首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The polarized (Ea′, Eb and Ec) electronic absorption spectra of five natural chromium-containing clinopyroxenes with compositions close to chromdiopside, omphacite, ureyite-jadeite (12.8% Cr2O3), jadeite, and spodumene (hiddenite) were studied. The polarization dependence of the intensities of the Cr3+ bands in the clinopyroxene spectra cannot be explained by the selection rules for the point groups C 2 or C 2v but can be accounted for satisfactorily with the help of the higher order pseudosymmetry model, i.e. with selection rules for the point symmetry group C 3v. The trigonal axis of the pseudosymmetry crystal field forms an angle of 20.5° with the crystallographic direction c in the (010) plane. D q increases from diopside (1542 cm?1) through omphacite (1552 cm?1), jadeite (1574 cm?1) to spodumene (1592 cm?1). The parameter B which is a measure of covalency for Cr3+-O bonds at M1 sites in clinopyroxene depends on the Cr3+ concentration and the cations at M2 sites.  相似文献   

2.
In a group of minerals of reasonable complexity in which the structure topology is related but not identical, the general relation between structure topology and chemical composition is not known. This problem is of major significance. The structural hierarchy and stereochemistry are described for 27 titanium disilicate minerals that contain the TS (titanium-silicate) block, a central trioctahedral (O) sheet and two adjacent (H) sheets of [5]- and [6]-coordinated polyhedra and (Si2O7) groups and related delindeite. The TS block is characterized by a planar cell based on translation vectors, t 1 and t 2 , with t 1 ~ 5.5 and t 2 ~ 7 Å and t 1 t 2 close to 90°. The general formula of the TS block is A 2 P B 2 P M 2 H M 4 O (Si 2 O 7 ) 2 X 4 + n, where M 2 H and M 4 O = cations of the H and O sheets; MH = Ti (= Ti + Nb), Zr, Mn2+, Ca; MO = Ti, Zr, Mn2+, Ca, Na; A P and B P are cations at the peripheral (P) sites = Na, Ca, Ba; X = anions = O, OH, F; n = 0, 2, 4; the core part of the TS block is shown in bold and is invariant. Cations in each sheet of the TS block form a close-packed layer and the three layers are cubic close packed.There are three topologically distinct TS blocks, depending on the type of linkage of two H sheets and the central O sheet. The H sheets of one TS block attach to the O sheet in the same manner. All structures consist of a TS block and an I (intermediate) block that comprises atoms between two TS blocks. Usually, the I block consists of alkali and alkaline-earth cations, (H2O) groups and oxyanions (PO4)3?, (SO4)2? and (CO3)2?. These structures naturally fall into four groups, based on differences in topology and stereochemistry of the TS block. In Group I, Ti = 1 apfu Ti occurs in the O sheet, and (Si2O7) groups link to a Na polyhedron of the O sheet (linkage 1). In Group II, Ti = 2 apfu, Ti occurs in the H sheet, and (Si2O7) groups link to two M 2+ octahedra of the O sheet adjacent along t 2 (linkage 2). In Group III, Ti = 3 apfu, Ti occurs in the O and H sheets, and (Si2O7) groups link to the Ti octahedron of the O sheet (linkage 1). In Group IV, Ti = 4 apfu (the maximum possible content of Ti in the TS block), Ti occurs in the O and H sheets, and (Si2O7) groups link to two Ti octahedra of the O sheet adjacent along t 1 (linkage 3). The stability of the TS block is due to the ability of Ti (Nb) to have an extremely wide range in Ti (Nb)-anion bond lengths, 1.68–2.30 Å, which allows the chemical composition of the TS block to vary widely. In crystal structures so far known, only one type of TS block occurs in a structure. The TS block propagates close-packing of cations onto the I block. The general structural principles and the relation between structure topology and chemical composition are described for the TS-block minerals. These principles allow prediction of structural arrangements and possible chemical compositions, and testing whether or not all aspects of the structure and chemical formula of a mineral are correct. Here, I show how these principles work, and review recent results that show the effectiveness of these principles as a predictive technique.  相似文献   

3.
We have re-examined the historical evidence in the circum-Pacific for the origin of the 1586 orphan tsunami of Sanriku, Japan, previously attributed to a Lima, Peru, earthquake and tsunami in 1586. New evidence comes from corals found in a unique paleotsunami deposit on Kaua‘i. Dated by 230 Th- 238 U geochronology these corals determine an absolute age in high precision of a Pacific tsunami event that was previously dated to approximately the sixteenth century by 14 C methodology. Detrital corrected ages of three low thorium, well-preserved coral clasts range from 415 to 464 years old (relative to 2016), with a mean age of 444 years ±21 (\( 2\sigma_{{\bar{X}}} \)). Literature evidence for circum-Pacific paleotsunami in this time range is reviewed in light of the new high-precision dating results. Modeled and observed tsunami wave amplitudes in Japan from several Peruvian events are insufficient to match the 1586 Sanriku observation, and paleodated earthquakes from Cascadia, the Alaskan Kodiak region, and Kamchatka are incompatible with the Sanriku data in several ways. However, a mega-earthquake (M w > 9.25) in the Aleutians is consistent with the Kaua‘i evidence, Pacific Northwest observations, and the Sanriku tsunami amplitude. The Kaua‘i coral paleotsunami evidence therefore supports the origin of the 1586 Sanriku tsunami in the Aleutian Islands.  相似文献   

4.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

5.
Gutenberg and Richter developed an empirical relation, \(\log_{10} N(M) = a - bM\), to quantify the seismicity rate of various magnitudes in a given region and time period. They found the equation fit observed data well both globally and for particular regions. In conventional G–R relation, N(M) represents an arithmetic mean. As a result, the arithmetic standard deviation cannot be explicitly incorporated in the log-linear G–R relation. Moreover, this representation is susceptible to influence of spuriously large numbers of aftershocks of major earthquake sequences. To overcome these shortcomings, we propose an alternative representation of the G–R relation in terms of the logarithmic mean annual seismicity rate and its standard deviation. We select the crustal earthquake data from 1973 to 2011, as listed in the National Earthquake Information Center (NEIC) global catalog and the Central Weather Bureau (CWB) Taiwan regional catalog, to illustrate our methodology. We first show that by using the logarithmic annual seismicity rates we can significantly suppress the influences of spuriously large numbers of aftershocks following major earthquake sequences contained in the Taiwan regional catalog. More significantly, both the logarithmic mean annual seismicity rate and its standard deviation can be explicitly represented in the Gutenberg–Richter relation as follows:
$${\text{For}}\,{\text{global}}\,{\text{crustal}}\,{\text{seismicity}}{:}\;\log_{10} N = 8.14 - 1.03M \pm (0.04M - 0.13);$$
$${\text{For}}\,{\text{Taiwan}}\;{\text{crustal}}\,{\text{seismicity}}{:}\;\log_{10} N = 5.62 - 0.90M \pm (0.02M + 0.17)$$
where log10 N represents the logarithmic annual seismicity rate. Above analytical equations are very well constrained by observed global seismicity data with \(5.0 \le M \le 7.0\) and by Taiwan seismicity data with \(3.0 \le M \le 5.0\). Both equations can be extrapolated with confidence to simultaneously estimate not only the median annual seismicity rates but also their uncertainties for large earthquakes for the first time since inception of the G–R relation. These equations can be used to improve the conventional probabilistic seismic hazard assessment by including the dispersion of the annual seismicity rate. Finally, the corresponding numerical median annual seismicity rate with its upper and lower bounds obtained from above equations for \(5.0 \le M \le 9.0\) is listed in Table 1.
Table 1 Observed and estimated median annual seismicity rate and return period with their dispersions for Taiwan and global crustal earthquakes
Magnitude Catalog
Taiwan catalog (CWB) Taiwan catalog (CWB) Global catalog (NEIC) Global catalog (NEIC)
Annual rate (event/year) Return period (year) Annual rate (event/year) Return period (year)
M ≥ 5.0 24.55 13.18 7.08 0.041 0.076 0.14 1148.16 977.24 831.76 0.0009 0.001 0.0012
M ≥ 5.5 8.91 4.68 2.45 0.11 0.21 0.41 367.28 298.54 242.66 0.0027 0.0033 0.0041
M ≥ 6.0 3.24 1.66 0.85 0.31 0.60 1.18 117.49 91.20 70.79 0.0085 0.011 0.014
M ≥ 6.5 1.17 0.59 0.30 0.85 1.69 3.33 37.58 27.86 20.65 0.027 0.036 0.048
M ≥ 7.0 0.43 0.21 0.10 2.33 4.76 10.0 12.02 8.51 6.03 0.083 0.12 0.17
M ≥ 7.5 0.15 0.074 0.036 6.67 13.51 27.78 3.85 2.60 1.76 0.26 0.38 0.57
M ≥ 8.0 0.056 0.026 0.012 17.86 38.46 83.33 1.23 0.79 0.51 0.81 1.27 1.96
M ≥ 8.5 0.020 0.009 0.004 50.00 111.11 250.0 0.39 0.24 0.15 2.56 4.17 6.67
M ≥ 9.0 0.0074 0.0033 0.0015 135.14 303.03 666.67 0.13 0.074 0.04 7.69 13.51 25.00
Observed value is shown in bold number, estimated value in regular number \(\log_{10} N = 5.62 - 0.90M \pm (0.02M + 0.17)\) for Taiwan crustal earthquakes \(\log_{10} N = 8.14 - 1.03M \pm (0.04M - 0.13)\) for global crustal earthquakes
  相似文献   

6.
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.  相似文献   

7.
Multiple scattering of radiation in a semi-infinite electron atmosphere in the absence of true absorption (the Milne problem) is considered. The electron plasma is assumed to be turbulent, i.e., the magnetic field B has a regular B 0 and a stochastic B′ component (B = B 0 + B′). Faraday rotation of the plane of polarization (s8 λ2 B 0 cos gJ) due to the field B 0 depolarizes the outcoming radiation due to the superposition of rays with different polarization-angle rotations, corresponding to different paths traveled before they left the atmosphere. Stochastic Faraday rotation due to isotropic fluctuations, B′, efficiently decreases the amplitude of the polarization of each individual beam as it travels through the turbulent atmosphere. This effect is proportional to λ4 〈(B′)2〉, and becomes the dominant factor at large λ. We use the Ambartsumian-Chandrasekhar invariance principle, which results in six nonlinear equations (for the field B 0 perpendicular to the surface of the medium). We also compute the degree of polarization for the cases B 0 = 0, B′ ≠ 0, and B′ = 0, B 0 ≠ 0, and for a number of versions of the general case, B 0 ≠ 0, B′ ≠ 0. The spectra of the degree of polarization (for the case B 0 = 0) are presented for optical (λ = 0 ? 1 μm), infrared (λ = 1?5 μm), and X-ray (1–50 keV) wavelengths.  相似文献   

8.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

9.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

10.
The thermal evolution of 10-Å phase Mg3Si4O10(OH)2·H2O, a phyllosilicate which may have an important role in the storage/release of water in subducting slabs, was studied by X-ray single-crystal diffraction in the temperature range 116–293 K. The lattice parameters were measured at several intervals both on cooling and heating. The structural model was refined with intensity data collected at 116 K and compared to the model refined at room temperature. As expected for a layer silicate on cooling in this temperature range, the a and b lattice parameters undergo a small linear decrease, α a  = 1.7(4) 10?6 K?1 and α b  = 1.9(4) 10?6 K?1, where α is the linear thermal expansion coefficient. The greater variation is along the c axis and can be modeled with the second order polynomial c T  = c 293(1 + 6.7(4)10?5 K?1ΔT + 9.5(2.5)10?8 K?2T)2) where ΔT = T ? 293 K; the monoclinic angle β slightly increased. The cell volume thermal expansion can be modeled with the polynomial V T  V 293 (1 + 8.0 10?5 K?1 ΔT + 1.4 10?7 K?2T)2) where ΔT = T ? 293 is in K and V in Å3. These variations were similar to those expected for a pressure increase, indicating that T and P effects are approximately inverse. The least-squares refinement with intensity data measured at 116 K shows that the volume of the SiO4 tetrahedra does not change significantly, whereas the volume of the Mg octahedra slightly decreases. To adjust for the increased misfit between the tetrahedral and octahedral sheets, the tetrahedral rotation angle α changes from 0.58° to 1.38°, increasing the ditrigonalization of the silicate sheet. This deformation has implications on the H-bonds between the water molecule and the basal oxygen atoms. Furthermore, the highly anisotropic thermal ellipsoid of the H2O oxygen indicates positional disorder, similar to the disorder observed at room temperature. The low-temperature results support the hypothesis that the disorder is static. It can be modeled with a splitting of the interlayer oxygen site with a statistical distribution of the H2O molecules into two positions, 0.6 Å apart. The resulting shortest Obas–OW distances are 2.97 Å, with a significant shortening with respect to the value at room temperature. The low-temperature behavior of the H-bond system is consistent with that hypothesized at high pressure on the basis of the Raman spectra evolution with P.  相似文献   

11.
Molar elastic strain energy arising from dislocations in andalusite and sillimanite were calculated using equations derived from a non-core, linear elasticity model. For perfect (unit) c screw dislocations in these polymorphs, minimum dislocation densities of about 1010/cm2 are necessary to significantly perturb the andalusite=sillimanite equilibrium boundary in P-T space. Compared to unit c dislocations, smaller energy perturbations arise from dissociated c screw dislocations, which are commonly observed in kyanite and sillimanite. A low computed value of stacking fault energy (~30 ergs/cm2) in these polymorphs is compatible with the large separations of dissociated dislocations in these phases. Dislocation densities in naturally occurring Al2SiO5 polymorphs are typically <108/cm2. Assuming that these densities are representative of those existing during metamorphism, as is supported by the lack of microtextures indicative of strong recovery, it is concluded that molar strain energies corresponding to observed dislocation densities (<108/cm2) result in insignificant perturbation of P-T phase equilibrium boundaries of the Al2SiO5 polymorphs.  相似文献   

12.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

13.
14.
Kaolinitic clays associated with sedimentary rocks cover widespread in the Yeniköy formation from the Akhar?m district, (Afyonkarahisar, W Anatolia). Due to the proximity to the ceramic industry areas such as Kütahya and U?ak Province of Turkey, the clays in the Akhar?m district have been intensively exploited for the last few years. The Akhar?m kaolinitic clays were hosted by Middle-Upper Miocene-aged Yeniköy formation and divided into two parts as northeastern and southwestern via normal fault. The alteration degree increases from lower levels to surface in the NE part of deposit. Besides layered structure in their N70° W/30° SW direction and gray-beige, yellowish brown colored in SW part. This study focused on mineralogy, geochemistry, and ceramic properties of kaolinitic clays. X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis, chemical, physical, and mechanical tests were conducted on studied samples from the wall of clay quarry. Akhar?m clay deposits consist of mainly kaolinite and quartz. Additionally, they include smectite, biotite, feldspar, jarosite, calcite, and hematite minerals. Akhar?m clays are characterized with their moderate plasticity (PL = 17.07–24.09), low water absorption (3.64–9.53 wt.%), low linear shrinkage (8.08–15.55 wt.%), high bending strength (17.72–32.69 N/mm2), and ideal lightness values (L* = 46.50–82.74) and color values (a* = 4.71–29.87; b* = 14.67–28.72). These properties vary related with mineralogical and geochemical features of Akhar?m clays. In conclusion, Akhar?m clays have desired specifications for floor and wall t to their mineralogical, geochemical, and ceramic properties.  相似文献   

15.
Polarized electronic absorption spectra, Ea(∥X), Eb(∥Y) and Ec(∥Z), in the energy range 3000–5000?cm–1 were obtained for the orthorhombic thenardite-type phase Cr2SiO4, unique in its Cr2+-allocation suggesting some metal-metal bonding in Cr2+Cr2+ pairs with Cr-Cr distance 2.75?Å along [001]. The spectra were scanned at 273 and 120?K on single crystal platelets ∥(100), containing optical Y and Z, and ∥(010), containing optical X and Z, with thicknesses 12.3 and 15.6?μm, respectively. Microscope-spectrometric techniques with a spatial resolution of 20?μm and 1?nm spectral resolution were used. The orientations were obtained by means of X-ray precession photographs. The xenomorphic, strongly pleochroic crystal fragments (X deeply greenish-blue, Y faint blue almost colourless, Z deeply purple almost opaque) were extracted from polycrystalline Cr2SiO4, synthesized at 35?kbar, above 1440?°C from high purity Cr2O3, Cr (10% excess) and SiO2 in chromium capsules. The Cr2SiO4-phase was identified by X-ray diffraction (XRD). Four strongly polarized bands, at about 13500 (I), 15700 (II), 18700 (III) and 19700 (IV) cm–1, in the absorption spectra of Cr2SiO4 single crystals show properties (temperature behaviour of linear and integral absorption coefficients, polarization behaviour, molar absorptivities) which are compatible with an assignment to localized spin-allowed transitions of Cr2+ in a distorted square planar coordination of point symmetry C2. The crystal field parameter of Cr2+ is estimated to be 10?Dq?10700?cm–1. A relatively intense, sharp band at 18400?cm–1 and three other minor features can, from their small half widths, be assigned to spin-forbidden dd-transitions of Cr2+. The intensity of such bands strongly decreases on decreasing temperature. The large half widths, near 5000?cm–1 of band III are indicative of some Cr-Cr interactions, i.e. δ-δ* transitions of Cr2 4+, whereas the latter alone would be in conflict with the strong polarization of bands I and II parallel [100]. Therefore, it is concluded that the spectra obtained can best be interpreted assuming both dd-transitions of localized d-electrons at Cr2+ as well as δ-δ* transitions of Cr2 4+ pairs with metal-metal interaction. To explain this, a dynamic exchange process 2 Crloc 2+?Cr2, cpl 4+ is suggested wherein the half life times of the ground states of both exchanging species are significantly longer than those of the respective optically excited states, such that the spectra show both dd- and δ-δ*-transitions.  相似文献   

16.
Room temperature and low temperature Mössbauer and optical absorption spectroscopic data on six natural chloritoids characterized by means of electron microprobe and X-ray powder diffraction techniques are presented. Two narrow quadrupole doublets with widths of 0.25–0.29 mm/s assigned to Fe2+ in a relatively large octahedral site and Fe3+ in a smaller octahedral site, are observed in the Mössbauer spectra. Polarized optical absorption spectra reveal three main absorption bands. A broad absorption band at 16,300 cm?1, which is strongly polarized in EX and EY and shows a linear increase in integral absorption with increasing [Fe2+] [Fe3+] concentration product, is assigned to a Fe2++Fe3+→Fe3++Fe2+ charge transfer transition. This band displays also a temperature dependence different from that of single ion d?d transitions. Two absorption bands at 10,900 cm?1 and 8,000 cm?1 are, on the basis of compositional dependence and energy, assigned to Fe2+ in the large M(1B) octahedra of the brucite-type layer in chloritoid. Combined spectroscopic evidence and structural and chemical considerations support a distribution scheme for ferrous and ferric iron which orders the Fe2+ ions in the M(1B) octahedra and the Fe3+ ions in the small M(1A) octahedral sites. Both types of octahedra are found in the brucite type layer of chloritoid.  相似文献   

17.
The power law regression equation, <R(M–O)> = 1.46(<ρ(r c)>/r)?0.19, relating the average experimental bond lengths, <R(M–O)>, to the average accumulation of the electron density at the bond critical point, <ρ(r c)>, between bonded pairs of metal and oxygen atoms (r is the row number of the M atom), determined at ambient conditions for oxide crystals, is similar to the regression equation R(M–O) = 1.41(ρ(r c)/r)?0.21 determined for three perovskite crystals at pressures as high as 80 GPa. The pair are also comparable with the equation <R(M–O)> = 1.43(<s>/r)?0.21 determined for oxide crystals at ambient conditions and <R(M–O)> = 1.39(<s>/r)?0.22 determined for geometry-optimized hydroxyacid molecules that relate the geometry-optimized bond lengths to the average Pauling bond strength, <s>, for the M–O bonded interactions. On the basis of the correspondence between the equations relating <ρ(r c)> and <s> with bond length, it seems plausible that the Pauling bond strength might serve a rough estimate of the accumulation of the electron density between M–O bonded pairs of atoms. Similar expressions, relating bond length and bond strength hold for fluoride, nitride and sulfide molecules and crystals. The similarity of the expressions for the crystals and molecules is compelling evidence that molecular and crystalline M–O bonded interactions are intrinsically related. The value of <ρ(r c)> = r[(1.41)/<R(M–O)>]4.76 determined for the average bond length for a given coordination polyhedron closely matches the Pauling’s electrostatic bond strength reaching each the coordinating anions of the coordinated polyhedron. Despite the relative simplicity of the expression, it appears to be more general in its application in that it holds for the bulk of the M–O bonded pairs of atoms of the periodic table.  相似文献   

18.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   

19.
The electron paramagnetic resonance (EPR) spectra of Fe3+ in a well cristallized kaolinite from Decazeville in France are well resolved. It is shown that in this sample there are mainly two slightly different spectra, well separated at low temperature and characterized at -150° C by the constants B 2 0 = 0.112 cm?1, B 2 2 = 0.0688 cm?1 for one and B 2 0 = 0.116 cm?1, B 2 2 = 0.0766 cm?1 for the second. These two spectra arise from Fe3+ substituted for Al3+ at the two octahedral positions in equal amounts. The temperature dependence of EPR spectra was studied and was explained by a modification of the octahedral sites.  相似文献   

20.
Room temperature X-irradiation of some natural beryls produced several new absorption lines in the electron paramagnetic resonance (EPR) spectrum, a known series of optical absorption lines in the 500–700 nm range, and a shift of the absorption edge to lower energies. Several of the new EPR lines and part of the irradiation-induced shift of the absorption edge disappeared after a few days at room temperature, and were not examined in detail. However, three of the paramagnetic centres responsible for the new EPR lines were stable at room temperature and two of these have previously been identified as atomic hydrogen and the methyl radical, CH3. These species were stable to ~150 and ~450°C respectively. The third stable species, hitherto unreported, showed a single-line EPR spectrum of axial symmetry, with g∥=2.0051 and g⊥=2.0152. This spectrum was found to be intensity-correlated with the series of optical bands in the 500–700 nm range, after thermal bleaching at 175°C. The EPR and optical spectra are therefore assigned to the same species. It is argued that this species is the CO 3 ? molecular ion, located in the widest part of the structural channel and aligned with the plane of the molecule perpendicular to the c axis. The EPR spectrum is consistent with a 2 A2 ground state of a CO 3 ? molecule with trigonal symmetry, and this requires that the optical transition has a 2 A22 E′ character. Most of the features in the optical spectrum can be assigned to coupling of a totally symmetric mode of frequency ~1020 cm?1 onto a zero-phonon line at 14,490 cm?1 and a second weaker line at 16,020 cm?1. However, both of these two fundamental lines are structured, and the two components show strong temperature-dependent derivative-shaped magnetic circular dichroism (MCD). Furthermore, the overall sign of the MCD for the line at 16,020 cm?1 is opposite to that at 14,490 cm?1. The separation (~120 cm?1) of the two components of the 14,490 cm?1 line is much larger than that expected from spin-orbit interaction, and the origin of this splitting is not yet understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号