4 hydrological positions segmented as riparian zone, valley bottom, fringe, and valley slope in an agriculturally used inland valley wetland in Central Uganda. The determined hydrological regimes of the defined hydrological positions are based on soil moisture deficit calculated from the depth to the groundwater table. For that, the accuracy and reliability of satellite‐derived surface models, SRTM‐30m and TanDEM‐X‐12m, for mapping microscale topography and hydrological regimes are evaluated against a 5‐m digital elevation model (DEM) derived from field measurements. Soil moisture and depth to groundwater table were measured using frequency domain reflectometry sensors and piezometers installed along the hydrological positions, respectively. Results showed that spatial and temporal variability in soil moisture increased significantly (p < .05) towards the riparian zone; however, no significant difference was observed between the valley bottom and riparian zone. The distribution of soil hydrological regimes, saturated, near‐saturated, and nonsaturated regimes does not correlate with the hydrological positions. This is due to high spatial and temporal variability in depth to groundwater and soil moisture content across the valley. Precipitation strongly controlled the temporal variability, whereas microscale topography, soil properties, distance from the stream, anthropogenic factors, and land use controlled the spatial variability in the inland valley. TanDEM‐X DEM reasonably mapped the microscale topography and thus soil hydrological regimes relative to the Shuttle Radar Topography Mission DEM. The findings of the study contribute to improved understanding of the distribution of hydrological regimes in an inland valley wetland, which is required for a better agricultural water management planning.  相似文献   

3.
Surface soil moisture content exhibits a high degree of spatial and temporal variability. The purpose of this study was (a) to characterize variations in moisture content in the 0–5 cm surface soil layer along a hillslope transect by means of intensive sampling in both space and time; and (b) to make inferences regarding the environmental factors that influence this variability. Over a period of seven months, soil moisture content was measured (gravimetric method) on a near-daily basis at 10 m intervals along a 200 m downslope transect at the Rattlesnake Hill field site in Austin, Texas. Results indicate that significant variability in soil moisture content exists along the length of the transect; that variability decreases with decreasing transect-mean moisture content as the hillslope dries down following rain events; and that the dominant influences on moisture content variability are dependent upon the moisture conditions on the hillslope. While topographic and soil attributes operate jointly to redistribute soil water following storm events, under wet conditions, variability in surface moisture content is most strongly influenced by porosity and hydraulic conductivity, and under dry conditions, correlations are strongest to relative elevation, aspect and clay content. Consequently, the dominant influence on soil moisture variability gradually changes from soil heterogeneity to joint control by topographic and soil properties as the transect dries following significant rain events.  相似文献   

4.
Understanding the dynamics of spatial and temporal variability of soil moisture at the regional scale and daily interval, respectively, has important implications for remote sensing calibration and validation missions as well as environmental modelling applications. The spatial and temporal variability of soil moisture was investigated in an agriculturally dominated region using an in‐situ soil moisture network located in central Saskatchewan, Canada. The study site evaluated three depths (5, 20, 50 cm) through 139 days producing a high spatial and temporal resolution data set, which were analysed using statistical and geostatistical means. Processes affecting standard deviation at the 5‐cm depth were different from the 20‐cm and 50‐cm depths. Deeper soil measurements were well correlated through the field season. Further analysis demonstrated that lag time to maximum correlation between soil depths increased through the field season. Temporal autocorrelation was approximately twice as long at depth compared to surface soil moisture as measured by the e‐folding frequency. Spatial correlation was highest under wet conditions caused by uniform rainfall events with low coefficient of variation. Overall soil moisture spatial and temporal variability was explained well by rainfall events and antecedent soil moisture conditions throughout the Kenaston soil moisture network. It is expected that the results of this study will support future remote sensing calibration and validation missions, data assimilation, as well as hydrologic model parameterization for use in agricultural regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The profile characteristics and the temporal dynamics of soil moisture variation were studied at 26 locations in Da Nangou catchment (3.5 km2) in the loess area of China. Soil moisture measurements were performed biweekly at five depths in the soil profile (0–5, 10–15, 20–25, 40–45 and 70–75 cm) from May to October 1998 using Delta-T theta probe. Soil moisture profile type and temporal variation type and their relationship to topography and land use were identified by detrended canonical correspondence analysis (DCCA) and correlation analysis. The profile distribution of time-averaged soil moisture content can be classified into three types i.e. decreasing-type, waving-type and increasing-type. The profile features of soil moisture (e.g. profile gradient and profile variability) are influenced by different environmental factors. The profile type of soil moisture is only attributed to land use while profile gradient and profile variability of soil moisture is mainly related to land use and topography (e.g. landform type and slope). The temporal dynamics of layer-averaged soil moisture content is grouped into three types including three-peak type, synchro-four-peak type and lagged-four-peak type. These types are controlled by topography rather than by land use. The temporal dynamic type of soil moisture shows significant correlation with relative elevation, slope, aspect, while temporal variance displays significant relation with slope shape. The mean soil moisture is related to both the profile and dynamics features of soil moisture and is controlled by both land use and topography (e.g. aspect, position, slope and relative elevation). The spatial variability of soil moisture across landscape varies with both soil depths and temporal evolution.  相似文献   

6.
Y. Zhao  S. Peth  X. Y. Wang  H. Lin  R. Horn 《水文研究》2010,24(18):2507-2519
Temporal stability of soil moisture spatial patterns has important implications for optimal soil and water management and effective field monitoring. The aim of this study was to investigate the temporal stability of soil moisture spatial patterns over four plots of 105 m × 135 m in grid size with different grazing intensities in a semi‐arid steppe in China. We also examined whether a time‐stable location can be identified from causative factors (i.e. soil, vegetation, and topography). At each plot, surface soil moisture (0–6 cm) was measured about biweekly from 2004 to 2006 using 100 points in each grid. Possible controls of soil moisture, including soil texture, organic carbon, bulk density, vegetation coverage, and topographic indices, were determined at the same grid points. The results showed that the spatial patterns of soil moisture were considerably stable over the 3‐y monitoring period. Soil moisture under wet conditions (averaged volumetric moisture contents > 20%) was more stable than that under dry ( ) or moist ( ) conditions. The best representative point for the whole field identified in each plot was accurate in representing the field mean moisture over time (R2 ≥ 0·97; p < 0·0001). The degree of temporal persistence varied with grazing intensity, which was partly related to grazing‐induced differences in soil and vegetation properties. The correlation analysis showed that soil properties, and to a lesser extent vegetation and topographic properties, were important in controlling the temporal stability of soil moisture spatial patterns in this relatively flat grassland. Response surface regression analysis was used to quantitatively identify representative monitoring locations a priori from available soil‐plant parameters. This allows appropriate selection of monitoring locations and enhances efficiency in managing soil and water resources in semi‐arid environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The objective of this study was to validate the soil moisture data derived from coarse‐resolution active microwave data (50 km) from the ERS scatterometer. The retrieval technique is based on a change detection method coupled with a data‐based modelling approach to account for seasonal vegetation dynamics. The technique is able to derive information about the soil moisture content corresponding to the degree of saturation of the topmost soil layer (∼5 cm). To estimate profile soil moisture contents down to 100 cm depth from the scatterometer data, a simple two‐layer water balance model is used, which generates a red noise‐like soil moisture spectrum. The retrieval technique had been successfully applied in the Ukraine in a previous study. In this paper, the performance of the model in a semi‐arid Mediterranean environment characterized by low annual precipitation (400 mm), hot dry summers and sandy soils is investigated. To this end, field measurements from the REMEDHUS soil moisture station network in the semi‐arid parts of the Duero Basin (Spain) were used. The results reveal a significant coefficient of determination (R2 = 0·75) for the averaged 0–100 cm soil moisture profile and a root mean square error (RMSE) of 2·2 vol%. The spatial arrangement of the REMEDHUS soil moisture stations also allowed us to study the influence of the small‐scale variability of soil moisture within the ERS scatterometer footprint. The results show that the small‐scale variability in the study area is modest and can be explained in terms of texture fraction distribution in the soil profiles. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Soil moisture is an important variable in explaining hydrological processes at hillslope scale. The distribution of soil moisture along a hillslope is related to the spatial distribution of the soil properties, the topography, the soil depth, and the vegetation. In order to investigate the factors affecting soil moisture, various environmental data were collected from a humid forest hillslope in this study. Several factors (the wetness index; the contributing area; the local slope; the soil depth; the composition of sand, silt, and clay; the scaling parameter; the hydraulic conductivity; the tree diameter at breast height; and the total weighted basal area) were evaluated for their effect on soil moisture and its distribution over the hillslope at depths of 10, 30, and 60 cm. Both linear correlation analysis and empirical orthogonal function analysis indicated that the soil texture was a dominant factor in soil moisture distribution. The impact of soil hydraulic conductivity was important for all soil moisture ranges at a depth of 30 cm, but those at 10 and 60 cm were limited to very wet and dry conditions, respectively. The relationships of the various factors with the spatial variability of soil moisture indicated the existence of a threshold soil moisture that is related to the composition of the soil and the factors related to the distribution of water in the study area.  相似文献   

9.
Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gürbantünggüt Desert is mainly covered by longitudinal dune in which fixed and semi-fixed dunes occupy over 80% of the total area. Systematic analysis on the climatic conditions, the soil moisture and vegetation distributions, and the sand surface activities showed that the fixed and semi-fixed dunes are in a comprehensive low-energy wind environment. Snow cover and frozen soil provide a good protection to the ground surface in winter. The temporal distribution of precipitation and corresponding variation of temperature create a favorable condition for the desert plants growth, especially for the ephemeral plants. The occurrence of effective winds for sand moving in April to June coincides with the stage of relatively wet sand surface and good vegetation cover, which effectively keep the sand surface stable at the interdune and the plinth of the dunes. Activity sand surface appears only at the crest and the upper part of the sand dunes.  相似文献   

10.
In semiarid ecosystems, the transfer of water, sediments, and nutrients from bare to vegetated areas is known to be crucial to ecosystem functioning. Rainfall simulation experiments were performed on bare‐soil and vegetated surfaces, on both wet and dry soils, in semiarid shrub‐steppe landscapes of SE Spain to investigate the spatial and temporal factors and interactions that control the fine‐scale variation in water infiltration, runoff and soil loss, and hence the water and sediment flows in these areas. Three types of shrub‐steppe landscapes varying in plant community and physiography, and four types of plant patches (oak shrub, subshrub, tussock grass, and short grass mixed with chamaephytes) were studied. Higher infiltration and lower runoff and soil loss were measured on vegetation patches than on bare soils, for both dry and wet conditions. The oak‐shrub patches produced no runoff, while the subshrub patches showed the highest runoff and soil loss. Despite these differences among patch types, the influence of vegetation patch type on the variables analysed was not significant. The response of bare soil surfaces clearly varied between landscape types, yet the differences were only relevant under dry soil conditions. Stone cover, particularly the cover of embedded stones, and crust cover, were the key explanatory variables for the hydrological behaviour of bare soils. The study documents quantitatively how bare soils and vegetation patches function as runoff sources and runoff sinks, respectively, for a wide range of soil moisture conditions, and illustrates that landscape‐type effects on bare‐soil runoff sources may also exert an important control on the site hydrology, while the role of the vegetation patch type is less important. The effects of the control factors are modulated by antecedent soil moisture, with dry soils showing the most contrasting soil water infiltration between landscapes and surface types. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
As an alternative to geostatistical modeling, we characterized the hydrology of a semi-arid landscape in southeastern Washington state, USA, by coupling spatial patterns identified in the distributions of relative relief and vegetation with the influence each has on soil moisture storage and evapotranspiration at the appropriate scale. Gauging precipitation, soil moisture, and evapotranspiration over a two-year period while concurrently mapping relative relief and vegetation distributions at three scales ranging from centimeters to 90 m, we determined that soil moisture and soil moisture storage are significantly greater in topographic concavities than in convexities at the microrelief (20–50 cm) scale but are not significantly different in relief features at larger scales. A generalized microrelief surface produced using a two-dimensional Fourier transformation provided a good representation of the distribution of soil moisture within microrelief when scaled to soil moisture values. Applying a spatial point process analysis we determined that big sage are randomly distributed across the landscape at all scales, suggesting that lysimeter-derived sage evapotranspiration rates also be distributed randomly across the landscape. Where sage were not present, we applied an autoregressive moving-average model conditioned on grass lysimeter measurements to derive evapotranspiration rates. Combining these hydrologic spatial patterns derived from distributions in relief and vegetation with measured precipitation inputs and evapotranspiration outputs, we created a spatially distributed model of soil moisture which we tested against measured values over an eight-week period. The model provides accurate characterization of soil moisture, allows estimates of soil moisture between measurement points, permits extrapolation of soil moisture distributions outside the gauged area, and maintains small-scale variability when aggregating soil moisture to successively larger scales.  相似文献   

12.
Soil moisture has a fundamental influence on the processes and functions of tundra ecosystems. Yet, the local dynamics of soil moisture are often ignored, due to the lack of fine resolution, spatially extensive data. In this study, we modelled soil moisture with two mechanistic models, SpaFHy (a catchment-scale hydrological model) and JSBACH (a global land surface model), and examined the results in comparison with extensive growing-season field measurements over a mountain tundra area in northwestern Finland. Our results show that soil moisture varies considerably in the study area and this variation creates a mosaic of moisture conditions, ranging from dry ridges (growing season average 12 VWC%, Volumetric Water Content) to water-logged mires (65 VWC%). The models, particularly SpaFHy, simulated temporal soil moisture dynamics reasonably well in parts of the landscape, but both underestimated the range of variation spatially and temporally. Soil properties and topography were important drivers of spatial variation in soil moisture dynamics. By testing the applicability of two mechanistic models to predict fine-scale spatial and temporal variability in soil moisture, this study paves the way towards understanding the functioning of tundra ecosystems under climate change.  相似文献   

13.
Preferential flowpaths transport phosphorus (P) to agricultural tile drains. However, if and to what extent this may vary with soil texture, moisture conditions, and P placement is poorly understood. This study investigated (a) interactions between soil texture, antecedent moisture conditions, and the relative contributions of matrix and preferential flow and (b) associated P distributions through the soil profile when fertilizers were applied to the surface or subsurface. Brilliant blue dye was used to stain subsurface flowpaths in clay and silt loam plots during simulated rainfall events under wet and dry conditions. Fertilizer P was applied to the surface or via subsurface placement to plots of different soil texture and moisture condition. Photographs of dye stains were analysed to classify the flow patterns as matrix dominated or macropore dominated, and soils within plots were analysed for their water‐extractable P (WEP) content. Preferential flow occurred under all soil texture and moisture conditions. Dye penetrated deeper into clay soils via macropores and had lower interaction with the soil matrix, compared with silt loam soil. Moisture conditions influenced preferential flowpaths in clay, with dry clay having deeper infiltration (92 ± 7.6 cm) and less dye–matrix interaction than wet clay (77 ± 4.7 cm). Depth of staining did not differ between wet (56 ± 7.2 cm) and dry (50 ± 6.6 cm) silt loam, nor did dominant flowpaths. WEP distribution in the top 10 cm of the soil profile differed with fertilizer placement, but no differences in soil WEP were observed at depth. These results demonstrate that large rainfall events following drought conditions in clay soil may be prone to rapid P transport to tile drains due to increased preferential flow, whereas flow in silt loams is less affected by antecedent moisture. Subsurface placement of fertilizer may minimize the risk of subsurface P transport, particularily in clay.  相似文献   

14.
Previous studies on semi-arid ecosystems have shown high values of soil moisture variability (SMV) primarily induced by the combined effects of non-uniform precipitation, incoming solar radiation, and soil and vegetation properties. However, the relative impact of these various factors on SMV has been difficult to evaluate due to limited availability of field data. In addition, only a limited number of studies have analysed the role of landscape morphology on SMV. Here we use numerical simulations of a simple hydrological model, the Bucket Grassland Model, to systematically analyse the effect of each contributing factor on SMV on two different landscape morphologies. The two different landform morphologies represent landscapes dominated respectively by either diffusive erosion or fluvial erosion processes. We conducted various simulations driven by a stochastically generated 100-year climate time series, which is long enough to capture climatic fluctuations, in order to understand the effect of various soil moisture controlling factors on the spatiotemporal SMV. Our modelling results show that the fluvial dominated landscapes promote higher spatial SMV than the diffusive dominated ones. Further, the role of landform morphology on SMV is more pronounced in regions where the spatial variability of incoming solar radiation and precipitation is high.  相似文献   

15.
Infiltration into frozen soil is a key hydrological process in cold regions. Although the mechanisms behind point‐scale infiltration into frozen soil are relatively well understood, questions remain about upscaling point‐scale results to estimate hillslope‐scale run‐off generation. Here, we tackle this question by combining laboratory, field, and modelling experiments. Six large (0.30‐m diameter by 0.35‐m deep) soil cores were extracted from an experimental hillslope on the Canadian Prairies. In the laboratory, we measured run‐off and infiltration rates of the cores for two antecedent moisture conditions under snowmelt rates and diurnal freeze–thaw conditions observed on the same hillslope. We combined the infiltration data with spatially variable data from the hillslope, to parameterise a surface run‐off redistribution model. We used the model to determine how spatial patterns of soil water content, snowpack water equivalent (SWE), and snowmelt rates affect the spatial variability of infiltration and hydrological connectivity over frozen soil. Our experiments showed that antecedent moisture conditions of the frozen soil affected infiltration rates by limiting the initial soil storage capacity and infiltration front penetration depth. However, shallow depths of infiltration and refreezing created saturated conditions at the surface for dry and wet antecedent conditions, resulting in similar final infiltration rates (0.3 mm hr?1). On the hillslope‐scale, the spatial variability of snowmelt rates controlled the development of hydrological connectivity during the 2014 spring melt, whereas SWE and antecedent soil moisture were unimportant. Geostatistical analysis showed that this was because SWE variability and antecedent moisture variability occurred at distances shorter than that of topographic variability, whereas melt variability occurred at distances longer than that of topographic variability. The importance of spatial controls will shift for differing locations and winter conditions. Overall, our results suggest that run‐off connectivity is determined by (a) a pre‐fill phase, during which a thin surface soil layer wets up, refreezes, and saturates, before infiltration excess run‐off is generated and (b) a subsequent fill‐and‐spill phase on the surface that drives hillslope‐scale run‐off.  相似文献   

16.
Minha Choi 《水文研究》2012,26(4):597-603
In the past few decades, there have been great developments in remotely sensed soil moisture, with validation efforts using land surface models (LSMs) and ground‐based measurements, because soil moisture information is essential to understanding complex land surface–atmosphere interactions. However, the validation of remotely sensed soil moisture has been very limited because of the scarcity of the ground measurements in Korea. This study validated Advanced Microwave Scanning Radiometer E (AMSR‐E) soil moisture data with the Common Land Model (CLM), one of the most widely used LSMs, and ground‐based measurements at two Korean regional flux monitoring network sites. There was reasonable agreement regarding the different soil moisture products for monitoring temporal trends except National Snow and Ice Data Centre (NSIDC) AMSR‐E soil moisture, albeit there were essential comparison limitations by different spatial scales and soil depths. The AMSR‐E soil moisture data published by the National Aeronautics and Space Administration and Vrije Universiteit Amsterdam (VUA) showed potential to replicate temporal variability patterns (root‐mean‐square errors = 0·10–0·14 m3 m?3 and wet BIAS = 0·09 ? 0·04 m3 m?3) with the CLM and ground‐based measurements. However, the NSIDC AMSR‐E soil moisture was problematic because of the extremely low temporal variability and the VUA AMSR‐E soil moisture was relatively inaccurate in Gwangneung site characterized by complex geophysical conditions. Additional evaluations should be required to facilitate the use of recent and forthcoming remotely sensed soil moisture data from Soil Moisture and Ocean Salinity and Soil Moisture Active and Passive missions at representative future validation sites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The interaction between the land surface and the atmosphere is a crucial driver of atmospheric processes. Soil moisture and precipitation are key components in this feedback. Both variables are intertwined in a cycle, that is, the soil moisture – precipitation feedback for which involved processes and interactions are still discussed. In this study the soil moisture – precipitation feedback is compared for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season, using precipitation datasets from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from the German Weather Service (REGNIE) and simulation datasets from the Weather Research and Forecasting (WRF) model and the hydrologically enhanced WRF-Hydro model. WRF and WRF-Hydro differ by their representation of terrestrial water flow. With this setup we want to investigate the strength, sign and variables involved in the soil moisture – precipitation feedback for these two regions. The normalized model spread between the two simulation results shows linkages between precipitation variability and diagnostic variables surface fluxes, moisture flux convergence above the surface and convective available potential energy in both study regions. The soil moisture – precipitation feedback is evaluated with a classification of soil moisture spatial heterogeneity based on the strength of the soil moisture gradients. This allows us to assess the impact of soil moisture anomalies on surface fluxes, moisture flux convergence, convective available potential energy and precipitation. In both regions the amount of precipitation generally increases with soil moisture spatial heterogeneity. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches. At least for the observed moderate soil moisture values and the spatial scale of the Ammer region, the spatial variability of soil moisture is more important for surface-atmosphere interactions than the actual soil moisture content. Overall, we found that soil moisture heterogeneity can greatly affect the soil moisture – precipitation feedback.  相似文献   

19.
Surface soil moisture has been extensively studied for various land uses and landforms. Although many studies have reported potential factors that control surface soil moisture over space or time, the findings have not always been consistent, indicating a need for identification of the main factors. This study focused on the static controls of topographic, soil, and vegetation features on surface soil moisture in a steep natural forested headwater catchment consisting of three hillslope units of a gully area, side slope, and valley‐head slope. Using a simple correlation analysis to investigate the effects of the static factors on surface soil moisture at depths of 0–20 cm at 470 points in 13 surveys, we addressed the characteristics of surface soil moisture and its main controlling factors. The results indicated that the mean of surface soil moisture was in the decreasing order of gully area > valley‐head slope > side slope. The relationship between the mean and standard deviation of surface soil moisture showed a convex‐upward shape in the headwater catchment, a negative curvilinear shape in the gully area, and positive curvilinear shapes at the side and valley‐head slopes. At the headwater catchment and valley‐head slope, positive contributions of soil porosity and negative contributions of slope gradient and saturated hydraulic conductivity were the main controlling factors of surface soil moisture under wetter conditions, whereas positive contributions of topographic wetness index and negative contributions of vegetation density were the main controlling factors of surface soil moisture under drier conditions. At the side slope underlain by fractured bedrocks, only saturated hydraulic conductivity and vegetation density were observed to be the controlling factors. Surface soil moisture in the gully area was mainly affected by runoff rather than were static features. Thus, using hillslope units is effective for approximately estimating the hydrological behaviours of surface moisture on a larger scale, whereas dependency between the main static factors and moisture conditions is helpful for estimating the spatial distributions of surface moisture on a smaller scale.  相似文献   

20.
Soil moisture state and variability control many hydrological and ecological processes as well as exchanges of energy and water between the land surface and the atmosphere. However, its state and variability are poorly understood at spatial scales larger than the fields (i.e. 1 km2) as well as the ability to extrapolate field scale to larger spatial scales. This study investigates soil moisture profiles, their spatial organization, and physical drivers of variability within the Walnut Creek watershed, Iowa, during Soil Moisture Experiment 2005 and relates the watershed scale findings to previous field‐scale results. For all depths, the watershed soil moisture variability was negatively correlated with the watershed mean soil moisture and followed an exponential relationship that was nearly identical to that for field scales. This relationship differed during drying and wetting. While the overall time stability characteristics were improved with observation depth, the relatively wet and dry locations were consistent for all depths. The most time stable locations, capturing the mean soil moisture of the watershed within ± 0·9% volumetric soil moisture, were typically found on hill slopes regardless of vegetation type. These mild slope locations consistently preserve the time stability patterns from field to watershed scales. Soil properties also appear to impact stability but the findings are sensitive to local variations that may not be well defined by existing soil maps. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号