首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
朱长寿  陈栩 《台湾海峡》1995,14(2):139-143
台湾海峡中、北部夏季浮游动物(非胶质)总生物量较丰富,1983年夏季的总生物量高于其他季节,1987年7、8月和1988年7月则高于1983年同期的生物量,这3a的高生物量分布区,一般都连片出现在上升流锋面区,显然和上升流的出现有密切关系。构成高生物量的优势种以外海广高盐种为主,生物量和高生物量区的分布态势都存在年际变化,这可能和不同性质水系的消长,相互推移及被囊动物的摄食竞争有关。  相似文献   

2.
Main features of the zooplankton distribution and the ecological characteristics of the dominant species in the northern Benguela during different phases of upwelling are discussed. The composition of the zooplankton between 17 and 27°S was similar each year. Among the 20°30 most abundant species, 3°4 copepods dominated, influencing the distribution of total zooplankton biomass. During quiescent upwelling, zooplankton abundance was low and there were no significant differences in the inshore-offshore distribution of zooplankton biomass, the maximum occurring over the slope. During active upwelling, zooplankton biomass increased significantly, the maximum over the shelf being constituted almost entirely of developmental stages of herbivorous copepods. Over the inner shelf, all stages of the copepod Calanoides carinatus were feeding actively, removing up to 5 per cent per day of the standing stock of phytoplankton. Comparison of daily ration, respiration rate and biochemical composition of C. carinatus revealed active storage of energy inshore. Offshore populations of C. carinatus, found deeper than 200 m, comprised mainly copepodite stage V, which were not feeding and were characterized by decreased mobility and respiration and a high lipid content. It is estimated that the energy stored during active upwelling enables copepods to survive up to six months without any additional source of energy.  相似文献   

3.
The upwelling front of the Cape Columbine upwelling centre was intensively studied, physically and biologically, along a repeated transect during December 1984 following a quiescent phase in the upwelling cycle. Three distinct zones were evident, an inshore zone influenced by upwelling, an offshore warm oligotrophic zone and a transitional frontal zone separating the two. Salinity proved to be a useful indicator of recent water movements. There was evidence of intrusions and mixing of water types within the frontal zone, possibly accounting for the elevated phytoplankton biomass recorded there. Floral and faunal changes occurred between the frontal and offshore zones, corresponding to the thermal front. The predominant flow was alongshore, with strong equatorward jet currents, making the interpretation of cross-shelf gradients difficult in this dynamic area. Aspects of the distributions of organisms and their productivity across the upwelling front are described with respect to the hydrographic parameters and associated flow-field.  相似文献   

4.
On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of zooplankton in the Kuroshio and adjacent waters of the East China Sea are preliminarily studied. The results are as follows:The horizontal distribution of zooplankton biomass and the abundance of copepods, chaetognaths and siphonophores arecurred in the continent area northwest of Taiwan and the south-centre section of the East China Sea continent, which are the mix front of different waters. Zooplankton in the water area inside of Ryukyu Islands presented low abundance and high diversity. There are clear seasonal variations in zooplankton biomass and abundance in the study area. The strength or weakness of different water masses and fronts is the basic reason for the variations of zooplankton biomass and abundance.The species composition of zooplankton in the study area is complex and var  相似文献   

5.
2010年夏季雷州半岛沿岸海域浮游动物群落结构特征   总被引:4,自引:1,他引:3  
2010年7月对雷州半岛海岸带的浮游动物群落结构及相关环境因子进行了调查,共鉴定出浮游动物87种和34类浮游幼体,其中原生动物4种,占总种类数的4.6%;腔肠动物20种,占总种类数的23.0%;介形类1种,占总种类数的1.1%;枝角类2种,占总种类数的2.3%;桡足类37种,占总种类数的42.5%;十足类2种,占总种类数的2.3%;毛颚动物7种,占总种类数的8.0%;被囊动物6种,占总种类数的6.9%;浮游软体动物8种,占总种类数的9.2%。优势种有13种和3类浮游幼体,孔雀强额哲水蚤和小毛猛水蚤是该海域重要的优势种群,几乎在全海域均为优势种,桡足类幼体为全海域优势类群。半岛沿岸海域浮游动物种类数由近岸往远岸逐渐增多,浮游动物丰度分布则相反。浮游动物种类数由多到少的顺序为东北部、东南部、西北部和西南部、南部,丰度由大到小的顺序为西北部、西南部、东北部、东南部、南部,生物量由大到小的顺序为东北部、西南部、西北部、东南部、南部,浮游动物丰度和生物量的平面分布反映了人类对海岸带开发利用的活动概貌。多样性指数和均匀度平均值分别为2.96和0.57。相关分析表明:浮游动物丰度与水温、细菌总数、浮游动物生物量均呈极显著的正相关关系,与磷酸盐呈显著的负相关关系;浮游动物生物量与TOC、细菌总数、叶绿素a、浮游植物丰度均呈极显著的正相关关系,与pH呈显著的正相关关系,与盐度呈显著的负相关关系。  相似文献   

6.
The species distribution and diversity of zooplankton and the effects of hydrodynamic factors of Zhejiang coastal waters during the active period of upwelling are discussed.High dominance (low diversity), high biomass and short food chain were found in the landward margins of the central region of the upwelling. There were evident interactions between the distribution of zooplankton and the environmental factors. The expression of these interactions is that different ecotypes of zooplankton adapt to different hydrological situations. There is significant positive correlation between the diversity indices of zooplankton and the mean water temperature in the survey area. It is noted that the vertical distribution of Calanus sinicus indicates to a certain extent the colder water environment of the upwelling (Fig. 7, Table 2, Reference (Hargreaves, 1981).  相似文献   

7.
朱长寿  陈栩  黄加祺 《台湾海峡》1999,18(3):309-313
根据1990年5月至1991年1月采自湄洲岛海域的浮游动物样品,鉴定出10种终生浮游动物和12类阶段性浮游幼体,桡足类的种类和数量在群落中均占优势。中华哲水蚤、精致真刺水蚤、中华假磷虾、肥胖箭虫和短尾类溲状幼体为主要优势种。海龙箭虫、拟经车浅室水母、针刺真浮莹等10种,四季都有分布,本文还描述了总生物量,总个体和主要种类的分布,并对夏季浮游动物的分布与上升流的关系,以及总生物量季节纱明显进行了讨论  相似文献   

8.
Zooplankton biomass and distribution in the KwaZulu-Natal Bight were investigated in relation to environmental parameters during summer (January–February 2010) and winter (July–August 2010). Mean zooplankton biomass was significantly higher in winter (17.1 mg dry weight [DW] m–3) than in summer (9.5 mg DW m?3). In summer, total biomass was evenly distributed within the central bight, low off the Thukela River mouth and peaked near Durban. In winter, highest biomass was found offshore between Richards Bay and Cape St Lucia. Zooplankton biomass in each size class was significantly, negatively related to sea surface temperature and integrated nitrate, but positively related to surface chlorophyll a and dissolved oxygen. Zooplankton biomass was significantly related to bottom depth, with greatest total biomass located inshore (<50 m). Distribution across the shelf varied with zooplankton size. Seasonal differences in copepod size composition suggest that a smaller, younger community occupied the cool, chlorophyll-rich waters offshore from the St Lucia upwelling cell in winter, and a larger, older community occurred within the relatively warm and chlorophyll-poor central bight in summer. Nutrient enrichment from quasi-permanent upwelling off Durban and Richards Bay appears to have a greater influence on zooplankton biomass and distribution in the bight than the strongly seasonal nutrient input from the Thukela River.  相似文献   

9.
Species composition and biomass of plankton samples taken on transects across an upwelling plume off Farewell Spit in February 1981 are presented. Copepods were numerically dominant, particularly Oithona similis and Paracalanus indicus. Also abundant were large phytoplankters (Chaetoceros sp. and Trichodesmium sp.), crustacean faecal pellets, and euphausiid larvae. The distribution of zooplankton species suggests mixing of inshore waters and neritic populations with upwelled waters. These data are discussed with respect to an interpretation of the upwelling system as a northwards transport of zooplankton and its enhanced productivity into the South Taranaki Bight.  相似文献   

10.
2006年7月—2007年12月,在长江口及邻近海域(29°30′N~32°30′N,120°00′E~127°30′E)布设150个观测站位,进行了4个季节生物、化学和物理海洋学综合调查。根据采集的浮游动物样品的分析鉴定结果及现场环境参数的测定数据,对浮游动物群落生物量分布及季节变化进行了研究。结果表明:长江口及邻近海域浮游动物生物量有明显的季节变化,主要表现为:春季>夏季>秋季>冬季。中华哲水蚤(Calanussinicus)、双生水母(Diphyeschamissonis)、百陶带箭虫(Zonosagittabedoti)和中华假磷虾(Pseudeuphausiasinica)是长江口及邻近海域浮游动物生物量的主要贡献者。化学营养盐是影响长江口及邻近海域浮游动物生物量分布的主要环境因素,除此以外,其它环境因子在不同季节对浮游动物生物量的影响存在差异。春季,温度和盐度是影响浮游动物生物量的主要因素;夏季,温度、溶解氧和叶绿素a是影响浮游动物生物量的主要因素;秋季,盐度、溶解氧和悬浮颗粒物是影响浮游动物生物量的主要因素。冬季,环境因子对浮游动物生物量影响不明显。  相似文献   

11.
Zooplankton sampling at Station 18 off Concepción (36°30′S and 73°07′W), on an average frequency of 30 days (August 2002 to December 2005), allowed the assessment of seasonal and inter-annual variation in zooplankton biomass, its C and N content, and the community structure in relation to upwelling variability. Copepods contributed 79% of the total zooplankton community and were mostly represented by Paracalanus parvus, Oithona similis, Oithona nana, Calanus chilensis, and Rhincalanus nasutus. Other copepod species, euphausiids (mainly Euphausia mucronata), gelatinous zooplankton, and crustacean larvae comprised the rest of the community. Changes in the depth of the upper boundary of the oxygen minimum zone indicated the strongly seasonal upwelling pattern. The bulk of zooplankton biomass and total copepod abundance were both strongly and positively associated with a shallow (<20 m) oxygen minimum zone; these values increased in spring/summer, when upwelling prevailed. Gelatinous zooplankton showed positive abundance anomalies in the spring and winter, whereas euphausiids had no seasonal pattern and a positive anomaly in the fall. The C content and the C/N ratio of zooplankton biomass significantly increased during the spring when chlorophyll-a was high (>5 mg m−3). No major changes in zooplankton biomass and species were found from one year to the next. We concluded that upwelling is the key process modulating variability in zooplankton biomass and its community structure in this zone. The spring/summer increase in zooplankton may be largely the result of the aggregation of dominant copepods within the upwelling region; these may reproduce throughout the year, increasing their C content and C/N ratios given high diatom concentrations.  相似文献   

12.
秋季南黄海浮游动物分布及其影响因素   总被引:3,自引:1,他引:2  
王晓  姜美洁  刘萍  张学雷  王燕  王宗灵 《海洋学报》2016,38(10):125-134
基于2007年秋季在南黄海(32°20'~37°00'N;124°E以西)进行的浮游动物及环境因子大面调查;分析了秋季南黄海浮游动物种类组成、分布特征及其影响因素;主要结果如下:共鉴定浮游动物113种(不包括25种浮游幼体);中华哲水蚤(Calanus sinicus)、强壮滨箭虫(Aidanosagitta crassa)、磷虾幼体(Euphausia larvae)和小齿海樽(Doliolum denticulatum)是秋季优势种;浮游动物丰度为(156.37±12.04)ind/m3;生物量为(172.57±10.41)mg/m3;与历史调查数据相比;本航次浮游动物丰度和生物量相对处于较高水平;磷虾幼体分布趋势与中华假磷虾(Psudeuphausia sinica)一致;说明秋季是中华假磷虾种群的一个重要的补充时期;小齿海樽在南黄海的大量出现系自身种群补充的结果;精致真刺水蚤(Euchaeta concinna)和肥胖软箭虫(Flaccisagitta enflata)主要分布在深水区;在近岸海区很少出现。中华哲水蚤、强壮滨箭虫丰度高值区倾向分布于海洋锋附近;进一步佐证了海洋锋对浮游动物的积聚作用。  相似文献   

13.
根据 1 990年春季至 1 991年冬季采自福建省东山岛海域的浮游动物样品 ,鉴定出 1 67种终生营浮游动物和 1 3类阶段性浮游幼体。浮游动物总生物量及其平面分布趋势都有较明显的季节变化 ,这和优势种的季节演替有关。文中还对浮游动物总的个体密度和主要种类的分布作了描述 ,同时对该水域浮游动物的分布与水温及闽南 -台湾浅滩夏季近岸上升流的关系进行了讨论。  相似文献   

14.
The studies were carried out on September 27–30, 2007, in the area of the Ob estuarine frontal zone and over the adjacent inner Kara Sea shelf. Based upon the latitudinal changes in the salinity, the 100 nautical mile wide estuarine frontal zone was marked out. The frontal zone was inhabited by a specific zooplankton community dominated by species that occurred outside the frontal zone in only minor amounts. The biomass of the mesozooplankton averaging 984 mg/m3 in the frontal zone exceeded by 1.5 and 6 times the corresponding values in the inner desalinated area of the estuary and the adjacent areas of the Kara Sea shelf. At the inner southern periphery of the frontal zone, at maximal latitudinal salinity gradients (>2 psu per mile), the maximal development of the mesoplankton with the mean biomass for the water column of 3.1 g/m3 (37 g/m2) and up to 5.8 g/m3 in the subpycnocline layer was observed. The latitudinal extension of the biomass in the maximum zone did not exceed 10 miles. More than 90% of the maximum was composed of herbivorous zooplankton with the strong domination of the copepod Limnocalanus macrurus. The daily consumption within the zooplankton maximum area was estimated at 820 mgC/m2 per day. This value exceeds by two orders of magnitude the local primary production. At that level of consumption, the available phytoplankton biomass was consumed by grazers in less than 8 hours (!). A zooplankton aggregation at the southern periphery of the estuarine front exists due to the advection of phytoplankton from the adjacent river zone. The aggregation forms a natural pelagic biofilter where new allochthonous organic matter delivered by the river flow is accumulated and high secondary production is formed on its basis. An anomalously high concentration of planktic predatory Parasagitta elegans with biomass of over 1 g/m3 (46% of the total zooplankton biomass) was associated with the outer northern periphery of the estuarine frontal zone.  相似文献   

15.
Interannual variations of biomass of major mesozooplankton groups (Cnidaria, Chaetognatha, Copepoda, Crustacea other than copepods, Tunicata) in the January to March period were examined in the slope, Kuroshio and offshore waters off the Pacific coast of western Japan (western region) from 1971 to 1988 and off central Japan (central region) from 1971 to 1989. The mean biomass for each year of most of the mesozooplankton groups was high in the early 1970s and tended to decrease (in the western region) or to have dropped to a lower level (in the central region) after the mid-1970s. Stepwise multiple linear regression analyses of the mean biomass for each year of each mesozooplankton group in the Kuroshio in both regions against climatic factors revealed that the biomass was related positively to wind speed. It is therefore considered that the nutrient supply to the upper layers limits the production of many of the mesozooplankton groups examined in the Kuroshio, even in winter. Similar relationships were also found for the biomass of Copepoda, non-copepod Crustacea and Tunicata in the offshore water in the western region. The percentage of copepods in the biomass in the central region seemed to decrease under high water temperature conditions, while that of Chaetgnatha tended to increase. Climatic factors thus largely influenced the interannual variations of biomass and composition of mesozooplankton in and near the Kuroshio during the winter to early spring period. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Spatial and temporal distribution patterns of zooplankton are highly variable in the Northern Benguela Upwelling System. We studied the distribution of zooplankton (size class ≥ 0.33 mm) and used field data from four cruises that took place between March 2008 and February 2011, as well as simulation results of a regional ecosystem model. Remotely sensed sea surface temperatures (SST) and surface chlorophyll concentrations were analysed to investigate environmental influences on zooplankton biomass. The Intense Benguela Upwelling Index showed a distinct seasonal signal throughout the years and the highest upwelling peaks in August/September. Even though surface chlorophyll concentrations were very variable throughout the year, the highest concentrations were always detected in September, following the upwelling of nutrient‐rich water. In field catches, zooplankton biomass concentration in the upper 200 m was highest above the outer shelf and shelf‐break in December 2010 and February 2011, i.e. 6 months after the upwelling peaks. In contrast, zooplankton biomass simulated by the model in the surface water was highest in September. In March/April, biomass maxima were typically measured in the field at intermediate water depths, but the vertical distribution was also affected by extensive oxygen minimum zones. The ecosystem model reproduced this vertical pattern. Although general trends were similar, simulation data of zooplankton standing stocks overestimated the field data by a factor of 3. In upwelling systems, food webs are generally considered to be short and dominated by large cells. However, our field data indicate more small‐sized zooplankton organisms above the shelf than offshore.  相似文献   

17.
The invasive ctenophore Mnemiopsis leidyi (Agassiz), which was transported from the Black Sea into the Caspian Sea at the end of the 1990s, has negatively affected the ecosystem of the Caspian Sea. Zooplankton abundance, biomass and species composition were evaluated on the Iranian coast of the Caspian Sea during 2001–2006. A total of 18 merozooplankton (13 species composed of larvae of benthic animals) and holozooplankton (four Copepoda and one Cladocera) species were identified. The total number of zooplankton species found here was 50% less than in a previous investigation performed in the same region in 1996 before the introduction of Mnemiopsis leidyi into the Caspian Sea. Cladocera species seemed to be highly affected by the invasion of Mnemiopsis leidyi; only one species, Podon polyphemoides, remained in the study area, whereas 24 Cladocera species were found in the study carried out in 1996. Whereas among the Copepoda Eurytemora minor, Eurytemora grimmi, Calanipeda aquae dulcis and Acartia tonsa that were abundant before the Mnemiopsis leidyi invasion, only A. tonsa (copepodites and adults) dominated the inshore and offshore waters after the invasion. The maximum in zooplankton abundance (22,088 ± 24,840 ind·m?3) and biomass (64.1 ± 56.8 mg·m?3) were recorded in December 2001 and August 2004, respectively. The annual mean zooplankton abundance during 2001–2006 was in the range of 3361–8940 ind·m?3; this was two‐ to five‐fold less than the zooplankton abundance in 1996. During 2001–2006, the highest abundance and biomass of Mnemiopsis leidyi were observed during summer‐autumn months coincident with warm temperatures and generally when the abundance of other zooplankton organisms was low.  相似文献   

18.
广东省南澳海域是粤东重要的海产养殖基地, 分析该海域浮游动物群落结构特征对评估其生态环境质量具有重要意义。文章根据2014年9月(秋季)、12月(冬季)、2015年4月(春季)和2016年7月(夏季)在南澳岛东部海域的浮游动物调查, 分析该海域浮游动物的群落结构特征, 探讨环境因素对其时空分布的影响。共鉴定浮游动物206种(包括浮游幼虫), 桡足类种数最多, 达94种; 远岸海域浮游动物的种数高于近岸海域。浮游动物丰度和生物量的季节变化明显, 夏、秋季高于冬、春季; 浮游动物丰度和生物量的分布趋势较一致, 夏季高值区主要出现在近岸, 秋季由近岸向远岸海域递增。浮游动物不同类群和优势种的丰度也存在季节变化, 桡足类是调查期间丰度较高的类群, 秋季水母类和海樽类丰度明显增加; 优势种后圆真浮萤(Euconchoecia maimai)和针刺真浮萤(Euconchoecia aculeata)在夏季丰度高, 小齿海樽(Doliolum denticulatum)在秋季占绝对优势。温度、盐度和浮游植物生物量是影响南澳岛东部海域浮游动物时空变化的主要环境因子, 说明该海域浮游动物群落特征受海流、水团和养殖活动的综合影响。  相似文献   

19.
During the 1990s many studies on zooplankton in the Japan Sea have been carried out. In this review, I have synthesized the study of horizontal distribution, seasonal and annual variations of zooplankton biomass, and ecological characteristics of major component species in the southern Japan Sea, which area is influenced by the warm Tsushima Current. The zooplankton biomass (annual mean) in the southern Japan Sea was lower than in the subarctic Pacific, including the northern Japan Sea, and similar to biomass levels in Kuroshio waters. Temporal variations in zooplankton biomass showed both seasonal and year-to-year components. Seasonal biomass increases to a maximum in spring with a weak secondary peak in autumn. As for long-term changes, 3–6 year cycles were identified, with the dynamics of the surface warm Tsushima Current and the subsurface cold water playing important roles in determining the yearly zooplankton community structure and biomass. Cold water species in the southern Japan Sea had extensive diel vertical migrations whose range is restricted in summer by the development of a thermocline. Among these species, the herbivores Euphausia pacifica and Metridia pacifica encounter a lower food supply, resulting in lower growth rates. The vertical dispersal of epipelagic carnivorous zooplankton such as Sagitta elegans and Themisto japonica to the deep-sea is probably facilitated by reduced interspecific competition. Their interaction with Japan Sea Proper Water, characterized by near-zero temperatures in the meso- and bathypelagic zones suppresses growth rates of the mesopelagic zooplankton. The lack of micronektonic predators in the mesopelagic zone may allow the persistence of slow growing populations.  相似文献   

20.
The diel vertical migration(DVM) of zooplankton and the influence of upwelling on zooplankton biomass were examined using water column data of current velocity and mean volume backscattering strength(MVBS)collected by moored acoustic Doppler current profilers(ADCPs) deployed in the southeastern Chukchi Sea during the 5th Chinese National Arctic Research Expedition(CHINARE) in summer 2012, combined with the satellite observational data such as sea surface temperature(SST), wind, and chlorophyll a(Chl a). Hourly acoustic data were continuously collected for 49-d in the mooring site. Spectral analysis indicated that there were different migrating patterns of zooplankton, even though precisely classifying the zooplankton taxa was not available. The prevailing 24-h cycle corresponded to the normal DVM with zooplankton swimming upwards at sunrise and returning to deep waters at sunset. There was a clear DVM in the upper 17 m of the water column during the period with distinct day-night cycles, and no active DVM throughout the water column when the sun above the horizon(polar day), suggesting that light intensity was the trigger for DVM. Also there was a second migrating pattern with 12-h cycle. The upwelling event occurring in the northwest of Alaskan coastal area had important influence on zooplankton biomass at the mooring site. During the upwelling, the SST close to the mooring site dropped significantly from maximal 6.35°C to minimal 1.31°C within five days. Simultaneously, there was a rapid increase in the MVBS and Chl a level, suggesting the aggregation of zooplankton related to upwelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号