首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A composite sample of NIR-selected galaxies having extended multicolor coverage has been used to probe the cosmological evolution of the blue luminosity function and of the stellar mass function. The bright fraction of the sample has spectroscopic redshifts, and the remaining fraction well-calibrated photometric redshifts. The resulting blue luminosity function shows an increasing brightening with redshift respect to the local luminosity function. Hierarchical CDM models predictions are in agreement only at low and intermediate redshifts but fail to reproduce the observed brightening at high redshifts (z ∼ 2–3). This brightening marks the epoch where starburst activity triggered by galaxy interactions could be an important physical mechanism for the galaxy evolution. At the same time the NIR galaxy sample has been used to trace the evolution of the cosmological stellar mass density up to ∼3. A clear decrease of the average mass density is apparent with a fraction ∼15% of the local value at z ∼ 3. UV bright star-forming galaxies are substancial contributors to the evolution of the stellar mass density. Although these results are globally consistent with Λ–CDM scenarios, they tend to underestimate the mass density produced by more massive galaxies present at z > 2.  相似文献   

2.
We present ROSAT HRI X-ray data and optical imaging of the important dwarf starburst Markarian 33. We find an extended, complex, shell-like morphology in the X-ray emission, with an extent of ∼     , coincident with the bright star-forming regions at the centre of the galaxy. The physical extent of this X-ray emission from Mrk 33 is very similar to the observed H α emission, and suggests that the bulk of the X-ray emission is coming from an expanding superbubble.
We estimate the age and mass of Mrk 33's starburst to be 5.8 Myr and     respectively, with the energy injection rate in the central regions of the galaxy being ∼1041 erg s−1, while the associated mass-loss rate from the star-forming regions is estimated to be ∼0.2 M yr−1. We suggest that the X-ray emission is predominantly powered by starburst-type activity, and argue that a blow-out in the form of a galactic wind is the most likely fate for Mrk 33, resulting in the loss of most of the galaxy's metal-enriched material and a small fraction (<1 per cent) of the ISM.  相似文献   

3.
We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry–Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of  ∼200 km s−1  as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.  相似文献   

4.
We use optical color indices (colors) from the SDSS database to study the effect of dust in starburst galaxies by mea‐suring the dependence of colors on galaxy inclination. Starburst galaxies with ongoing star formation, are rich with metals/dust and are, therefore, an excellent objects for studying the effect of dust in galaxies. They are selected using the [O III ]λ 5007/Hα vs. [N II ]λ 6584/Hβ diagram, that is, the BPT‐diagram. We use Kauffmann's empirical demarcation line in the BPT‐diagram to exclude galaxies with active galactic nuclei (AGN) from the sample because they have different physical and dust properties from normal galaxies. The sample is divided into bins according to galaxy stellar mass and 4000 Å break (which is a coarse measure of a galaxy star formation history; SFH) and the reddening with inclination is studied as a function of these two physical parameters. Assuming that the dust effect is negligible in the SDSS z ‐band, we derive the attenuation curves for these galaxies. We fit the attenuation curves with a simple power law and use power law index to interpret the relative distribution of dust and stars in the starburst galaxies (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We study, through 2D hydrodynamical simulations, the feedback of a starburst on the ISM of typical gas-rich dwarf galaxies. The main goal is to address the circulation of the ISM and metals following the starburst. We assume a single-phase rotating ISM in equilibrium in the galactic potential generated by a stellar disc and a spherical dark halo. The starburst is assumed to occur in a small volume in the centre of the galaxy, and it generates a mechanical power of 3.8×1039 or 3.8×1040 erg s−1 for 30 Myr. We find, in accordance with previous investigations, that the galactic wind is not very effective in removing the ISM. The metal-rich stellar ejecta, however, can be efficiently expelled from the galaxy and dispersed in the intergalactic medium.
Moreover, we find that the central region of the galaxy is always replenished with cold and dense gas a few 100 million years after the starburst, achieving the requisite for a new star formation event in ≈0.5–1 Gyr. The hydrodynamical evolution of galactic winds is thus consistent with the episodic star formation regime suggested by many chemical evolution studies.
We also discuss the X-ray emission of these galaxies and find that the observable (emission-averaged) abundance of the hot gas underestimates the real one if thermal conduction is effective. This could explain the very low hot-gas metallicities estimated in starburst galaxies.  相似文献   

6.
We present spectrophotometric results of the Seyfert 2 galaxy NGC 2273. The presence of high-order Balmer absorption lines (H8, H9, H10) and weak equivalent widths of Call K A3933, CN A4200, G-band A4300 and MgIb 5173 clearly indicate recent star-forming activity in the nuclear region. Using a simple stellar population synthesis model, we find that for the best fit, the contributions of a power-law featureless continuum, an intermediate-age (~ 108 yr) and an old (> 109yr) stellar population to the total light at the reference normalization wavelength are 10.0%, 33.4% and 56.6%, respectively. The existence of recent starburst activity is also consistent with its high far-infrared luminosity (log LFIR/L = 9.9), its infrared color indexes [a(25,60) = -1.81 and a(60,100) = -0.79, typical values for Seyfert galaxies with circumnuclear starburst], and its q-value (2.23, ratio of infrared to radio flux, very similar to that of normal spirals and starburst galaxies). Byrd et al. have suggested that NGC 2273 mig  相似文献   

7.
We present results from a recent broad‐band monitoring in optics of the Seyfert 1 type galaxy Mrk 279. We build and analyse the BV RI light curve covering a period of seven years (1995–2002). We also show some evidence for the existence of two different states in brightness and suggest, based on a modelling of the optical continuum, that these states may result from transition between a thin disk and an ADAF accretion modes. We assume that the short‐term variability is due to a reprocessing of a variable X‐ray emission from an inner ADAF part of the flow, while the long‐term one may be a result from a change of the transition radius. Our tests show a good match with the observations for a reasonable set of accretion parameters, close to the expected ones for Mrk 279. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
星族合成方法及发射线星系核区中的恒星组分   总被引:1,自引:0,他引:1  
孔旭  薛随建 《天文学进展》1997,15(3):254-262
论述星族合成方法对研究复合恒星体系的重要意义。综述了星族合成的三种基本方法,着重介绍了以星团光谱为样本的星族合成方法及其应用,最后,作为一个例子,我们利用CSPS方法给出发射线星系Mrk499谱的合成结果。  相似文献   

9.
We present UBVRCIC magnitudes of 49 comparison stars in the fields of the Seyfert galaxies Mrk 335, Mrk 79, Mrk 279, Mrk 506, 3C 382, 3C 390.3, NGC 6814, Mrk 304, Ark 564, and NGC 7469 in order to facilitate the photometric monitoring of these objects; 36 of the stars have not been calibrated before. The comparison stars are situated in 5 × 5 arcmin fields centred on the Seyfert galaxies, their V band flux ranges from 11.7 to 18.2 mag with a median value of 16.3 mag, and their BV colour index ranges from 0.4 to 1.6 mag with a median value of 0.8 mag. The median errors of the calibrated UBVRCIC magnitudes are 0.08, 0.04, 0.03, 0.04, and 0.06 mag, respectively. Comparison stars were calibrated for the first time in three of the fields (Mrk 506, 3C 382, and Mrk 304). The comparison sequences in the other fields were improved in various aspects. Extra stars were calibrated in four fields (Mrk 335, Mrk 79, NGC 6814, and NGC 7469) – most of these stars are fainter and are situated closer to the Seyfert galaxies compared to the existing comparison stars. The passband coverage of the sequences in five fields (Mrk 335, Mrk 79, Mrk 279, NGC 6814, and Ark 564) was complemented with the U band. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We have obtained Keck spectra for 16 globular clusters (GCs) associated with the merger remnant elliptical NGC 1052, as well as a long-slit spectrum of the galaxy. We derive ages, metallicities and abundance ratios from simple stellar population models using the recently published methods of Proctor & Sansom , applied to extragalactic GCs for the first time. A number of GCs indicate the presence of strong blue horizontal branches that are not fully accounted for in the current stellar population models. We find all of the GCs to be ∼13 Gyr old according to simple stellar populations, with a large range of metallicities. From the galaxy spectrum we find NGC 1052 to have a luminosity-weighted central age of ∼2 Gyr and metallicity of  [Fe/H]∼+0.6  . No strong gradients in either age or metallicity were found to the maximum radius measured  (0.3  r e≃ 1 kpc)  . However, we do find a strong radial gradient in α-element abundance, which reaches a very high central value. The young central starburst age is consistent with the age inferred from the H  i tidal tails and infalling gas of ∼1 Gyr. Thus, although NGC 1052 shows substantial evidence for a recent merger and an associated starburst, it appears that the merger did not induce the formation of new GCs, perhaps suggesting that little recent star formation occurred. This interpretation is consistent with 'frosting' models for early-type galaxy formation.  相似文献   

11.
We present monitoring analysis of 8 XMM‐Newton observations of the Seyfert 2 galaxy Mrk 3, spanning a period of ∼19 months. The continuum flux in the 3–12 keV band remains constant during this observing period. The X‐ray spectrum is well described, in agreement with previous works, by a highly absorbed (N H > 1024 cm–2) power law model, with a photon index Γ = 1.9 and a strong reflection component. A strong Fe Kα line at 6.4 keV with an equivalent width of ∼500 eV is detected in the X‐ray spectrum. When we consider the co‐added spectrum we also detect a weaker emission line at 7.4 keV corresponding to neutral Ni Kα emission and weak evidence for the presence of an ionized Fe Kα line at 6.7 keV. Direct comparison with the results obtained from an earlier XMM‐Newton observation of Mrk 3, shows a decrease in the continuum flux of ∼30 per cent followed by a similar decrease in the reflected component. Both emission line components at 6.4 and 6.7 keV do not vary. However we find that an alternative model where the N H varies by 20 per cent is also plausible. In this case both the continuum and the reflected emission do not change. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present the first imaging X-ray observation of the highly inclined  ( i = 78°)  Sab Seyfert 2 galaxy NGC 6810 using XMM–Newton , which reveals soft X-ray emission that extends out to a projected height of ∼7 kpc away from the plane of the galaxy. The soft X-ray emission beyond the optical disc of the galaxy is most plausibly extraplanar, although it could instead come from large galactic radius. This extended X-ray emission is spatially associated with diffuse Hα emission, in particular with a prominent 5-kpc-long Hα filament on the north-west of the disc. A fraction ≲35 per cent of the total soft X-ray emission of the galaxy arises from projected heights  | z | ≥ 2 kpc  . Within the optical disc of the galaxy the soft X-ray emission is associated with the star-forming regions visible in ground-based Hα and XMM–Newton optical monitor near-UV imaging. The temperature, supersolar α-element-to-iron abundance ratio, soft X-ray/Hα correlation, and X-ray to far-infrared (FIR) flux ratio of NGC 6810 are all consistent with local starbursts with winds, although the large base radius of the outflow would make NGC 6810 one of the few 'disc-wide' superwinds currently known. Hard X-ray emission from NGC 6810 is weak, and the total   E = 2–10 keV  luminosity and spectral shape are consistent with the expected level of X-ray binary emission from the old and young stellar populations. The X-ray observations provide no evidence of any active galactic nucleus activity. We find that the optical, IR and radio properties of NGC 6810 are all consistent with a starburst galaxy, and that the old classification of this galaxy as a Seyfert 2 galaxy is probably incorrect.  相似文献   

13.
We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ? 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration.We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the underlying population amounts ≥ 15% even through a 5 arcsec aperture. The model leads to a limit on the direct absorption of Lyman continuum photons by dust situated inside the ionised areas, which in turn, with standard gas-to-dust ratios, translates into small characteristic sizes for the individual coexisting H II regions of the massive starburst area (clusters containing ∼ 102 ionising stars). We show that room is left for IMFs extending to 120 M, rather than truncated at ∼ 60 M as most conservative studies conclude. High internal velocity dispersions (≥ 20 km s−1) are then needed for the H II regions. An original feature of this work is to base the analysis of near-infrared spectral galaxy observations on a large wavelength range, using models constructed with spectral stellar data observed with the same instrument. However a broader use of this spectral evolution model on other spectral or photometric data samples is possible if the spectral resolution of the model is adapted to observations or if colours are derived from the energy distributions.Catherine J. Cesarsky  相似文献   

14.
We present new important results about the intermediate-type Seyfert galaxy Mrk 315, recently observed through optical imaging and integral-field spectroscopy. Broad-band images were used to study the morphology of the host galaxy, narrow-band Hα images to trace the star-forming regions, and middle-band [O  iii ] images to evidence the distribution of the highly ionized gas. Some extended emission regions were isolated and their physical properties studied by means of flux-calibrated spectra. High-resolution spectroscopy was used to separate different kinematic components in the velocity fields of gas and stars. Some peculiar features characterize this apparently undisturbed and moderately isolated active galaxy. Such features, already investigated by other authors, are re-analysed and discussed in the light of these new observations. The most relevant results we obtained are: the multitiers structure of the disc; the presence of a quasi-ring of regions with star formation much higher than previous claims; a secondary nucleus confirmed by a stellar component kinematically decoupled by the main galaxy; a new hypothesis about the controversial nature of the long filament, initially described as hook shaped, and more likely made of two independent filaments caused by interaction events between the main galaxy and two dwarf companions.  相似文献   

15.
We present BVIc photometry of the brightest stars andcompact star clusters in NGC 2976, a dwarf galaxy in the interacting M81/M82 group. Deep CCD images of the galaxy were obtained with the 6m‐Telescope of the Special Astrophysical Observatory (Russia) at arcsec resolution. About 290 young stars and concentrated young clusters were measured. Supplementary data in the ultraviolet are taken from the literature. The extinction to the measured objects is comparatively low, E(BV) ∼ 0.15 .. 0.20 mag. We estimate the ages of youngest resolved stars and concentrated star clusters to be ∼5 · 106 years. This population is concentrated in a broad stripe facing M81. In the central disk the population is a bit older, about 8 · 106 years, this may be a hint to an outward spreading star formation process. The metallicity of the disk population is estimatedas solar (z ∼ 0.02) from a fitting to Padova theoretical stellar isochrones.  相似文献   

16.
DDO 68 (UGC 5340) is the second most metal-poor star-forming galaxy (12 + log(O/H) = 7.14). Its peculiar optical morphology and its HI distribution and kinematics are indicative of a merger origin. We use the u, g, r, and i photometry based on the SDSS images of DDO 68 to estimate its stellar population ages. The Hα images of DDO 68 were used to select several representative regions without nebular emission. The derived colors were analyzed by comparison with the PEGASE2 evolutionary tracks for various star formation (SF) scenarios, including the two extreme cases: (i) an instantaneous starburst and (ii) continuous SF with a constant rate. The (ug) and (gr) colors for all of the selected regions are consistent with the scenario of several “instantaneous” SF episodes with ages between ∼0.05 and ∼1 Gyr. The total mass of the visible stars in DDO 68 was estimated by comparing the colors and fluxes of the observed stellar subsystems with PEGASE2 models to be ∼2.4 × 107 M . This accounts for ∼6% of the total baryonic mass of the galaxy. All of the available data are consistent with the fact that DDO 68 is a very rare candidate for young galaxies. The bulk of its stars were formed during the recent (with the first encounter ∼1 Gyr ago) merger of two very gas-rich disks. DDO 68 is closest in its properties to cosmologically young low-mass galaxies. This article was submitted by the authors in English.  相似文献   

17.
We present illustrative models for the UV to millimetre emission of starburst galaxies which are treated as an ensemble of optically thick giant molecular clouds (GMCs) centrally illuminated by recently formed stars. The models follow the evolution of the GMCs owing to the ionization-induced expansion of the H  ii regions and the evolution of the stellar population within the GMC according to the Bruzual & Charlot stellar population synthesis models. The effect of transiently heated dust grains/PAHs on the radiative transfer, as well as multiple scattering, is taken into account.
The expansion of the H  ii regions and the formation of a narrow neutral shell naturally explain why the emission from PAHs dominates over that from hot dust in the near- to mid-infrared, an emerging characteristic of the infrared spectra of starburst galaxies.
The models allow us to relate the observed properties of a galaxy to its age and star formation history. We find that exponentially decaying 107–108 yr old bursts can explain the IRAS colours of starburst galaxies. The models are also shown to account satisfactorily for the multiwavelength data on the prototypical starburst galaxy M82 and NGC 6090, a starburst galaxy recently observed by ISO . In M82 we find evidence for two bursts separated by 107 yr. In NGC 6090 we find that at least part of the far-infrared excess may be due to the age of the burst (6.4×107 yr). We also make predictions about the evolution of the luminosity of starbursts at different wavelengths which indicate that far-infrared surveys may preferentially detect older starbursts than mid-infrared surveys.  相似文献   

18.
We present SALT spectroscopy of a globular cluster in the center of the nearby isolated dSph galaxy KKs3 situated at a distance of 2.12 Mpc. Its heliocentric radial velocity is 316 ± 7 km s–1 that corresponds to VLG = 112 km s–1 in the Local Group (LG) reference frame. We use its distance and velocity along with the data on other 35 field galaxies in the proximity of the LG to trace the local Hubble flow. The following basic properties of the local field galaxies are briefly discusse: morphology, absolute magnitudes, average surface brightnesses, specific star formation rates, and hydrogen mass‐to‐stellar mass ratios. Surprisingly, the sample of the neighboring isolated galaxies displays no signs of compression under the influence of the expanding Local Void. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We follow the chemical evolution of a galaxy through star formation and its feedback into the interstellar medium (ISM), starting from primordial gas and allowing for gas to inflow into the region being modelled. We attempt to reproduce observed spectral line strengths for early-type galaxies in order to constrain their star formation histories (SFH). The efficiencies and times of star formation are varied, as are the amount and duration of inflow. We evaluate the chemical enrichment and the mass of stars made with time. Single stellar population (SSP) data are then used to predict line strengths for composite stellar populations. The results are compared with observed line strengths in 10 ellipticals, including some features which help to break the problem of age–metallicity degeneracy in old stellar populations. We find that the elliptical galaxies modelled require high metallicity SSPs (> 3 Z⊙) at later times. In addition, the strong lines observed cannot be produced by an initial starburst in primordial gas, even if a large amount of inflow is allowed for during the first few × 108 yr. This is because some pre-enrichment is required for lines in the bulk of the stars to approach the observed line strengths in ellipticals. These strong lines are better modelled by a system with a delayed burst of star formation, following an early SFH which can be a burst or more steady star formation. Such a model is representative of star formation in normal ellipticals or spirals, respectively, followed by a starburst and gas inflow during a merger or strong interaction with a gas-rich galaxy. Alternatively, a single initial burst of normal stars with a Salpeter initial mass function could produce the observed strong lines if it followed some pre-enrichment process which did not form long-lived stars (e.g. population III stars).  相似文献   

20.
We present a study of the origin of infrared (IR) emission in the optically normal, infrared luminous galaxy NGC 4418. By decomposing the stellar absorption features and continua in the range of 3600-8000 A from the Sloan Digital Sky Survey into a set of simple stellar populations, we derive the stellar properties for the nuclear region of NGC 4418. We compare the observed infrared luminosity with the one derived from the starburst model, and find that star-forming activity contributes only 7% to the total IR emission, that as the IR emission region is spatially very compact, the most possible source for the greater part of the IR emission is a deeply embedded AGN, though an AGN component is found to be unnecessary for fitting the optical spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号