首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
The current-driven kinetic Alfvén instability is proposed as an anomalous transport mechanism for regions of concentrated, field-aligned currents in the solar corona. Anomalous magnetic diffusivity ( e f f 109cm2s–1), produced by kinetic Alfvén turbulence in the vicinity of the saturation level, provides fast magnetic energy release with a local inflow Alfvén Mach numberM in 0.1.  相似文献   

2.
The equilibrium point O of an autonomous Hamiltonian system of two degrees of freedom is considered for small-oscillation frequencies related as 2=21+. If under the precise resonance (=0) the equilibrium is unstable, the inner diameter () of the domain of stability containing the point O is estimated. It is shown that for the normalized variables ()/b where b is the corresponding resonance coefficient. The estimates () for other main resonances are reported.  相似文献   

3.
If the Sun loses angular momentum from its core, due to core contraction, into the solar wind at the observed rate, then an 0.7 day rotational period for the core of the Sun is required for temporal equilibrium. The rotational power released in the core contraction process can equal the observed magnetic energy released in the solar activity cycle if the Sun's core rotates with a period near 1.4 to 4 days. The rotational power released from a rotating object is , where is the torque on the object and is its angular velocity. Fitting this to the solar wind torque and core rotation rate provides an 0.5 to 5 day rotation period for the Sun's core. A gravitational Pannekoek-Rosseland electric field in the Sun makes the Ferraro theorem inapplicable in such a way that rather than a constant angular velocity with radius, an inverse square radial dependence occurs. This results in a two day rotational period for the region in the Sun where most of the angular momentum resides. The consistency of the above four methods suggests that the Sun's observed oblateness is due to a rapidly rotating solar core. The oblateness of the photosphere is estimated to be near 3.4×10–5.  相似文献   

4.
K.F. Tapping  C. Zwaan 《Solar physics》2001,199(2):317-344
Daily surveys of the solar disc made at 2.8 cm wavelength over the period 1–13 November 1981, complemented by magnetograms and H filtergrams, are used to examine the relationship between sources of the slowly varying component of solar radio emission and properties of their host regions. Two classes of source are noted: diffuse and compact. Sources are designated compact when smaller than 40. The diffuse sources may be explained in terms of free–free thermal emission from trapped plasma in loops overlying the active region. The great majority of compact sources can be accounted for in terms of gyroresonance from thermal electrons in the strong magnetic fields overlying sunspots. A small minority are less amenable to this explanation. They are associated with magnetic complexity and dynamism, lie close to magnetic polarity reversals, and could be non-thermal. Microwave sources are an evolutionary feature common to all but the smallest active regions.  相似文献   

5.
The long-time series of daily means of cosmic-ray intensity observed by four neutron monitors at different cutoff rigidities (Calgary, Climax, Lomnický tít and Huancayo/Haleakala) were analyzed by means of the wavelet transform method in the period range 60 to 1000 days. The contributions of the time evolution of three quasi-periodic cosmic-ray signals (150 d, 1.3 yr and 1.7 yr) to the global one are obtained. While the 1.7-yr quasi-periodicity, the most remarkable one in the studied interval, strongly contributes to the cosmic ray intensity profile of solar cycle 21 (particularly in 1982), the 1.3-yr one, which is better correlated with the same periodicity of the interplanetary magnetic field strength, is present as a characteristic feature for the decreasing phases of the cycles 20 and 22. Transitions between these quasi-periodicities are seen in the wavelet power spectra plots. Obtained results support the claimed difference in the solar activity evolution during odd and even solar activity cycles.  相似文献   

6.
Durney  Bernard R. 《Solar physics》1998,180(1-2):1-17
The power in the different modes of an expansion of the solar radial magnetic field at the surface in terms of Legendre polynomials,P , is calculated with the help of a solar dynamo model studied earlier. The model is of the Babcock–Leighton type, i.e., the surface eruptions of the toroidal magnetic field – through the tilt angle, , formed by the magnetic axis of a bipolar magnetic region with the east-west line – are the sources for the poloidal field. In this paper it is assumed that the tilt angle is subject to fluctuations of the form, = ()+ <> where <> is the average value and () is a random normal fluctuation with standard deviation which is taken from Howard's observations of the distribution of tilt angles. For numerical considerations, negative values of were not allowed. If this occurred, was recalculated. The numerical integrations were started with a toroidal magnetic field antisymmetric across the equator, large enough to generate eruptions, and a negligible poloidal field. The fluctuations in the tilt angle destroy the antisymmetry as time increases. The power of the antisymmetric modes across the equator (i.e., odd values of ) is concentrated in frequencies, p, corresponding to the cycle period. The maximum power lies in the =3 mode with considerable power in the =5 mode, in broad agreement with Stenflo's results who finds a maximum power at =5. For the symmetric modes, there is considerable power in frequencies larger than p, again in broad agreement with Stenflo's power spectrum.  相似文献   

7.
Gary  G. Allen 《Solar physics》2001,203(1):71-86
In this paper, we present a model of the plasma beta above an active region and discuss its consequences in terms of coronal magnetic field modeling. The -plasma model is representative and derived from a collection of sources. The resulting variation with height in the solar atmosphere is used to emphasize that the assumption that the magnetic pressure dominates over the plasma pressure must be carefully employed when extrapolating the magnetic field. This paper points out (1) that the paradigm that the coronal magnetic field can be constructed from a force-free magnetic field must be used in the correct context, since the force-free region is sandwiched between two regions which have >1, (2) that the chromospheric Mgii–Civ magnetic measurements occur near the -minimum, and (3) that, moving from the photosphere upwards, can return to 1 at relatively low coronal heights, e.g., R1.2 R s.  相似文献   

8.
Quasi-steady high-temperature current sheets are an energy source during the main or hot phase of solar flares. Such sheets are shown to be stabilized with respect to the tearing instability by a small transverse component of magnetic field existing in the sheets.  相似文献   

9.
Simple self-consistent models for non-neutral current sheets are considered. Characteristics of high-temperature turbulent current sheets (HTCS) with a small transverse component of magnetic field are determined for conditions in the solar corona. The energy output of such an HTCS is much larger than that of a neutral sheet. This makes it possible to consider the HTCS as an energy source not only in long-lived X-ray loops but also in flaring loops during the not or main phase of a flare. In this case, the magnetic reconnection velocity agrees with the observed velocity of the loop rise. Thus, these phenomena can be interpreted as a result of magnetic reconnection, for example, between new flux emerging from under the photosphere and an old magnetic field.The role of a longitudinal magnetic field in a current sheet is less important for HTCS. As a result of the compression of a longitudinal field, there appears an electric current circulating around the sheet. This current may induce strong Joule heating, if the compression is large. This additional heating is realized because of the annihilation of the main component, not the longitudinal component of magnetic field. The effect is small for HTCS, but may be significant for preflare current sheets.  相似文献   

10.
In a two-component cycle, the generation of the dipole field by a separate mechanism as well as the strong link occurring, with a 5–6-yr delay, between the sunspot cycle and the preceding dipole cycle, sets in new terms the problem of the mechanisms at the origin of the solar cycle. In this paper, from various series of synoptic solar data, we identify some of the mechanisms to incorporate in a model of a two-component solar cycle. The first one concerns the dipole field which is not a surface phenomenon. We establish the cyclic behaviour and the various properties of the dipole-field sources which are deep-seated in the solar interior and have a rigid rotation of about 27 days. We identify two cyclic phenomena which, in each hemisphere, link with a 5–6-yr delay, the dipole field generation which occurs at high latitudes, to the bipolar field emergence occurring at sunspot latitudes. They are the signatures of a coupling mechanism taking place deep in the solar interior. Then we study the constraints imposed on the mechanisms of the sunspot field generation both by a two-component cycle and by new observational results. These last ones concern the links occurring between the birth of new sunspot groups and the occurrence of pre-existing features of the photospheric field and of pivot-points in rigid rotation at 27.3 days.Our final discussion is devoted to a first sketch of the distribution of the relevant mechanisms among separate regions of the convective zone. Unfortunately neither the helioseismology, nor our data analysis has yet supplied us with appropriate pieces of information for building a physical model of this two-component cycle.  相似文献   

11.
Orbital stability of quasiperiodic motions in the many dimensional autonomic hamiltonian systems is considered. Studied motions are supposed to be not far from equilibrium, the number of their basic frequencies may be not equal to the number of degrees of freedom, and the procedure of their construction is supposed to be converged. The stability problem is solved in the strict nonlinear mode.Obtained results are used in the stability investigation of small plane motions near the lagrangian solutions of the three-dimensional circular restricted three-body problem. The values of parameters for which the plane motions are unstable have been found.
. , , . . , . , .
  相似文献   

12.
A model is constructed of a spherically symmetric self-gravitating condensation of neutral hydrogen immersed in anHii region. The structure of the condensation is represented by the isothermal gas sphere at a temperature of 100°K. Typical parameters of such a condensation compatible with the estimated ultra-violet radiation field in the central regions of the Orion Nebula are, mass 1M ; radius 1016 cm; mean density 10–15 gm cm–3. The condensations are not static configurations but evolve because of mass loss by ionization from their surfaces. Perhaps 5% become gravitationally unstable and collapse. The remainder act as sources of ionized gas which flows into the surrounding nebula.  相似文献   

13.
A model of interplanetary and coronal magnetic fields   总被引:5,自引:0,他引:5  
A model of the large-scale magnetic field structure above the photosphere uses a Green's function solution to Maxwell's equations. Sources for the magnetic field are related to the observed photospheric field and to the field computed at a source surface about 0.6 R above the photosphere. The large-scale interplanetary magnetic field sector pattern is related to the field pattern at this source surface. The model generates magnetic field patterns on the source surface that compare well with interplanetary observations. Comparisons are shown with observations of the interplanetary magnetic field obtained by the IMP-3 satellite.  相似文献   

14.
Zhang  Hongqi  Zhang  Mei 《Solar physics》2000,196(2):269-277
Simultaneous observations of chromospheric (H) and photospheric (Fei 5324.19 Å) magnetograms in quiet solar regions enable us to study the spatial configuration of the magnetic field in the solar atmosphere. With the typical spatial resolution of the Huairou magnetograph, the photospheric and chromospheric magnetic structures of the quiet Sun maintain a very similar pattern. Moreover, the vertical magnetic flux is almost the same from the photosphere to the chromosphere. As an intermediate step, we analyze the formation of the working lines used by the Huairou video magnetograph of the Beijing Astronomical Observatory. The Stokes V contribution function of H and Fei 5324.19 Å are calculated. It is found that our H magnetograms provide the distribution of the chromospheric magnetic field at a height some 1000–1500 km above the photosphere.  相似文献   

15.
Résumé Le présent travail est une continuation d'un autre, publié plus tôt (Doubochine, 1970). On montre ici, que les propriétés des mouvements Lagrangiens et Euleriens établies en mécanique céleste classique sont vraies aussi dans les cas plus généraux, envisagés dans le travail indiqué. On montre de plus, que les trajectoires des points en ces mouvements en axes absolus sont les spirales infinies s'enroulant sur les surfaces des cylindres curvilignes infinis.
-- , (, 1970). , , , , , , , . , , , , .
  相似文献   

16.
We study the effects of the sector structure of the interplanetary magnetic field (IMF) on the Galactic cosmic ray (GCR) anisotropy at solar minimum by using Global Network neutron monitor data. The hourly neutron monitor data for 1976 were averaged for the positive (+) and negative (–) IMF sectors (+ and – correspond to the antisolar and solar directions of magnetic field lines, respectively) and then processed by the global survey method. We found that the magnitude of the GCR anisotropy vector is larger in the positive IMF sector and that the phase shifts toward early hours. The derived GCR components A r, A , and A for the different + and – sectors are then used to calculate the angle ( 46°) between the IMF lines and the Sun–Earth line, the solar wind velocity U ( 420 km/s), the ratio of the perpendicular (K ) and parallel (K ||) diffusion coefficients K /K || = ( 0.33), and other parameters that characterize the GCR modulation in interplanetary space.  相似文献   

17.
18.
, . . . .
Some asymptotic solutions in the restricted problem of three bodies by L. G. Lukjanov.
Some particular solutions of the plane restricted problem of three bodies in the form of Liapunov's series are obtained. These solutions asymptotically approach the Lagrange solutions. Convergence is proved.
  相似文献   

19.
20.
, ii (2000–3000 Å) i . , i . i (. 2). i i i i + ( 7–10). ii (. 13). ii i i (, 2400 Å) (. 14 15). i i i , iu , i (. 1). i i ii i i . .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号