首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The processes of hillslope runoff and erosion are typically represented at coarse spatial resolution in catchment‐scale models due to computational limitations. Such representation typically fails to incorporate the important effects of topographic heterogeneity on runoff generation, overland flow, and soil erosion. These limitations currently undermine the application of distributed catchment models to understand the importance of thresholds and connectivity on hillslope and catchment‐scale runoff and erosion, particularly in semi‐arid environments. This paper presents a method for incorporating high‐resolution topographic data to improve sub‐grid scale parameterization of hillslope overland flow and erosion models. Results derived from simulations conducted using a kinematic wave overland flow model at 0.5 m spatial resolution are used to parameterize the depth–discharge relationship in the overland flow model when applied at 16 m resolution. The high‐resolution simulations are also used to derive a more realistic parameterization of excess flow shear stress for use in the 16 m resolution erosion model. Incorporating the sub‐grid scale parameterization in the coarse‐resolution model (16 m) leads to improved predictions of overland flow and erosion when evaluated using results derived from high‐resolution (0.5 m) model simulations. The improvement in performance is observed for a range of event magnitudes and is most notable for erosion estimates due to the non‐linear dependency between the rates of erosion and overland flow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The Xinanjiang model, which is a conceptual rainfall‐runoff model and has been successfully and widely applied in humid and semi‐humid regions in China, is coupled by the physically based kinematic wave method based on a digital drainage network. The kinematic wave Xinanjiang model (KWXAJ) uses topography and land use data to simulate runoff and overland flow routing. For the modelling, the catchment is subdivided into numerous hillslopes and consists of a raster grid of flow vectors that define the water flow directions. The Xinanjiang model simulates the runoff yield in each grid cell, and the kinematic wave approach is then applied to a ranked raster network. The grid‐based rainfall‐runoff model was applied to simulate basin‐scale water discharge from an 805‐km2 catchment of the Huaihe River, China. Rainfall and discharge records were available for the years 1984, 1985, 1987, 1998 and 1999. Eight flood events were used to calibrate the model's parameters and three other flood events were used to validate the grid‐based rainfall‐runoff model. A Manning's roughness via a linear flood depth relationship was suggested in this paper for improving flood forecasting. The calibration and validation results show that this model works well. A sensitivity analysis was further performed to evaluate the variation of topography (hillslopes) and land use parameters on catchment discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The Amazon basin covers an area of roughly 7 × 106 km2 and encompasses diverse soil – landscape types with potentially differing hydrological behaviour. This study was conducted in the Ultisol landscape of the western Amazon basin in Peru. Processes of stormflow generation were investigated on an event basis in a first‐order rainforest catchment to establish a causal link between soil physical and precipitation characteristics, hillslope flowpaths and stormflow hydrograph attributes. A sharp decrease in soil hydraulic conductivity with depth and high rainfall intensity and frequency favour rapid near‐surface flowpaths, mainly in the form of saturation‐excess overland flow and return flow. The latter results in an almost random occurrence of overland flow, with no obvious topographic control. Hillslope flowpaths do not vary much with respect to the hydrograph attributes time of rise, response time, lag time and centroid lag time. They have the same response time as streamflow, but a somewhat lower time of rise and significantly shorter lag times. The recession constant for hillslope hydrographs is about 10 min, in contrast to the streamflow recession constants of 28, 75 and 149 min. Stormflow generation in this Ultisol rainforest catchment differs strongly from that reported for Oxisol rainforest catchments. These two soilscapes may define a spectrum of possible catchment hydrological behaviour in the Amazon basin. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
To develop an evidence base to help predict the impacts of land management change on flood generation, four experimental sites were established on improved grassland used for sheep grazing at the Pontbren catchment in upland Wales, UK. At each site, three plots were established where surface runoff was measured, supplemented by measurements of soil infiltration rates and soil and vegetation physical properties. Following baseline monitoring, treatments were applied to two of the plots: exclusion of sheep (ungrazed) and exclusion of sheep and planting with native broadleaf tree species (tree planted), with the third plot acting as a control (grazed pasture). Due to a particularly dry summer that occurred pre‐treatment, the soil hydrological responses were initially impacted by the effects of the climate on soil structure. Nevertheless, treatments did have a clear influence on soil hydrological response. On average, post‐treatment runoff volumes were reduced by 48% and 78% in ungrazed and tree‐planted plots relative to the control, although all results varied greatly over the sites. Five years following treatment application, near‐surface soil bulk density was reduced and median soil infiltration rates were 67 times greater in plots planted with trees compared to grazed pasture. The results illustrate the potential use of upland land management for ameliorating local‐scale flood generation but emphasise the need for long‐term monitoring to more clearly separate the effects of land management from those of climatic variability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Monitoring runoff generation processes in the field is a prerequisite for developing conceptual hydrological models and theories. At the same time, our perception of hydrological processes strongly depends on the spatial and temporal scale of observation. Therefore, the aim of this study is to investigate interactions between runoff generation processes of different spatial scales (plot scale, hillslope scale, and headwater scale). Different runoff generation processes of three hillslopes with similar topography, geology and soil properties, but differences in vegetation cover (grassland, coniferous forest, and mixed forest) within a small v‐shaped headwater were measured: water table dynamics in wells with high spatial and temporal resolution, subsurface flow (SSF) of three 10 m wide trenches at the bottom of the hillslopes subdivided into two trench sections each, overland flow at the plot scale, and catchment runoff. Bachmair et al. ( 2012 ) found a high spatial variability of water table dynamics at the plot scale. In this study, we investigate the representativity of SSF observations at the plot scale versus the hillslope scale and vice versa, and the linkage between hillslope dynamics (SSF and overland flow) and streamflow. Distinct differences in total SSF within each 10 m wide trench confirm the high spatial variability of the water table dynamics. The representativity of plot scale observations for hillslope scale SSF strongly depends on whether or not wells capture spatially variable flowpaths. At the grassland hillslope, subsurface flowpaths are not captured by our relatively densely spaced wells (3 m), despite a similar trench flow response to the coniferous forest hillslope. Regarding the linkage between hillslope dynamics and catchment runoff, we found an intermediate to high correlation between streamflow and hillslope hydrological dynamics (trench flow and overland flow), which highlights the importance of hillslope processes in this small watershed. Although the total contribution of SSF to total event catchment runoff is rather small, the contribution during peak flow is moderate to substantial. Additionally, there is process synchronicity between spatially discontiguous measurement points across scales, potentially indicating subsurface flowpath connectivity. Our findings stress the need for (i) a combination of observations at different spatial scales, and (ii) a consideration of the high spatial variability of SSF at the plot and hillslope scale when designing monitoring networks and assessing hydrological connectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Heavy winter rainfall produces double‐peak hydrographs at the Slapton Wood catchment, Devon, UK. The first peak is saturation‐excess overland flow in the hillslope hollows and the second (i.e. the delayed peak) is subsurface stormflow. The physically‐based spatially‐distributed model SHETRAN is used to try to improve the understanding of the processes that cause the double peaks. A three‐stage (multi‐scale) approach to calibration is used: (1) water balance validation for vertical one‐dimensional flow at arable, grassland and woodland plots; (2) two‐dimensional flow for cross‐sections cutting across the stream valley; and (3) three‐dimensional flow in the full catchment. The main data are for rainfall, stream discharge, evaporation, soil water potential and phreatic surface level. At each scale there was successful comparison with measured responses, using as far as possible parameter values from measurements. There was some calibration but all calibrated values at one scale were used at a larger scale. A large proportion of the subsurface runoff enters the stream from three dry valleys (hillslope hollows), and previous studies have suggested convergence of the water in the three large hollows as being the major mechanism for the production of the delayed peaks. The SHETRAN modelling suggests that the hillslopes that drain directly into the stream are also involved in producing the delayed discharges. The model shows how in the summer most of the catchment is hydraulically disconnected from the stream. In the autumn the catchment eventually ‘wets up’ and shallow subsurface flows are produced, with water deflected laterally along the soil‐bedrock interface producing the delayed peak in the stream hydrograph. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Land use in Panama has changed dramatically with ongoing deforestation and conversion to cropland and cattle pastures, potentially altering the soil properties that drive the hydrological processes of infiltration and overland flow. We compared plot-scale overland flow generation between hillslopes in forested and actively cattle-grazed watersheds in Central Panama. Soil physical and hydraulic properties, soil moisture and overland flow data were measured along hillslopes of each land-use type. Soil characteristics and rainfall data were input into a simple, 1-D representative model, HYDRUS-1D, to simulate overland flow that we used to make inferences about overland flow response at forest and pasture sites. Runoff ratios (overland flow/rainfall) were generally higher at the pasture site, although no overall trends were observed between rainfall characteristics and runoff ratios across the two land uses at the plot scale. Saturated hydraulic conductivity (Ks) and bulk density were different between the forest and pasture sites (p < 10−4). Simulating overland flow in HYDRUS-1D produced more outputs similar to the overland flow recorded at the pasture site than the forest site. Results from our study indicate that, at the plot scale, Hortonian overland flow is the main driver for overland flow generation at the pasture site during storms with high-rainfall totals. We infer that the combination of a leaf litter layer and the activation of shallow preferential flow paths resulting in shallow saturation-excess overland flow are likely the main drivers for plot scale overland flow generation at the forest site. Results from this study contribute to the broader understanding of the delivery of freshwater to streams, which will become increasingly important in the tropics considering freshwater resource scarcity and changing storm intensities.  相似文献   

8.
Precipitation runoff is a critical hillslope hydrological process for downslope streamflow and piedmont/floodplain recharge. Shimen hillslope micro‐catchment is strategically located in the central foothill region of Taihang Mountains, where runoff is crucial for water availability in the piedmont corridors and floodplains of north China. This study analyzes precipitation‐runoff processes in the Shimen hillslope micro‐catchment for 2006–2008 using locally designed runoff collection systems. The study shows that slope length is a critical factor, next only to precipitation, in terms of runoff yield. Regression analysis also shows that runoff is related positively to precipitation, and negatively to slope length. Soil mantle in the study area is generally thin and is therefore not as critical a runoff factor as slope length. The study shows a significant difference between overland and subsurface runoff. However, that between the 0–10 and 10–20 cm subsurfaces is insignificant. Runoff hardly occurs under light rains (<10 mm), but is clearly noticeable under moderate‐to‐rainstorm events. In the hillslope catchment, vertical infiltration (accounting for 42–84% of the precipitation) dominates runoff processes in subsurface soils and weathered granite gneiss bedrock. A weak lateral flow (at even the soil/bedrock interface) and the generally small runoff suggest strong infiltration loss via deep percolation. This is critical for groundwater recharge in the downslope piedmont corridors and floodplains. This may enhance water availability, ease water shortage, avert further environmental degradation, and reduce the risk of drought/flood in the event of extreme weather conditions in the catchment and the wider north China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In the Lainbach catchment, unconsolidated Pleistocene moraine sediments are widely distributed. Because of the great natural risk of floods, together with extreme loads of sediments, investigations of runoff production processes have been conducted in this area. At hillslope scale three test sites with different states of soil development and vegetation cover were instrumented with V‐shaped weirs, precipitation gauges and measurement devices for electrical conductivity (EC) of discharge water. The EC has been used as a geochemical tracer for hydrograph separation, since the statistical relationship between content of dissolved Ca2+, Mg2+ cations and EC is highly significant for different stages of runoff. This method allows hydrograph separation at high temporal resolution for both the rising and falling limb of the hydrograph. The following results of the investigations can be resumed. If relief conditions are similar, the effectiveness of runoff production decreases with an increasing density of vegetation cover. The runoff delivery ratio decreases as well as the peaks of runoff. In contrast, concentration times of hillslope catchments are equal, even if vegetation cover is of great density and soils are well developed. As a reason for the short reaction times, different runoff production processes have been detected. On bare ground, infiltration excess overland flow intensified by surface sealing processes is the main source for quick runoff. On hillslopes well covered by vegetation, translatory flow processes indicated by soil water with high solute contents force a rapid runoff reaction only a few minutes after rainfall has begun. It is to be assumed that translatory flow is a runoff production process typical for hillslopes covered by vegetation in a steep alpine relief. By means of the areal distribution of the topographic index, concentration of runoff production on a small part of the catchment has been demonstrated for hillslopes densely covered by vegetation. The investigations have shown that there is a lack of studies on runoff production processes in steep alpine relief, as well as a deficit of methods to quantify hydraulic properties of coarse‐grained soils with a wide grain size distribution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The response time (lag time) between rainfall input and run‐off output in headwater catchments is a key parameter for flood prediction. Lag times are expected to be controlled by run‐off processes, both on hillslopes and in channels. To demonstrate these effects on peak lag times within a 4.5‐km2 catchment, we measured stream water levels at up to 16 channel locations at 1‐min intervals and compared the lag times with topographic indices describing the length and gradient of the hillslope and channel flow path. We captured storm events with a total precipitation of 38–198 mm and maximum hourly precipitation intensity of 9–90 mm/hr. There were positive relationships between lag time and flow path length as well as the ratio of the flow path length and the square root of the gradient of channels for the most intense storms, demonstrating that channel flow paths generally defined the variation in lag times. Topographic analysis showed that hillslope flow path lengths were similar among locations, whereas channel flow path length increased almost one order of magnitude with a 100‐fold increase in catchment area. Thus, the relative importance of hillslope flow path decreased with increasing catchment area. Our results indicate that the variation in lag times is small when hillslopes are sufficiently wet; thus, catchment‐scale variation in lag times can be explained almost entirely by channel processes. Detailed topographic channel information can improve prediction of flood peak timing, whereas hillslopes can be treated as homogeneous during large flood events.  相似文献   

11.
Hydrological budgets and flow pathways have been quantified for a small upland catchment (1.76 km2) in the northeast of Scotland. Water balance calculations for four subcatchments identified spatial variability within the catchment, with an estimated runoff enhancement of up to 25% for the upper western area, compared with the rest of the catchment. Data from spatial hydrochemical sampling, over a range of flow conditions, were used to identify the principal hillslope runoff mechanisms within the catchment. A hydrochemical mixing analysis revealed that runoff emerging from springs in various locations of the hillslope accounted for a significant proportion of flow in the streams, even during storm events. A hydrological model of the catchment was calibrated using the calculated stream flows for four locations, together with results from the mixing analysis for different time points. The calibrated model was used to predict the temporal variability in contributions to stream flow from the hillslope springs and soil water flows. The overall split ranged from 57%:43% spring water:soil water in the upper eastern subcatchment, to 76%:24% in the upper western subcatchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
High resolution radar rainfall fields and a distributed hydrologic model are used to evaluate the sensitivity of flood and flash flood simulations to spatial aggregation of rainfall and soil properties at catchment scales ranging from 75 to 983 km2. Hydrologic modeling is based on a Hortonian infiltration model and a network-based representation of hillslope and channel flow. The investigation focuses on three extreme flood and flash flood events occurred on the Sesia river basin, North Western Italy, which are analysed by using four aggregation lengths ranging from 1 to 16 km. The influence of rainfall spatial aggregation is examined by using the flow distance as a spatial coordinate, hence emphasising the role of river network in the averaging of space–time rainfall. The effects of reduced and distorted rainfall spatial variability on peak discharge have been found particularly severe for the flash flood events, with peak errors up to 35% for rainfall aggregation of 16 km and at 983 km2 catchment size. Effects are particularly remarkable when significant structured rainfall variability combines with relatively important infiltration volumes due to dry initial conditions, as this emphasises the non-linear character of the rainfall–runoff relationship. In general, these results confirm that the correct estimate of rainfall volume is not enough for the accurate reproduction of flash flood events characterised by large and structured rainfall spatial variability, even at catchment scales around 250 km2. However, accurate rainfall volume estimation may suffice for less spatially variable flood events. Increasing the soil properties aggregation length exerts similar effects on peak discharge errors as increasing the rainfall aggregation length, for the cases considered here and after rescaling to preserve the rainfall volume. Moreover, peak discharge errors are roughly proportional to runoff volume errors, which indicates that the shape of the flood wave is influenced in a limited way by modifying the detail of the soil property spatial representation. Conversely, rainfall aggregation may exert a pronounced influence on the discharge peak by reshaping the spatial organisation of the runoff volumes and without a comparable impact on the runoff volumes.  相似文献   

13.
This paper presents the development and application of a distributed rainfall-runoff model for extreme flood estimation, and its use to investigate potential changes in runoff processes, including changes to the ‘rating curve’ due to effects of over-bank flows, during the transition from ‘normal’ floods to ‘extreme’ floods. The model has two components: a hillslope runoff generation model based on a configuration of soil moisture stores in parallel and series, and a distributed flood routing model based on non-linear storage-discharge relationships for individual river reaches that includes the effects of floodplain geometries and roughnesses. The hillslope water balance model contains a number of parameters, which are measured or derived a priori from climate, soil and vegetation data or streamflow recession analyses. For reliable estimation of extreme discharges that may extend beyond recorded data, the parameters of the flood routing model are estimated from hydraulic properties, topographic data and vegetation cover of compound channels (main channel and floodplains). This includes the effects of the interactions between the main channel and floodplain sections, which tend to cause a change to the rating curve. The model is applied to the Collie River Basin, 2545 km2, in Western Australia and used to estimate the probable maximum flood (PMF) from probable maximum precipitation estimates for this region. When moving from normal floods to the PMFs, application of the model demonstrates that the runoff generation process changes with a substantial increase of saturation excess overland flow through the expansion of saturated areas, and the dominant runoff process in the stream channel changes from in-bank to over-bank flows. The effects of floodplain inundation and floodplain vegetation can significantly reduce the magnitude of the estimated PMFs. This study has highlighted the need for the estimation of a number of critical parameters (e.g. cross-sectional geometry, floodplain vegetation, soil depths) through concerted field measurements or surveys, and targeted laboratory experiments.  相似文献   

14.
Shallow upland drains, grips, have been hypothesized as responsible for increased downstream flow magnitudes. Observations provide counterfactual evidence, often relating to the difficulty of inferring conclusions from statistical correlation and paired catchment comparisons, and the complexity of designing field experiments to test grip impacts at the catchment scale. Drainage should provide drier antecedent moisture conditions, providing more storage at the start of an event; however, grips have higher flow velocities than overland flow, thus potentially delivering flow more rapidly to the drainage network. We develop and apply a model for assessing the impacts of grips on flow hydrographs. The model was calibrated on the gripped case, and then the gripped case was compared with the intact case by removing all grips. This comparison showed that even given parameter uncertainty, the intact case had significantly higher flood peaks and lower baseflows, mirroring field observations of the hydrological response of intact peat. The simulations suggest that this is because delivery effects may not translate into catchment‐scale impacts for three reasons. First, in our case, the proportions of flow path lengths that were hillslope were not changed significantly by gripping. Second, the structure of the grip network as compared with the structure of the drainage basin mitigated against grip‐related increases in the concentration of runoff in the drainage network, although it did marginally reduce the mean timing of that concentration at the catchment outlet. Third, the effect of the latter upon downstream flow magnitudes can only be assessed by reference to the peak timing of other tributary basins, emphasizing that drain effects are both relative and scale dependent. However, given the importance of hillslope flow paths, we show that if upland drainage causes significant changes in surface roughness on hillslopes, then critical and important feedbacks may impact upon the speed of hydrological response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
There is a dearth of knowledge on the runoff processes of eucalypt woodland communities in the semi-arid tropics of Australia. The work was undertaken on a 100 m transect of a 0·8 degree hillslope typical of the ‘smooth plainlands’ of central-north Queensland. This paper introduces a new experimental design for measuring overland flow in such areas by way of a cascade system of unbounded runoff plots which allow the inputs and outputs between troughs to be calculated. Most storms generate overland flow. Time to overland flow ranges between 1 and 18 min where rain intensities are above 10mm hr−1 and when the average detention storage of 3·6 mm is exceeded. The bare soil surfaces within the scattered grass understory control the runoff generation process through the temporal variability of field saturated hydraulic conductivity. The study demonstrated that overland flow is mainly redistributed over the freely-draining oxic soil. Some areas export more overland flow than they gain from upslope (runoff), others gain more overland flow than they export (runon). Over the study period only 2 per cent of total rain is transferred out of this 100 m transect as overland flow due to the short duration of storms, the relatively high soil permeability, and the low slope angle. The remainder adds to the large soil water store or deep drainage. The variability of runoff–runon over these ‘smooth plainlands’ highlights how results from bounded plots would be misleading in such areas.  相似文献   

16.
Geochemically based hydrograph separation techniques were used in a preliminary assessment to infer how runoff processes change with landscape characteristics and spatial scale (1–233 km2) within a mesoscale catchment in upland Scotland. A two‐component end‐member mixing analysis (EMMA) used Gran alkalinity as an assumed conservative tracer. Analysis indicated that, at all scales investigated, acidic overland flow and shallow subsurface storm flows from the peaty soils covering the catchment headwaters dominated storm runoff generation. The estimated groundwater contribution to annual runoff varied from 30% in the smallest (ca 1 km2) peat‐dominated headwater catchment with limited groundwater storage, to >60% in larger catchments (>30 km2) with greater coverage of more freely draining soils and more extensive aquifers in alluvium and other drift. This simple approach offers a useful, integrated conceptualization of the hydrological functioning in a mesoscale catchment, which can be tested and further refined by focused modelling and process‐based research. However, even as it stands, the simple conceptualization of system behaviour will have significant utility as a tool for communicating hydrological issues in a range of planning and management decisions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Upgrading agriculture in semi-arid areas and ensuring its sustainability require an optimal management of rainfall partition between blue and green waters in the farmed water harvesting catchment. The main objective of this study is to analyze the influence of heterogeneous land use on the spatial and temporal variation of rainfall partitioning and blue water production within a typical farmed catchment located in north-eastern Tunisia. The catchment has an area of 2.6 km2 and comprises at its outlet a dam, which retains the runoff water in a reservoir. Overland flow and soil water balance components were monitored during two cropping seasons (2000/2001 and 2001/2002) on a network of eleven plots of 2 m2 each with different land use and soil characteristics. The hydrological balances of both the catchment and reservoir have been monitored since 1994.Observed data showed a very large temporal and spatial variability of overland flow within the catchment reflecting the great importance of total rainfall as well as land use. During the 2001/2002 season the results showed a large variation of the number of observed runoff events, from 27 to 39, and of the annual overland flow depths, from 8 mm (under vineyard on calcaric cambisols) up to 43 mm (under shrubs-pasture on haplic regosols), between the plots. The annual runoff amounts were moderate; they always corresponded to less than 15% of the annual rainfall amount whatever the observation scale. It was also observed that changes in land use in years with similar rainfall could lead to significant differences in blue water flow. An attempt for predicting the overland flow by the general linear regression approach showed an r2 of 31%, the predictors used are the class of soil infiltration capacity, the initial moisture saturation ratio of the soil surface layer and the total rainfall amounts.These experimental results indicate that the variation in land use in a semi-arid catchment is a main factor of variation in soil surface conditions and explain the major role played by the former on hydrological behavior of the upstream area and on rainfall partition between overland flow and infiltration. Therefore, to predict the water harvesting capacities in terms of blue water production of a farmed catchment in semi-arid areas it seems essential to consider precisely its land use and its temporal evolution related to management practices.  相似文献   

18.
19.
There is a growing opinion that poorly managed plantation forests in Japan are contributing to increased storm runoff and erosion. Here we present evidence to the contrary from runoff plots at two scales (hillslope and 0·5 × 2 m plots) for several forest conditions in the Mie and Nariki catchments. Runoff coefficients from small plots in untended hinoki forests were variable but typically higher than from better managed or deciduous forests during small storms at Nariki; at Mie, runoff during small events was highly variable from all small plots but runoff coefficients were similar for hinoki plots with and without understory vegetation, while the deciduous plot had lower runoff coefficients. Storm runoff was less at the hillslope scale than the plot scale in Mie; these results were more evident at sites with better ground cover. During the largest storms at both sites, differences in runoff due to forest condition were not evident regardless of scale. Dynamic soil moisture tension measurements at Nariki indicated that during a large storm, flow in the upper organic‐rich and root‐permeated soil horizons was 3·2 times higher than measured overland runoff from a small hinoki plot with poor ground cover and 8·3 times higher than runoff from a deciduous forest plot. On the basis of field observations during storms, at least a portion of the monitored ‘Hortonian overland flow’ was actually occurring in this near‐surface ‘biomat’. Therefore our field measurements in both small and large plots potentially included biomat flow in addition to short‐lived Hortonian runoff. Because overland flow decreased with increasing scale, rill erosion did not occur on hillslopes. Additionally, runoff coefficients were not significantly different among cover conditions during large storms; thus, the ‘degraded’ forest conditions appear not to greatly enhance peak flows or erosion potential at larger scales, especially when biomat flow is significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The objective of this study was to test the practicability of defining hydrologic response units as combinations of soil, land use and topography for modelling infiltration at the hillslope and catchment scales. In an experimental catchment in the East African Highlands (Kwalei, Tanzania), three methods of measuring infiltration were compared for their ability to capture the spatial variability of effective hydraulic conductivity: the constant head (CH) method; the tension infiltration (TI) method; and the mini‐rainfall simulation (RS) method. The three methods yielded different probability distributions of effective hydraulic conductivity and suggested different types of hydrologic response units. Independently from these measurements, the occurrence of infiltration‐excess overland flow was monitored over an area of 6 ha by means of overland flow detectors. The observed pattern of overland flow occurrence did not match any of the patterns suggested by the infiltration measurements. Instead, clusters of spots with overland flow were practically independent from field borders. Geostatistical analysis of the overland flow confirmed the absence of spatial correlation for distances over 40 m. The RS method yielded the pattern closest to the observations, probably because the method simulated better the processes that trigger infiltration‐excess overland flow, i.e. soil sealing and infiltration through macroporosity. The RS hydrologic response unit correlated significantly with observed overland flow frequency. However, the location of clusters and ‘hot spots’ of overland flow remained largely unexplained by land use, soil and topographic variables. It is concluded that using such landscape variables to define hydrologic units may create artificial boundaries that do no correspond to physical realities, especially if the stochastic component within hydrologic units is neglected. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号