首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismicity parameters for important urban agglomerations in India   总被引:1,自引:0,他引:1  
India’s urban population has increased in the recent times. An earthquake near an urban agglomeration has the potential to cause severe damage. In this article, seismicity parameters for region surrounding important urban agglomerations in India are estimated. A comprehensive earthquake catalogue for the region (6°E–42°E latitude and 60°N–100°N longitude) including historic and pre-historic events has been compiled from various sources. To estimate the parameters, past earthquake data in a control region of radius 300 km has been assembled to quantify the seismicity around each urban agglomeration. The collected earthquake data is first evaluated for its completeness. From combined (historical and instrumental) data, the seismicity parameters b-value, seismic activity rate, λ and maximum expected magnitude (m max ) have been obtained from the methodology proposed by Kijko and Graham (1998). The obtained activity rates indicate that region surrounding Guwahati urban agglomeration is the most seismically active region followed by Srinagar, Patna, Amritsar and Chandigarh.  相似文献   

2.
The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is ~ 8.0 × 1018 N·m (Mw?≈?6.5), and the centroid depth is ~ 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5–15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes >?6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is ~ 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in ~ 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 Mw7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.  相似文献   

3.
The majority of original seismograms recorded at the very beginning of instrumental seismology (the early 1900s) did not survive till present. However, a number of books, bulletins, and catalogs were published including the seismogram reproductions of some, particularly interesting earthquakes. In case these reproductions contain the time and amplitude scales, they can be successfully analyzed the same way as the original records. Information about the Atushi (Kashgar) earthquake, which occurred on August 22, 1902, is very limited. We could not find any original seismograms for this earthquake, but 12 seismograms from 6 seismic stations were printed as example records in different books. These data in combination with macroseismic observations and different bulletins information published for this earthquake were used to determine the source parameters of the earthquake. The earthquake epicenter was relocated at 39.87° N and 76.42° E with the hypocenter depth of about 18 km. We could further determine magnitudes m B = 7.7 ± 0.3, M S = 7.8 ± 0.4, M W = 7.7 ± 0.3 and the focal mechanism of the earthquake with strike/dip/rake ? 260°± 20/30°± 10/90°± 10. This study confirms that the earthquake likely had a smaller magnitude than previously reported (M8.3). The focal mechanism indicates dominant thrust faulting, which is in a good agreement with presumably responsible Tuotegongbaizi-Aerpaleike northward dipping thrust fault kinematic, described in previous studies.  相似文献   

4.
2008年10月5日新疆乌恰Mw6.7级地震发生在南天山、帕米尔高原及塔里木盆地交汇地带,基于地震波反演的震源机制解确定的震源深度存在较大差异.本文利用日本ALOS卫星的PALSAR图像,获得了本次地震的同震形变场,基于卫星视线向(LOS)和方位向(Azimuth)的形变,采用均匀弹性半无限位错模型和有界最小二乘(BVLS)算法,以网格矩形位错元法对发震断层的几何产状、滑移及分布进行了估算,结果表明本次地震以逆断破裂为主,断层面上最大位错量接近3.4 m,形变中心位于73.8040°E,39.5335°N,深度约5 km,震级估算为Mw6.6;地震发生在走向46°,倾角48°的断层上,发震断层长30 km,宽14 km,闭锁深度9 km,符合该地区浅源地震多发的构造特点,发震断层为乌合沙鲁断裂带.InSAR反演的滑移形变主要集中于地下2~7 km,表明乌恰地震为浅源地震,可能与该断层附近历史地震未完全释放的残余应力积累有关.同时,InSAR反演的断层位错分布呈现双破裂特征,震级分别为Mw6.5和Mw6.1,可能与本次地震的主震和余震相对应,也可能是由主震激发而产生的两组破裂.  相似文献   

5.
The Bou Medfaa earthquake of 7 November 1959 occurred at 2 h 32 min 7 s (GMT); it is one of the most destructive seismic events that central Algeria experienced this century. The main shock, which lasted 8 s in Bou Medfaa, caused only two injuries but made at least 500 homeless; it destroyed or heavily damaged more than 80% of the houses, farms and public buildings in Bou Medfaa and its immediate surroundings. Poor-quality constructions were the main cause of the damage. The total cost of damage was estimated at 300 million French francs. The earthquake was preceded by two slight foreshocks and followed by a series of lower intensity aftershocks. It was associated with slight surface ground fissures in Bou Medfaa. Compilation and detailed study of the contemporary source documents relative to this earthquake have led to the reconstruction of its macroseismic field and thus to the re-assessment of the strength of the ground shaking. Intensities were re-evaluated anew in many sites. Maximum intensity has been re-estimated at I0 = VIII (MSK), assigned to Bou Medfaa, Hammam Righa and their close vicinities, an area about 8 km radius. The shock was felt as far as Dellys 150 km away with intensity III (MSK). From the intensity data, the macroseismic epicentre was located slightly north of Bou Medfaa at 36·41°N, 2·48°E, and an isoseismal map of the main shock has been constructed. The surface-wave magnitude has been calculated, without station corrections, at 4·90 (±0·40). The instrumental epicentre has been relocated, using the present location procedure of the ISC, at 36·38°N, 2·55°E. The analysis of destructive earthquakes provides a fundamental means for the reduction of future seismic catastrophes by suggesting new ways of improving local construction procedures, building materials, strengthening and properly repairing existing structures and implantation of new urban and rural settlements.  相似文献   

6.
2021年5月21日晚21时48分,云南省大理州漾濞县(震中:25.67°N,99.87°E)发生M_S6.4地震,震源深度8 km。为快速获得此次地震同震形变场及断层几何参数,研究该次地震的发震构造等,文章基于震前、震后的sentinel-1A卫星升降轨SAR数据进行二轨法差分雷达干涉测量(DInSAR),并基于Okada弹性半空间位错模型反演断层几何参数。研究结果如下:(1)此次地震造成的同震形变场长约19 km,宽约20 km;(2)升轨雷达视线向最大形变约为8.2 cm,降轨雷达视线向最大形变约为8.7 cm;(3)地震断层走向为313.7°,倾角为87°,滑动角为175°,为右旋走滑型断层,最大滑动量为0.79 m,反演得出的地震矩为1.48×10~(18) N·m,矩震级为M_W6.1。在川滇块体向南挤出的构造背景下,块体西边界的维西—乔后断裂、红河断裂发生右旋走滑,本次地震便是维西—乔后断裂南段分支断裂右旋走滑活动的体现。  相似文献   

7.
This paper investigates the suitability of a three-parameter (scale, shape, and location) Weibull distribution in probabilistic assessment of earthquake hazards. The performance is also compared with two other popular models from same Weibull family, namely the two-parameter Weibull model and the inverse Weibull model. A complete and homogeneous earthquake catalog (Yadav et al. in Pure Appl Geophys 167:1331–1342, 2010) of 20 events (M ≥ 7.0), spanning the period 1846 to 1995 from north–east India and its surrounding region (20°–32°N and 87°–100°E), is used to perform this study. The model parameters are initially estimated from graphical plots and later confirmed from statistical estimations such as maximum likelihood estimation (MLE) and method of moments (MoM). The asymptotic variance–covariance matrix for the MLE estimated parameters is further calculated on the basis of the Fisher information matrix (FIM). The model suitability is appraised using different statistical goodness-of-fit tests. For the study area, the estimated conditional probability for an earthquake within a decade comes out to be very high (≥0.90) for an elapsed time of 18 years (i.e., 2013). The study also reveals that the use of location parameter provides more flexibility to the three-parameter Weibull model in comparison to the two-parameter Weibull model. Therefore, it is suggested that three-parameter Weibull model has high importance in empirical modeling of earthquake recurrence and seismic hazard assessment.  相似文献   

8.
On 3 December 1828 at half past six in the evening, the border region between Belgium and Germany was stricken by a moderate earthquake. Up to now, the available information on this event has been essentially provided by a few contemporaneous scientific studies. To better evaluate its impact, location and magnitude, we have searched for new original historical reports. We collected 57 additional witness testimonies, which complete those previously collected about the earthquake effects. Among the testimonies, we also retrieved a questionnaire sent by the Prussian government to local authorities with the purpose of quickly obtaining information on the earthquake effects in the western part of the kingdom of Prussia. This inquiry is the oldest of its kind that has been discovered to date in this part of Europe, suggesting a rare concern by a national authority about the seismic hazard, and prefiguring the seismic inquiries that scientific institutions use today. The analysis of these new data made it possible to evaluate the intensity in 50 cities out of the 75 where the earthquake was observed. From these intensity data, we determine that the epicentre was in the Hautes-Fagnes region [lat. 50.38°N/long. 6.19°E?±?30 km] where moderate damage, corresponding to EMS-98 intensity VI–VII, was observed. At large distances, the earthquake was felt as far as Düsseldorf to the north, Brussels to the west, Metz to the south and Wiesbaden to the east. These distances correspond to a perceptibility radius of about 150 km. The magnitude of this earthquake is evaluated to be ML?=?4.7 (?0.2/+0.5) and MW?=?4.2 (+0.4/?0.2).  相似文献   

9.
On April 21, 2006 an earthquake with a magnitude of M s = 7.7 named Olyutor struck the Koryak Autonomous Region. It was the strongest earthquake for the entire period of historical and instrumental observations. The coordinates of the epicenter were 60.91° N, 166.98° E; the hypocenter’s depth was 12 km. For the efficient study of the earthquake, a team of scientists of the Institute of Volcanology and Seismology of the Far Eastern Branch of the Russian Academy of Sciences (RAS) was sent to the epicentral area. The article presents the results of studies of soil liquefaction in the settlement of Korf, which was the most affected during the Olyutor earthquake. The intensity of the earthquake in the settlement was 9 points. Numerous cracks in the soil were observed, sand volcanoes were formed, and there were numerous cases of sand and silt eruptions, subsidence, and flooding in the settlement. It was decided that the settlement was unfit for human habitation.  相似文献   

10.
本文利用福建省地震台网、广东省地震台网和台湾"中央"气象局17个台的宽频带记录,使用CAP方法反演了2018年11月26日台湾海峡M_S6.2地震震源机制解,得到节面1走向/倾角/滑动角为89°/82°/-173°,节面2走向/倾角/滑动角为358°/84°/-7°,最佳拟合深度14km,矩震级5.8.使用双差定位获取了94个M_L2.0以上地震的精定位结果,结果显示,主震位于北纬23.36°,东经118.62°,震源深度10.43km.根据小震分布和构造应力场反演得到余震断层面走向和倾角分别为88°和60°.研究认为,台湾海峡6.2级地震发震构造为近EW向的台湾浅滩断裂,受南海板块张裂拉伸发育而成,孕震过程中有东山隆起东缘断裂的参与,推测在菲律宾板块对欧亚板块NW-SE向挤压碰撞背景下,近EW向的台湾浅滩断裂与近NS向的东山隆起东缘断裂交接部位属于强度薄弱区,最终产生高倾角右旋走滑错动而引发地震,余震主要沿台湾浅滩断裂分布.  相似文献   

11.
On October 27, 2004, a moderate size earthquake occurred in the Vrancea seismogenic region (Romania). The Vrancea seismic zone is an area of concentrated seismicity at intermediate depths beneath the bending area of the southeastern Carpathians. The 2004 M w?=?6 Vrancea subcrustal earthquake is the largest seismic event recorded in Romania since the 1990 earthquakes. With a maximum macroseismic intensity of VII Medvedev–Sponheuer–Kárník (MSK-64) scale, the seismic event was felt to a distance of 600 km from the epicentre. This earthquake caused no serious damage and human injuries. The main purpose of this paper is to present the macroseismic map of the earthquake based on the MSK-64 intensity scale. After the evaluation of the macroseismic effects of this earthquake, an intensity dataset has been obtained for 475 sites in the Romanian territory. Also, the maximum horizontal accelerations recorded in the area by the K2 network are compared to the intensity values.  相似文献   

12.
用多震相地震走时成像法反演郯庐断裂带鲁苏皖段及邻区三维地壳速度结构。一些地区如郯庐断裂带临沭到定远及以东地区在中地壳的20~25km出现低速层,一些地区莫霍面埋深有变化。浅层速度结构的分段与断裂活动的分段相一致,表明新沂到泗洪是活动断裂的闭锁段。对比1668年山东郯城8级地震区和研究区的深部速度结构,结合与郯庐带相交的断裂、地震活动、活动断裂的闭锁段、中地壳低速层及莫霍面深度变化,综合判断郯庐断裂带江苏段未来可能发生大震的地区为33.4°~34.1°N,118.2°~118.8°E,重点是宿迁、沭阳、泗阳和泗洪。震级估计可达8级。  相似文献   

13.
There are seven strong earthquakes with M ≥ 6.5 that occurred in southern California during the period from 1980 to 2005. In this paper, these earthquakes were studied by the LURR (Load/Unload Response Ratio) method and the State Vector method to detect if there are anomalies before them. The results show that LURR anomalies appeared before 6 earthquakes out of 7 and State Vector anomalies appeared before all 7 earthquakes. For the LURR method, the interval between maximum LURR value and the forthcoming earthquake is 1 to 19 months, and the dominant mean interval is about 10.7 months. For the State Vector method, the interval between the maximum modulus of increment State Vector and the forthcoming earthquake is from 3 to 27 months, but the dominant mean interval between the occurrence time of the maximum State Vector anomaly and the forthcoming earthquake is about 4.7 months. The results also show that the minimum valid space window scale for the LURR and the State Vector is a circle with a radius of 100 km and a square of 3°×3°, respectively. These results imply that the State Vector method is more effective for short-term earthquake prediction than the LURR method, however the LURR method is more effective for location prediction than the State Vector method.  相似文献   

14.
Chin Array is a dense portable broadband seismic network to cover the entire continental China, and the Phase I is deployed along the north-south seismic belt in southwest China. In this study, we analyze seismic data recorded on the Chin Array following the February 15,2013 Chelyabinsk(Russia) meteor. This was the largest known object entering the Earth's atmosphere since the1908 Tunguska meteor. The seismic energy radiated from this event was recorded by seismic stations worldwide including the dense Chin Array that are more than 4000 km away. The weak signal from the meteor event was contaminated by a magnitude 5.8 Tonga earthquake occurred *20 min earlier. To test the feasibility of detecting the weak seismic signals from the meteor event, we compute vespagram and perform F-K analysis to the surface-wave data. We identify a seismic phase with back azimuth(BAZ) of 329.7° and slowness of 34.73 s/deg, corresponding to the surface wave from the Russian meteor event(BAZ *325.97°). The surface magnitude(MS) of the meteor event is 3.94 ± 0.18. We also perform similar analysis on the data from the broadband array F-net in Japan, and find the BAZ of the surface waves to be316.61°. With the different BAZs of Chin Array and F-net,we locate the Russian meteor event at 58.80°N, 58.72°E.The relatively large mislocation(*438 km as compared with 55.15°N, 61.41°E by others) may be a result of thebending propagation path of surface waves, which deviates from the great circle path. Our results suggest that the dense Chin Array and its subarrays could be used to detect weak signals at teleseismic distances.  相似文献   

15.
2017年8月8日的九寨沟MS7.0地震发生在岷江断裂、塔藏断裂及虎牙断裂交汇地区,地处青藏高原东北部的川甘交界地区,位于巴颜喀拉地块的东缘,地质构造复杂,对于九寨沟地震震中位置和发震断层的确定,存在不同意见.本文利用GNSS及升降轨InSAR观测,在获取九寨沟地震同震形变场的基础上,基于均匀弹性半无限位错模型,联合反演了发震断层的滑动分布模型,并计算了同震库仑应力变化.InSAR同震形变场显示,视线向最大沉降量和抬升量分别为0.21 m和0.16 m,形变场长轴为NW向,形变主要集中在断层西侧.距震中40 km和65 km的九寨和松潘两县,水平向的GNSS同震位移分别达14.31 mm和8.22 mm.联合GNSS和InSAR同震形变场反演得到的滑动分布主要集中在沿走向5~33 km,倾向2~20 km的范围内,平均滑动量为0.18 m,最大滑动量为0.91 m.发震断层长40 km,宽30 km,走向155°,倾角81°,滑动角-9.56°.同震位移场及滑移分布模型表明此次地震为一次左旋走滑为主的地震事件,地震破裂并未完全到达地表,与虎牙断裂北段的几何产状和运动学性质更为接近,结合精定位余震的分布,我们确定虎牙断裂北段为此次地震的发震断层,震中位于北纬33.25°,东经103.82°,震源深度10.86 km,矩震量为7.754×1018 Nm,相应的矩震级为MW6.5,与美国地调局和哈佛大学给出的震源机制解基本一致.同震库仑应力导致了虎牙断裂北段延长线的东北和西南两端应力增强,其中塔藏断裂的罗叉段和马磨段未来强震的危险性值得关注.  相似文献   

16.
Intensity of the Muya, 1957 earthquake is assessed in localities based on macroseismic data and in epicentral area based on effects in natural environment; it is analyzed how these assessments correspond to each other and to instrumental location of epicenter, hypocentral depth, and magnitude; it is evaluated, how seismodislocations of the Muya earthquake could serve as control of palaeoseismostructure parameters in this region. Spatial distribution of macroseismic effect confirms relatively deep source (20–22 km). Deep source agrees with anomalously short surface rupture length (not more than 25 km); only a part of the source exposed on the surface. Comparison with length of palaeoseismostructures shows that it is a regional feature. Epicentral intensity based on surface ruptures is assed X degrees in ESI2007 scale. Ignoring geological effects will underestimate epicentral intensity up to two degrees. Source mechanism with three sub-sources is in agreement with segmentation of surface ruptures. Sub-sources are of strike-slip type with small normal component; essential normal slip at surface is probably not representative for the source and is due to accommodation of strike-slip movement along with a system of sub-parallel en echelon ruptures under tension.  相似文献   

17.
The focal mechanism of Wuding earthquake with magnitude M=6.5 on October 24, 1995 is estimated by the method of inversion of seismic tensor in this paper. The two principal axes are nearly horizontal, the principal compressive axis is about N30°E, the nodal plane which strikes about N105°E (N75°W) is probably consistent with the actual rupture plane.  相似文献   

18.
Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain M S=8.1 (M W=7.8) earthquake is estimated by a new inversion method. The result shows that the earthquake is a very complex rupture event. The source rupture initiated at the hypocenter (35.95°N, 90.54°E, focal depth 10 km, by USGS NEIC), and propagated to the west at first. Then, in several minutes to a hundred minutes and over a large spatial range, several rupture growth points emerged in succession at the eastern end and in the central part of the finite fault. And then the source rupture propagated from these rupture growth points successively and, finally, stopped in the area within 50 km to the east of the centroid position (35.80°N, 92.91°E, focal depth 15 km, by Harvard CMT). The entire rupture lasted for 142 s, and the source process could be roughly separated into three stages: The first stage started at the 0 s and ended at the 52 s, lasting for 52 s and releasing approximately 24.4% of the total moment; The second stage started at the 55 s and ended at the 113 s, lasting for 58 s and releasing approximately 56.5% of the total moment; The third stage started at the 122 s and ended at the 142 s, lasting for 20 s and releasing approximately 19.1% of the total moment. The length of the ruptured fault plane is about 490 km. The maximum width of the ruptured fault plane is about 45 km. The rupture mainly occurred within 30 km in depth under the surface of the Earth. The average static slip in the underground rocky crust is about 1.2 m with the maximum static slip 3.6 m. The average static stress drop is about 5 MPa with the maximum static stress drop 18 MPa. The maximum static slip and the maximum stress drop occurred in an area within 50 km to the east of the centroid position.  相似文献   

19.
In this study, we have checked the location and focal depth of the Yecheng earthquake (m b = 6.0, maximum intensity VII) of February 14, 1980. The result shows that this is an intermediate event with a focal depth of 90 km. The microepicenter is located at 36. 4°N, 76, 9°E, while the macroepicenter is at 37.3°N, 76.9°E, 90 km to the north of the microepicenter. This is the first destructive intermediate event in China which led to a damage as severe as of intensity VII. The focal mechanism of the event is determined to be of thrust type. Combined with the analysis of seismological and geological data in surrounding area, the possible relation between the event and plate movement has been discussed. The result in this paper indicates that in some particular place, the destructive effect of intermediate event should be considered in seismic hazard assessment.  相似文献   

20.
利用于田震中300 km范围内的1个GPS连续站和12个GPS流动站数据,解算得到了2014年新疆于田MS7.3地震地表同震位移,并反演了发震断层滑动分布,探讨此次地震对周边断裂的影响.地表同震位移结果显示,GPS观测到的同震位移范围在平行发震断裂带的北东-南西向约210 km,垂直发震断裂带的北西-南东方向约为120 km,同震位移量大于10 mm的测站位于震中距约120 km以内;同震位移特征整体表现为北东-南西方向的左旋走滑和北西-南东方向的拉张特征,其中在北东-南西方向,I069测站位移最大,约为32.1 mm,在北西-南东方向,XJYT测站位移最大,约为28.1 mm;位错反演结果表明,最大滑动位于北纬36.05°,东经82.60°,位于深部约16.6 km,最大错动量为2.75 m,反演震级为MW7.0,同震错动呈椭圆形分布,以左旋走滑为主并具有正倾滑分量,两者最大比值约为2.5:1,同震错动延伸至地表,并向北东方向延伸,总破裂长度约50 km,地表最大错动约1.0 m;同震水平位移场模拟结果显示贡嘎错断裂、康西瓦断裂和普鲁断裂等不同位置主应变特征具有差异性,这种差异特征是否影响断裂带以及周围区域的应力构造特征,值得关注.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号