首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection of 2009 Leonid, Perseid and Geminid meteor showers over Agartala, Tripura, India (Lat: 23.0° N, Long: 91.4° E) will be reported here by using two VLF receivers tuned to subionospheric transmitted VLF signals at the frequency 16.4 kHz from Aldra Island, Norway (Lat: 66.42° N, Long: 13.13° E) and the other at 18.2 kHz from Vijayananarayanam, India (Lat: 8.4° N; Long: 77.7° E). The received signals exhibited their peak values on November 17, 2009 when ZHR (Zenithal Hourly Rate) was highest. Some typical variations which are observed in the records of amplitude during the 2009 Leonid, Perseid and Geminid meteor showers will be presented in this paper.  相似文献   

2.
Abstract– There are 31 proven impact structures in Fennoscandia—one of the most densely crater‐populated areas of the Earth. The recently discovered Keurusselkä impact structure (62°08′ N, 24°37′ E) is located within the Central Finland Granitoid Complex, which formed 1890–1860 Ma ago during the Svecofennian orogeny. It is a deeply eroded complex crater that yields in situ shatter cones with evidence of shock metamorphism, e.g., planar deformation features in quartz. New petrophysical and rock magnetic results of shocked and unshocked target rocks of various lithologies combined with paleomagnetic studies are presented. The suggested central uplift with shatter cones is characterized by increased magnetization and susceptibility. The presence of magnetite and pyrrhotite was observed as carriers for the remanent magnetization. Four different remanent magnetization directions were isolated: (1) a characteristic Svecofennian target rock component A with a mean direction of D = 334.8°, I = 45.6°, α95 = 14.9° yielding a pole (Plat = 51.1°, Plon = 241.9°, A95 = 15.1°), (2) component B, D = 42.4°, I = 64.1°, α95 = 8.4° yielding a pole (Plat = 61.0°, Plon = 129.1°, A95 = 10.6°), (3) component C (D = 159.5°, I = 65.4°, α95 = 10.7°) yielding a pole (Plat = 21.0°, Plon = 39.3°, A95 = 15.6°), and (4) component E (D = 275.5°, I = 62.0°, α95 = 14.4°) yielding a pole (Plat = 39.7°, Plon = 314.3°, A95 = 19.7°). Components C and E are considered much younger, possibly Neoproterozoic overprints, compared with the components A and B. The pole of component B corresponds with the 1120 Ma pole of Salla diabase dyke and is in agreement with the 40Ar/39Ar age of 1140 Ma from a pseudotachylitic breccia vein in a central part of the structure. Therefore, component B could be related to the impact, and thus represent the impact age.  相似文献   

3.
A laboratory study was performed using the Visible Oxford Space Environment Goniometer in which the broadband (350–1250 nm) bidirectional reflectance distribution function (BRDF) of the Winchcombe meteorite was measured, across a range of viewing angles—reflectance: 0°–70°, in steps of 5°; incidence: 15°, 30°, 45°, and 60°; and azimuthal: 0°, 90°, and 180°. The BRDF dataset was fitted using the Hapke BRDF model to (1) provide a method of comparison to other meteorites and asteroids, and (2) to produce Hapke parameter values that can be used to extrapolate the BRDF to all angles. The study deduced the following Hapke parameters for Winchcombe: w = 0.152 ± 0.030, b = 0.633 ± 0.064, and hS = 0.016 ± 0.008, demonstrating that it has a similar w value to Tagish Lake (0.157 ± 0.020) and a similar b value to Orgueil (0.671 ± 0.090). Importantly, the surface profile of the sample was characterized using an Alicona 3D® instrument, allowing two of the free parameters within the Hapke model φ and θ ¯ , which represent porosity and surface roughness, respectively, to be constrained as φ = 0.649 ± 0.023 and θ ¯ = 16.113° (at 500 μm size scale). This work serves as part of the characterization process for Winchcombe and provides a reference photometry dataset for current and future asteroid missions.  相似文献   

4.
The astrometric and photometric observations of the potentially hazardous 2009 WZ104 asteroid were carried out at the MTM-500M and ZA-320M automatic telescopes of the Pulkovo Observatory in December 2009. A total of 686 observations were performed in the integral band and 146 observations with B, V, R, and I filters on an arc of the orbit of 17°; these accounted for about 77% of all worldwide observations (). On the basis of the obtained data, the orbit was improved and an estimation of the physical parameters of the asteroid was made. Estimates of the absolute stellar magnitude of the asteroid, H = (20.52 ± 0.04) m , as well as its size and mass, were obtained. The taxonomic class of the 2009 WZ104 asteroid (R or Q) was determined. A frequency analysis of the series of observations was carried out; periodicities in the asteroid’s light variation were revealed using this method.  相似文献   

5.
N. Lugaz 《Solar physics》2010,267(2):411-429
Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible to derive the direction of propagation of coronal mass ejections (CMEs) in addition to their speed with a variety of methods. For CMEs observed by both STEREO spacecraft, it is possible to derive their direction using simultaneous observations from the twin spacecraft and also, using observations from only one spacecraft with fitting methods. This makes it possible to test and compare different analysis techniques. In this article, we propose a new fitting method based on observations from one spacecraft, which we compare to the commonly used fitting method of Sheeley et al. (J. Geophys. Res. 104, 24739, 1999). We also compare the results from these two fitting methods with those from two stereoscopic methods, focusing on 12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009. We find evidence that the fitting method of Sheeley et al. (J. Geophys. Res. 104, 24739, 1999) may result in significant errors in the determination of the CME direction when the CME propagates outside of 60°±20° from the Sun – spacecraft line. We expect our new fitting method to be better adapted to the analysis of halo or limb CMEs with respect to the observing spacecraft. We also find some evidence that direct triangulation in the HI fields-of-view should only be applied to CMEs propagating approximatively toward Earth (± 20° from the Sun – Earth line). Last, we address one of the possible sources of errors of fitting methods: the assumption of radial propagation. Using stereoscopic methods, we find that at least seven of the 12 studied CMEs had a heliospheric deflection of less than 20° as they propagated in the HI fields-of-view, which, we believe, validates this approximation.  相似文献   

6.
The paper is based on the ionospheric variations in terms of vertical total electron content (VTEC) for the low solar activity period from May 2007 to April 2009 based on the analysis of dual frequency signals from the Global Positioning System (GPS) satellites recorded at ground stations Varanasi (Geographic latitude 25°16′ N, Longitude 82°59′ E), situated near the equatorial ionization anomaly crest and other two International GNSS Service (IGS) stations Hyderabad (Geographic latitude 17°20′ N, longitude 78°30′ E) and Bangalore (Geographic latitude 12°58′ N, longitude 77°33′ E) in India. We describe the diurnal and seasonal variations of total electron content (TEC), and the effects of a space weather related event i.e. a geomagnetic storm on TEC. The mean diurnal variation during different seasons is brought out. It is found that TEC at all the three stations is maximum during equinoctial months (March, April, September and October), and minimum during the winter months (November, December, January and February), while obtaining intermediate values during summer months (May, June, July and August). TEC shows a semi-annual variation. TEC variation during geomagnetic quiet as well as disturbed days of each month and hence for each season from May 2007 to April 2008 at Varanasi is examined and is found to be more during disturbed period compared to that in the quiet period. Monthly, seasonal and annual variability of GPS-TEC has been compared with those derived from International Reference Ionosphere (IRI)-2007 with three different options of topside electron density, NeQuick, IRI01-corr and IRI 2001. A good agreement is found between the GPS-TEC and IRI model TEC at all the three stations.  相似文献   

7.
The helioseismic instruments aboard the SOHO satellite make it possible to measure solar oscillations as variations of the irradiance (VIRGO) or as variations of the photospheric velocity (GOLF). Theoretically, phase differences between different photometric bands are expected to be around 0 degrees over the p‐mode frequency range. By using VIRGO (red) and VIRGO (blue) data, we find a mean phase shift of 8.05 ± 1.81°, whereas by using VIRGO (green) and VIRGO (blue) data, we got a mean value of –1.04 ± 0.19°. Hence, when the analysis includes the VIRGO infrared range, the Sun's atmosphere does not follow an exact adiabatic behavior. In this study, we use the phase shifts obtained by VIRGO (green) and VIRGO (blue) to determine the non‐adiabatic parameter phase lag (ψT) as a function of frequency. To this aim, we applied the non radial linearized formula put in the complex form by Garrido: we found a mean value of ψT = 179.95°. The lowest value being ψT = 179.90°, the departure from theoretical predictions is less then a tenth of a degree over the entire p mode frequency range. We can state that the solar atmosphere has a behavior close to the adiabatic case, when the phase shifts and amplitude ratios are computed using VIRGO (green) and VIRGO (blue) data. Nevertheless this small deviation is significant. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The present paper analyzes the dual frequency signals from GPS satellites recorded at Varanasi (Geographic latitude 25°, 16′ N, longitude 82°, 59′ E) near the equatorial ionization anomaly (EIA) crest in India, to study the effect of geomagnetic storm on the variation of TEC, during the low solar active period of May 2007 to April 2008. Three most intense—but still moderate class—storms having a rapid decrease of Dst-index observed during the GPS recorded data have been analyzed, which occurred on 20 November 2007, 9 March 2008 and 11 October 2008 were selected and storm induced features in the vertical TEC (VTEC) have been studied considering the mean VTEC value of quiet days as reference level. The possible reasons for storm time effects on VTEC have been discussed in terms of local time dependence, storm wind effect as well as dawn-dusk component of interplanetary electric field (IEF) Ey intensity dependence.  相似文献   

9.
Using the Hewitt-Burbidge QSO Catalogue (1993) and all-sky catalogue of Abell clusters (ACO, 1989) at the region |b| > 40° we analyze the cross correlation function and find anti-correlation between them at angular separations 3° < θ < 10° , which is mainly caused by optical-selected QSOs, rather than radio-selected QSOs. There is no such anti-correlation between QSOs and Abell clusters at smaller separations θ < 3°. Considering that this phenomenon may be caused by different characters of the objects, we further estimate the correlation function with various subsamples. We find that the correlation is independent of the redshift of QSOs, but depends upon the type of Abell clusters: for the D ≤ 4 clusters there is an obvious tendency of overdensity of quasars at 0° < θ < 5°; around the R ≥ 2 Abell clusters there is about an 18.7% deficit of quasars in the region 3° < θ < 7°. K-S Test shows the overdensity or deficit of quasars around different types of clusters cannot be explained by the projection effect of background quasars. We get the enhancement factor of quasar overdensity (for D ≤ 4 clusters) q =1.13, and the extinction magnitude factor of QSO deficiency (for R ≥ 2 clusters) Av= 0.14. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The Effelsberg‐Bonn H I survey (EBHIS) comprises an all‐sky survey north of Dec = –5° of the Milky Way and the local volume out to a red‐shift of z ≃ 0.07. Using state of the art Field Programmable Gate Array (FPGA) spectrometers it is feasible to cover the 100 MHz bandwidth with 16.384 spectral channels. High speed storage of H I spectra allows us to minimize the degradation by Radio Frequency Interference (RFI) signals. Regular EBHIS survey observations started during the winter season 2008/2009 after extensive system evaluation and verification tests. Until today, we surveyed about 8000 square degrees, focusing during the first all‐sky coverage of the Sloan‐Digital Sky Survey (SDSS) area and the northern extension of the Magellanic stream. The first whole sky coverage will be finished in 2011. Already this first coverage will reach the same sensitivity level as the Parkes Milky Way (GASS) and extragalactic surveys (HIPASS). EBHIS data will be calibrated, stray‐radiation corrected and freely accessible for the scientific community via a webinterface. In this paper we demonstrate the scientific data quality and explore the expected harvest of this new all‐sky survey (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
12.
In a previous paper we presented a low-resolution (2°×2°) survey of radio recombination lines (RRLs) at 327 MHz in the longitude rangel=330° to 0° to 89°. In this paper, we present the results of a higher resolution (2°×6′) survey of RRLs from seven 2°-wide fields and two 6°-wide fields in the same longitude range. Observations were made using the Ooty Radio Telescope (ORT). A total of 252 spectra that were obtained are presented. RRLs were detected in almost all the individual positions within the fields withl<35° and at several individual positions within the fields in the longitude rangel=35° to 85°. Detailed analysis of the data towards the field centered at G45.5+0.0, shows that the line emission consists of discrete zones of ionized gas. The angular extent of these zones are likely to be one degree or more corresponding to a linear size of >110 pc at the kinematic distance.  相似文献   

13.
R. P. Kane 《Solar physics》2008,249(2):355-367
The 12-month running means of the conventional sunspot number Rz, the sunspot group numbers (SGN) and the frequency of occurrence of Coronal Mass Ejections (CMEs) were examined for cycle 23 (1996 – 2006). For the whole disc, the SGN and Rz plots were almost identical. Hence, SGN could be used as a proxy for Rz, for which latitude data are not available. SGN values were used for 5° latitude belts 0° – 5°, 5° – 10°, 10° – 15°, 15° – 20°, 20° – 25°, 25° – 30° and > 30°, separately in each hemisphere north and south. Roughly, from latitudes 25° – 30° N to 20° – 25° N, the peaks seem to have occurred later for lower latitudes, from latitudes 20° – 25° N to 15° – 20° N, the peaks are stagnant or occur slightly earlier, and then from latitudes 15° – 20° N to 0° – 5° N, the peaks seem to have occurred again later for lower latitudes. Thus, some latitudinal migration is suggested, clearly in the northern hemisphere, not very clearly in the southern hemisphere, first to the equator in 1998, stagnant or slightly poleward in 1999, and then to the equator again from 2000 onwards, the latter reminiscent of the Maunder butterfly diagrams. Similar plots for CME occurrence frequency also showed multiple peaks (two or three) in almost all latitude belts, but the peaks were almost simultaneous at all latitudes, indicating no latitudinal migration. For similar latitude belts, SGN and CME plots were dissimilar in almost all latitude belts except 10° – 20° S. The CME plots had in general more peaks than the SGN plots, and the peaks of SGN often did not match with those of CME. In the CME data, it was noticed that whereas the values declined from 2002 to 2003, there was no further decline during 2003 – 2006 as one would have expected to occur during the declining phase of sunspots, where 2007 is almost a year of sunspot minimum. An inquiry at GSFC-NASA revealed that the person who creates the preliminary list was changed in 2004 and the new person picks out more weak CMEs. Thus a subjectivity (overestimates after 2002) seems to be involved and hence, values obtained before and during 2002 are not directly comparable to values recorded after 2002, except for CMEs with widths exceeding 60°.  相似文献   

14.
Abstract— Paleomagnetic, rock magnetic, and petrophysical results are presented for impactites and target rocks from the Lake Jänisjärvi impact structure, Russian Karelia. The impactites (tagamites, suevites, and lithic breccias) are characterized by increased porosity and magnetization, which is in agreement with observations performed at other impact structures. Thermomagnetic, hysteresis, and scanning electron microscope (SEM) analysis document the presence of primary multidomain titanomagnetite with additional secondary titanomaghemite and ilmenohematite. The characteristic impact‐related remanent magnetization (ChRM) direction (D = 101.5°, I = 73.1°, α95 = 6.2°) yields a pole (Lat. = 45.0°N, Long. = 76.9°E, dp = 9.9°, dm = 11.0°). Additionally, the same component is observed as an overprint on some rocks located in the vicinity of the structure, which provides proofs of its primary origin. An attempt was made to determine the ancient geomagnetic field intensity. Seven reliable results were obtained, yielding an ancient intensity of 68.7 ± 7.6 μT (corresponding to VDM of 10.3 ± 1.1 times 1022 Am2). The intensity, however, appears to be biased toward high values mainly because of the concave shape of the Arai diagrams. The new paleomagnetic data and published isotopic ages for the structure are in disagreement. According to well‐defined paleomagnetic data, two possible ages for magnetization of Jänisjärvi rocks exist: 1) Late Sveconorwegian age (900–850 Myr) or 2) Late Cambrian age (?500 Myr). However, published isotopic ages are 718 ± 5 Myr (K‐Ar) and 698 ± 22 Myr (39Ar‐40Ar), but such isotopic dating methods are often ambiguous for the impactites.  相似文献   

15.
The effect of solar eclipse of July 22, 2009, obscuring up to 91 %, upon the value of point discharge current (PDC) has been reported in this paper. The observation had been taken from Kolkata (Lat. 22.56°N, Long. 88.5°E). During the eclipse period, significant variations in the magnitude of PDC were observed than their average value for the same period in other days. The average value of the PDC for the successive ±10 days adjacent to the solar eclipse day was about 2.253 A.U. (Arbitrary Unit), while the minimum value showed about 2.242 A.U. at the time of greatest phase at 06:26.4 IST (Indian Standard Time). The results are mainly interpreted in terms of changes of the conductivity of the medium during the solar eclipse.  相似文献   

16.
R. P. Kane 《Solar physics》2007,246(2):471-485
Many methods of predictions of sunspot maximum number use data before or at the preceding sunspot minimum to correlate with the following sunspot maximum of the same cycle, which occurs a few years later. Kane and Trivedi (Solar Phys. 68, 135, 1980) found that correlations of R z(max) (the maximum in the 12-month running means of sunspot number R z) with R z(min) (the minimum in the 12-month running means of sunspot number R z) in the solar latitude belt 20° – 40°, particularly in the southern hemisphere, exceeded 0.6 and was still higher (0.86) for the narrower belt > 30° S. Recently, Javaraiah (Mon. Not. Roy. Astron. Soc. 377, L34, 2007) studied the relationship of sunspot areas at different solar latitudes and reported correlations 0.95 – 0.97 between minima and maxima of sunspot areas at low latitudes and sunspot maxima of the next cycle, and predictions could be made with an antecedence of more than 11 years. For the present study, we selected another parameter, namely, SGN, the sunspot group number (irrespective of their areas) and found that SGN(min) during a sunspot minimum year at latitudes > 30° S had a correlation +0.78±0.11 with the sunspot number R z(max) of the same cycle. Also, the SGN during a sunspot minimum year in the latitude belt (10° – 30° N) had a correlation +0.87±0.07 with the sunspot number R z(max) of the next cycle. We obtain an appropriate regression equation, from which our prediction for the coming cycle 24 is R z(max )=129.7±16.3.  相似文献   

17.
Abstract— Following a brilliant daylight fireball at 10:10 a.m. (local time) on 30 September 1984, a single stone weighing 488.1 grams was recovered from Binningup beach (33°09′23″S, 115°40′35″E), Western Australia. Data from 23 reported sightings of the fireball indicate an angle of trajectory 20–40° from the horizontal, a flight-path bearing N210°E and an end-point (ca. 32°39′S, 115°54.5′E) at a height of ~20–30 km. A recrystallized chondritic texture and the presence of olivine and low-Ca orthopyroxene with compositions of Fa18.4 (PMD 1.1)and Fs16.1 (PMD 1.1), respectively, show that Binningup is a typical member of the H-group of ordinary chondrites. Uniform mineral compositions and the presence of generally microcrystalline plagioclase feldspar indicate that the meteorite belongs to petrologic type 5. Pervasive fracturing of silicates suggests mild pre-terrestrial shock loading. Measurements (dpm kg?1) of cosmogenic radionuclides including 22Na (61 ± 5), 26Al (49 ± 3) and 54Mn (66 ± 10) indicate a normal history of irradiation.  相似文献   

18.
It is shown that the lists of Shakhbazian Compact Galaxy Groups (SCGGs) are not complete. The number of the detected groups in the strip between b = ±30° and b = ±20° is by four to five times smaller than expected. The most probable reason is that during the search for SCGGs it was hard to distinguish images of compact galaxies from that of stars on the POSS prints in dense areas of the sky at lower galactic latitudes. There is some deficit of the detected groups between 60° and 40° of the north galactic latitudes. The surface density of SCGGs in the southern galactic hemisphere between b = −50° and b = −30° is by about three times less than it is expected. Obviously, the southern sky has not been searched properly. The list of Hickson's groups is complete down to galactic latitude ±30°. However, some excess of HCGs is found in the southern hemisphere, where the surface density of the found groups is by about two times higher than that of in the northern hemisphere.  相似文献   

19.
Several light-curves of asteroid (360) Carlova and (209) Dido in different epochs were analyzed to determine shapes and pole orientations by means of AM-method and least squares method. New values of a/b, b/c, λ p and β p for asteroid (360) Carlova were obtained, which are 1.52°, 1.5°, 120 ± 6° and 66 ± 7°, respectively. We report a first determination of the parameters of (209) Dido which are 1.3°, 1.1°, 221 ± 6° and 37 ± 3°, respectively.  相似文献   

20.
We report multi-frequency radio continuum and hydrogen radio recombination line observations of HII regions near l = 24.8°, b = 0.1° using the Giant Metrewave Radio Telescope (GMRT) at 1.28 GHz (n = 172), 0.61 GHz (n = 220) and the Very Large Array (VLA) at 1.42 GHz (n = 166). The region consists of a large number of resolved HII regions and a few compact HII regions as seen in our continuum maps, many of which have associated infrared (IR) point sources. The largest HII region at l = 24.83° and b = 0.1° is a few arcmins in size and has a shell-type morphology. It is a massive HII region enclosing ∼550 M with a linear size of 7 pc and an rms electron density of ∼110 cm−3 at a kinematic distance of 6 kpc. The required ionization can be provided by a single star of spectral type O5.5. We also report detection of hydrogen recombination lines from the HII region at l = 24.83° and b = 0.1° at all observed frequencies near V lsr = 100 km s−1. We model the observed integrated line flux density as arising in the diffuse HII region and find that the best fitting model has an electron density comparable to that derived from the continuum. We also report detection of hydrogen recombination lines from two other HII regions in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号