首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
在无控制点的卫星影像正射校正中,大多采用DSM/DEM数据作为辅助数据来消除或限制因地形起伏引起的形变,然而经不同格网密度的DSM/DEM正射校正后的影像对后续处理会产生不同程度的影响,如对地物分类精度产生影响。针对这一问题,本文分别采用不同的DSM/DEM数据(China DSM 15 m、ASTER GDEM 30 m和SRTM 90 m)对资源三号影像进行正射校正,然后对正射校正后影像利用支持向量机进行分类,比较正射校正后影像结果的分类精度。结果表明:在相同重采样方法下,影像经China DSM 15 m DSM正射校正后结果的分类精度优于ASTER GDEM 30 m DEM和SRTM 90 m DEM。  相似文献   

2.
唐淑兰  孟勇 《遥感学报》2023,(7):1702-1712
为了更加准确地利用ASTER影像辅助填图,提出了一种结合小波变换、支持向量机(SVM)和投票法的ASTER影像岩性自动分类方法。首先,采用Haar小波对ASTER影像进行多尺度小波分解,统计小波系数的均值作为纹理特征,同时提取灰度共生矩阵(GLCM)方差、同质性、均值纹理特征;然后,利用小波纹理、GLCM纹理及光谱特征构造SVM分类的特征向量,并进行10次重复分类;最后利用投票法确定岩性单元。对结果进行统计评估,结合多种纹理,并利用投票法得到的岩性分类精度为92.1934%,Kappa系数为0.9202,比仅用光谱分类精度提高了13.3369%。小波纹理能提取更细节的岩性信息;投票法可以避免岩性因样本的空间变异性产生的动态变化,优化分类结果;SVM较最大似然法(MLC)更适合于训练数据集高维且非正态分布的岩性分类;采用人工蜂群算法搜索SVM的最优参数,可避免参数局部最优。  相似文献   

3.
遥感组合指数与不同分类技术结合提取农业用地方法   总被引:1,自引:0,他引:1  
多光谱遥感影像因具有丰富的波谱信息,提高了地表覆盖的辨识能力,利用遥感数据高精度自动提取专题信息是目前研究的热点和难点。本文以北京市ASTER影像为例,通过对城市生态环境中土地类型及其光谱特征规律分析,组合归一化差异植被指数、修正归一化差异水体指数和归一化差异建筑指数三种指数,制作组合指数新影像。对组合指数影像采用基于支持向量机的面向对象分类方法进行农业用地信息提取,同时将该方法分别与基于原始影像、组合指数影像的最大似然及支持向量机的分类方法进行对比分析。实验结果表明:组合归一化差异指数影像压缩了数据维数,降低了覆盖地物相关性,易于农业用地信息提取。对组合指数影像采用基于支持向量机的面向对象分类方法精度达95.701%。  相似文献   

4.
面向对象和规则的高分辨率影像分类研究   总被引:1,自引:0,他引:1  
随着航天遥感技术的发展,遥感数据的空间分辨率、光谱分辨率和时间分辨率极大提高,高效解译并处理海量的、具有空间几何信息和纹理信息的地物高分辨率遥感影像数据已成为遥感领域研究的重点与难点。对此,本文提出一种面向对象和规则的遥感影像数据的分类提取方法,即通过发现和挖掘高分辨率影像丰富的光谱和空间特征知识,建立影像对象多层次网络分割分类结构,实现对遥感影像准确快速的地物分类和精度评价。以藏南地区WorldView-2影像数据为试验研究对象,采用面向对象和规则的影像分类方法进行验证试验,即综合采用均值方差法、最大面积法、精度比较法进行分析,选择3种最佳分割尺度建立多层次影像对象网络层次结构进行影像分类试验。结果表明,采用面向对象规则分类方法对高分辨率影像进行分类,能使高分辨率影像分类结果近似于目视判读的结果,分类精度更高。面向对象规则分类法的综合精度和Kappa系数分别为97.38%、0.967 3;与面向对象SVM法相比,分别高出6.23%、0.078;与面向对象KNN法相比,分别高出7.96%、0.099 6。建筑物的提取精度、用户精度分别比面向对象SVM法高出18.39%、3.98%,比面向对象KNN法高出21.27%、14.97%。  相似文献   

5.
过去10多a来,面向对象的影像分析方法在高分辨率影像信息提取中表现出了明显优势,得到了快速发展。该方法中一个难题是,如何有效地建立满足健壮性和通用性准则的分类规则集。基于数据挖掘原理的决策树方法有望提供有效的解决方案。选用WEKA J48算法从影像光谱、纹理和地形特征等诸多参数中优选出部分参数构建决策树分类模型,以此建立分类规则集,并集成于面向对象的影像分类方法中。利用Landsat5 TM影像和ASTER数字高程模型数据进行的甘肃省会宁县白草塬地区土地覆被分类的结果表明,本方法所建立的分类规则集具有较佳的健壮性和通用性,其分类精度明显优于基于像元的最大似然法和基于试错性规则集的面向对象法。  相似文献   

6.
在分析哈密黄山铜镍矿区典型地物波谱特征的基础上,设计了基于ASTER数据的蚀变信息提取流程,详细论述了对4组含不同离子或基团的常见蚀变矿物应用主成分分析(PCA)进行蚀变信息提取、采用光谱角制图法(spectral angle mapper,SAM)进行干扰异常筛选的“SAM去干扰异常主分量门限技术”.4组(9种)蚀变矿物包括:含Fe离子的矿物(针铁矿、赤铁矿)、含CO23-基团的矿物(方解石、白云石)、含Al - OH基团的矿物(白云母、蒙脱石、高岭石)以及含Mg - OH基团的矿物(绿泥石、绿帘石).蚀变矿物信息提取结果表明,“SAM去干扰异常主分量门限技术”方法可行,对ASTER数据的应用效果与实际情况比较吻合,充分证明ASTER在短波红外范围内具有很强的矿物刻画能力.  相似文献   

7.
利用Landsat ETM+和ASTER近红外波段数据进行了水体信息提取,然后利用知识规则对2种提取结果进行进一步分类,并分析了波谱分辨率的差异对水体信息提取结果的影响。实验表明,基于Landsat ETM+数据的水体提取总体精度为82.4%,基于ASTER数据的水体信息提取结果总体精度为92.4%;在空间分辨率相同情况下,波谱分辨率的提高可以有效地提高水体信息提取的精度。  相似文献   

8.
资源三号卫星影像数据目前广泛用于地形测绘、资源监测、地理国情监测等领域。本文主要针对资源三号卫星影像数据,以南京市玄武区为例,研究了适合国产高分辨率卫星影像的分类技术方法。分别采用面向对象的KNN分类方法和SVM分类方法对影像进行分类,并对分类结果的精度进行了分析和评价。研究结果表明,在对遥感影像采用合适的分割尺度进行分割后,采用基于面向对象的SVM分类方法得到的结果,其总体分类精度为90.72%,Kappa系数为86.64%,远高于采用基于面向对象的KNN分类方法得到的结果。因此,面向对象的SVM分类方法更适合于资源三号卫星影像的分类。  相似文献   

9.
利用3对同日过空的ASTER和ETM+影像对,开展了ETM+和ASTER热红外影像的定量比较,求出了二者的关系转换方程。定量研究结果表明,ASTER和ETM+热红外数据具有极显著的正相关关系,所求出的转换关系方程有很高的精度。但二者仍有一定的差异,表现在ASTER数据反演的传感器处温度要比ETM+平均高0.66℃~0.82℃,其所表现的热信息量也要比ETM+丰富且连续。  相似文献   

10.
利用大丰市沿海滩涂湿地区域的高光谱影像和同时期的机载LIDAR数据,结合影像的光谱信息,采用随机森林算法(RF)对研究区进行湿地植被精细分类,并分析和评价分类模型参数设置对总体精度的影响,最后与SVM分类结果进行对比。结果表明:随机森林分类方法的总体精度为90.3%、卡帕(Kappa)系数为0.874;与传统的SVM分类方法相比,RF法均提高了4种湿地植被的生产者精度和使用者精度。通过分析RF分类模型参数设置对总体精度的影响,得出当生长树个数为30、生长树深度为30时,分类精度最高。  相似文献   

11.
The study area is located in the eastern part of the central Iranian volcanic belt. Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) and Indian Remote Sensing Satellite (IRS ) pan images were used for applying several image classification methods for lithological mapping. ASTER visible-near infrared and shortwave infrared bands were sharpened using IRS pan image. We used classification methods such as Maximum likelihood, Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) in order to evaluate the usefulness of these methods for geological mapping. The classification results showed that MLC has the best accuracy and the classified image closely resembles the previously prepared geology map of the area.  相似文献   

12.
Information on Earth's land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors. In this study, we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery. For this purpose, the spectral angle mapper (SAM), the object-based and the non-linear spectral unmixing based on artificial neural networks (ANNs) techniques were applied. A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification, namely of the pixel purity index (PPI) and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites. Object-based classification outperformed the other techniques with an overall accuracy of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of 52%, very close to that of SAM (48%). SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%. Yet, all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery, which affected the spectral separation among the land use/cover classes.  相似文献   

13.
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on-board the National Aeronautics and Space Administration's (NASA's) Terra spacecraft provides along-track digital stereo image data at 15-m resolution. As part of ASTER digital elevation model (DEM) accuracy evaluation efforts by the US/Japan ASTER Science Team, stereo image data for four study sites around the world have been employed to validate prelaunch estimates of heighting accuracy. Automated stereocorrelation procedures were implemented using the Desktop Mapping System (DMS) software on a personal computer to derive DEMs with 30- to 150-m postings. Results indicate that a root-mean-square error (RMSE) in elevation between ±7 and ±15 m can be achieved with ASTER stereo image data of good quality. An evaluation of an ASTER DEM data product produced at the US Geological Survey (USGS) EROS Data Center (EDC) yielded an RMSE of ±8.6 m. Overall, the ability to extract elevations from ASTER stereopairs using stereocorrelation techniques meets expectations.  相似文献   

14.
ASTER short-wave infrared bands were used to investigate the spectral discrimination of hydrothermally altered materials, based on the presence of minerals with diagnostic spectral features in wavelengths around 2200 nm (e.g. kaolinite and K-micas). Due to the presence of widespread albitized-greisenized materials, the Serra do Mendes granitoid, located in area of tropical savannah environment in Central Brazil, was selected for this study. The Spectral Angle Mapper (SAM) technique was used as an attempt to detect the presence of hydroxyl-bearing minerals in the domain of the hydrothermally altered materials. Results indicated that areas of altered materials were discriminated from the surrounding mainly due to the high overall reflectance of the whitish lithosols in these areas. The detection of hydroxyl-bearing minerals was blurred by the presence of a sparse grass cover in the alteration zone, which caused a slight increase in the SAM classification angles. As a consequence, the remote detection of hydroxyl-bearing minerals was restricted to a small number of pixels from barren areas. Results indicate that, for the environmental conditions of the study area, ASTER data are more efficacious for spectral characterization of rock–soil-vegetation associations than for the detection of alteration-derived minerals.  相似文献   

15.
The characterization of fuel types is very important for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. However, due to the complex nature of fuel characteristic a fuel map is considered one of the most difficult thematic layers to build up. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. In order to ascertain how well ASTER data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers was analysed. The selected sample areas has an extension at around 60 km2 and is located inside the Sila plateau in the Calabria Region (South of Italy). Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing ASTER data, were used as ground-truth dataset to assess the results obtained for the considered test area. The method comprised the following three steps: (I) adaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II) model construction for the spectral characterization and mapping of fuel types based on a maximum likelihood (ML) classification algorithm; (III) accuracy assessment for the performance evaluation based on the comparison of ASTER-based results with ground-truth. Results from our analysis showed that the use ASTER data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 90%.  相似文献   

16.
This study attempts to evaluate the capability of the advanced spaceborne thermal emission and reflection radiometer (ASTER) and the advantages of ground knowledge for generating maps portraying hydrothermally altered areas in relation to porphyry copper deposits. The northern part of the Rabor area in the Urumieh–Dokhtar magmatic belt, containing some copper mineralization occurrences, was investigated as a case study. Several image processing techniques, namely minimum noise fraction, pixel purity index, and n-dimensional visualization, contributed to the extraction of pure pixels as endmembers. The spectra of some rock samples collected around the well-known altered zones of the study area were resampled to ASTER bands and used to identify the image-extracted endmembers. Spectral analysis of the endmembers and ground sample spectra led to the identification of three types of hydrothermal alterations: (1) phyllic, (2) propylitic, and (3) argillic. The identified endmembers were used as the specified targets for mapping hydrothermal alteration zones over the study area by using a mixture tuned match filtering algorithm. Results demonstrate that high abundances within pixels correspond closely to the altered areas. Field observations, thin section, and X-ray diffraction of collected samples confirmed the accuracy of the alteration maps prepared by the application of the proposed methods. The final classified hydrothermal alteration maps showed the overall accuracy and kappa coefficient values of 85.41 and 0.72%, respectively. These results ascertain that ASTER data that use suitable image processing techniques appear consistent in mapping out the distribution of hydrothermally altered areas. In addition, ground knowledge data can act as a valuable information source to increase the image classification accuracy and reliability.  相似文献   

17.
结合光谱角的最大似然法遥感影像分类   总被引:3,自引:0,他引:3  
陈亮  刘希  张元 《测绘工程》2007,16(3):40-42,47
遥感影像含有丰富的信息,反映了地物特征。其中光谱角侧重描述了光谱的形状特征,具有对多光谱图像增益不敏感的特点。最大似然法是遥感影像分类最常用的方法之一,文中对该方法的后验概率判别函数进行修改,将光谱角以概率因子的形式加入到判别函数中构造一种新的判别函数,有机地将光谱角这一特征信息加入影像分类。通过实验,并与最大似然法和光谱角匹配法分类结果进行比较,结果表明,结合光谱角的最大似然分类法的分类精度得到提高。  相似文献   

18.
ASTER立体像对提取玛尔挡坝区DEM及精度评价   总被引:4,自引:0,他引:4  
ASTER立体像对提取DEM已经成为近年来DEM提取研究的热点问题。本文基于ENVI软件,利用AS-TER立体像对提取青藏高原玛尔挡坝区DEM,并对其进行精度评价和误差来源分析。结果表明,利用ENVI软件提取ASTER-DEM方法可行,提取的DEM效果较好,能与地形图重叠,高程精度可达30m,而且地形较平坦地区精度高于地形陡峭地区;控制点的多少及精度、成像时的环境和气象条件、波段特性、影像空间分辨率等都影响着DEM的精度。  相似文献   

19.
The objective of the study was to carry out an automatic classification of the lithological units of interest using the integration of remote sensing image, in which various objects are spread on, and terrestrial spectral measurement data. Only endmembers of interest are classified using spectral classification methods such as Spectral Angle Mapper. Following the identification of the types of rock and minerals, integration of remote sensing images and spectral measurement data enable spectral classification. In this study, Short Wave Infrared detector images of Advanced Spaceborne Thermal Emission and Reflection Radiometer satellite and spectroradiometer measurements were used. The study area, Gölova with its geological diversity is located in the Kelkit Valley section of the North Anatolian Fault Zone in Northeast of Turkey. Seventeen rock samples were collected and their coordinates were recorded. The samples were categorized via spectral measurements on their thin sections through petrographic analyses. Marble and Meta lava with different lithological were selected as endmembers. SAM was used as the classification method that enables the analysis of the endmember with the threshold value of 0.009 radian for marble and 0.010 radian for metalava. SAM analysis was compared by visual analysis to principle component analysis, decorrelation stretch, band ratio (R: 4/7, G: 4/1, B (2/3) x (4/3)) and band combination analysis (R: 9, G: 4 and B: 5). This study demonstrates that the SAM method can be successfully used in both the integration of remote sensing image and terrestrial spectral measurement data in lithological classification. Both the endmembers of metalava and marbles were detected in the SAM results at the GPS coordinates noted down whilst collecting the rock samples for accuracy assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号