首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A survey of metallic ions detected by the Bennett Ion Mass Spectrometers flown on the Atmosphere Explorer satellites, including both circular and eccentric orbital configurations, shows that patches of these ions of meteoric origin are frequently present during magnetically active periods on the bottomside of the F-layer at middle and high latitudes. In particular the F-region metals statistically tend to appear at night in the vicinity of the main ionospheric trough (in a band of invariant latitudes approx. 10 degrees wide) and on the day side of the polar cap. These distributions were previously associated with the expected dynamics of ions in the F-region above 140 km where meridional neutral wind drag and convection electric fields are the dominant ion transport mechanisms. However, the main meteor deposition layer—the presumed source region of the metals—is located below 100 km where these transport mechanisms do not prevail. It is demonstrated that the Pedersen ion drifts driven by intense electric fields such as those associated with sub-auroral ion drifts (SAID) are sufficient to transport the long-lived metallic ions upward from the main meteor layer to altitudes where the drag of equatorial directed neutral winds and electric field convection can support them against the downward pull of gravity and transport them to other locations. The spatial and temporal distribution of the middle and high latitude F-region metals are consistent with the known characteristics of the electric fields and with the expected F-region ion dynamics.  相似文献   

2.
A. R. Yeates 《Solar physics》2014,289(2):631-648
Coupled flux transport and magneto-frictional simulations are extended to simulate the continuous magnetic-field evolution in the global solar corona for over 15 years, from the start of Solar Cycle 23 in 1996. By simplifying the dynamics, our model follows the build-up and transport of electric currents and free magnetic energy in the corona, offering an insight into the magnetic structure and topology that extrapolation-based models cannot. To enable these extended simulations, we have implemented a more efficient numerical grid, and have carefully calibrated the surface flux-transport model to reproduce the observed large-scale photospheric radial magnetic field, using emerging active regions determined from observed line-of-sight magnetograms. This calibration is described in some detail. In agreement with previous authors, we find that the standard flux-transport model is insufficient to simultaneously reproduce the observed polar fields and butterfly diagram during Cycle 23, and that additional effects must be added. For the best-fit model, we use automated techniques to detect the latitude–time profile of flux ropes and their ejections over the full solar cycle. Overall, flux ropes are more prevalent outside of active latitudes but those at active latitudes are more frequently ejected. Future possibilities for space-weather prediction with this approach are briefly assessed.  相似文献   

3.
When the moon enters the plasma sheet of the earth, high energy electron fluxes are incident upon the lunar surface. Some regions are in the shadow of these fluxes due to topographic features. Large electric fields were found at similar shadow boundaries created by the electron beams incident upon an obstacle in the laboratory. Potentials on the beam-illuminated surface follow beam energies and were negative relative to potentials on the shadowed surface. Charged dust particles in the beam-illuminated region were observed to move into the shadow due to these electric fields. The oblique incidence of the electron fluxes upon craters can lead to a portion of the crater surface in the beam-illumination and another portion in the shadow. Dust particles on the slopes of the craters can thus experience large electric fields and transport downhill to fill the bottom of the craters. This mechanism may contribute to the formation of dust ponds observed by the NEAR-Shoemaker spacecraft at Eros, and might be at work on the lunar surface as well. In the laboratory, we used electron fluxes with energies up to 90 eV to bombard an insulating half-pipe. An angle of incidence was chosen so that the impact occurred on farside of the slope and left the bottom and the nearside slope in the shadow. Dust particles on the beam-illuminated slope moved down along the surface toward the bottom of the half-pipe and hopped to the bottom as well, while particles on the shadowed slope remained at rest.  相似文献   

4.
Estimates of the photospheric magnetic, electric, and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and using the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms, which we obtain from the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated for using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly, reaching at best a modest underestimation. We also discuss the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, neither of which has received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered, a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.  相似文献   

5.
Spectral observations of solar velocity fields made during a partial solar eclipse are described. Continuum intensity measurements at the lunar limb allow the modulation transfer function to be derived and the true spatial power spectrum of the velocity field to be reconstructed. The oscillatory and granular components are separated by applying spatial filters cutting off at 3.7. The oscillatory component values are in good agreement with those of Canfield (1976) but the granular component has substantially more power and a smaller height gradient. The discrepancy can be resolved by noting the uncertainties of the seeing corrections and of the separation into components in the work of Canfield.However on the basis of this limited material, we would go no further than to claim that the height dependence of the granular velocities remains an open question.Mitteilung aus dem Fraunhofer-Institut Nr. 157.  相似文献   

6.
We investigate the electrostatic transport of charged dust in the photoelectron layer over the dayside surface of an asteroid. Micron-sized dust particles may be levitated above the surface in the photoelectron layer. Horizontal transport within the layer can then lead to net deposition of dust into shadowed regions where the electric field due to the photoelectron layer disappears. We apply a 2D numerical model simulating charged dust dynamics in the near-surface daytime plasma environment of Asteroid 433 Eros to the formation of dust deposits in craters. We find that dust tends to collect in craters and regions of shadow. This electrostatic dust transport mechanism may contribute to the formation of smooth dust ponds observed by the NEAR-Shoemaker spacecraft at Eros. The size distribution of transported dust depends on the particle density and work function, and the work function of the surface and solar wind electron temperature and density. With reasonable values for these parameters, μm-sized and smaller particles are levitated at Eros. Micrometeoroid bombardment is not a sufficient source mechanism for electrostatic transport to create the Eros dust ponds. Laboratory measurements of dust in a plasma sheath show that dust launched off the surface by direct electrostatic levitation can provide a sufficient source for transport to produce the observed Eros ponds.  相似文献   

7.
Identifying generic physical mechanisms responsible for the generation of magnetic fields and turbulence in differentially rotating flows is fundamental to understand the dynamics of astrophysical objects such as accretion disks and stars. In this paper, we discuss the concept of subcritical dynamo action and its hydrodynamic analogue exemplified by the process of nonlinear transition to turbulence in non‐rotating wall‐bounded shear flows. To illustrate this idea, we describe some recent results on nonlinear hydrodynamic transition to turbulence and nonlinear dynamo action in rotating shear flows pertaining to the problem of turbulent angular momentum transport in accretion disks. We argue that this concept is very generic and should be applicable to many astrophysical problems involving a shear flow and non‐axisymmetric instabilities of shearinduced axisymmetric toroidal velocity or magnetic fields, such as Kelvin‐Helmholtz, magnetorotational, Tayler or global magnetoshear instabilities. In the light of several recent numerical results, we finally suggest that, similarly to a standard linear instability, subcritical MHD dynamo processes in high‐Reynolds number shear flows could act as a large‐scale driving mechanism of turbulent flows that would in turn generate an independent small‐scale dynamo. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Wind flows and collimated jets are believed to be a feature of a range of disc accreting systems. These include active galactic nuclei, T Tauri stars, X-ray binaries and cataclysmic variables. The observed collimation implies large-scale magnetic fields and it is known that dipole-symmetry fields of sufficient strength can channel wind flows emanating from the surfaces of a disc. The disc inflow leads to the bending of the poloidal magnetic field lines, and centrifugally driven magnetic winds can be launched when the bending exceeds a critical value. Such winds can result in angular momentum transport at least as effective as turbulent viscosity, and hence they can play a major part in driving the disc inflow.
It is shown here that if the standard boundary condition of vanishing viscous stress close to the stellar surface is applied, together with the standard connection between viscosity and magnetic diffusivity, then poloidal magnetic field bending increases as the star is approached with a corresponding increase in the wind mass loss rate. A significant amount of material can be lost from the system via the enhanced wind from a narrow region close to the stellar surface. This occurs for a Keplerian angular velocity distribution and for a modified form of angular velocity, which allows for matching of the disc and stellar rotation rates through a boundary layer above the stellar surface. The enhanced mass loss is significantly affected by the behaviour of the disc angular velocity as the stellar surface is approached, and hence by the stellar rotation rate. Such a mechanism may be related to the production of jets from the inner regions of disc accreting systems.  相似文献   

9.
In this paper we consider a random motion of magnetic bright points (MBP) associated with magnetic fields at the solar photosphere. The MBP transport in the short time range [0–20 minutes] has a subdiffusive character as the magnetic flux tends to accumulate at sinks of the flow field. Such a behavior can be rigorously described in the framework of a continuous time random walk leading to the fractional Fokker-Planck dynamics. This formalism, applied for the analysis of the solar subdiffusion of magnetic fields, generalizes the Leighton’s model.   相似文献   

10.
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties.We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration.We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.  相似文献   

11.
Numerical simulation of impact cratering on granular material   总被引:1,自引:0,他引:1  
Koji Wada  Hiroki Senshu 《Icarus》2006,180(2):528-545
A new numerical code based on the Distinct Element Method (DEM) is developed to study the impact cratering processes on granular material. This code has a potential advantage to simulate the cratering process on granular material, since the movement of discrete particles can be treated. To show the physical plausibility of this code, we conduct 3-D numerical simulations of vertical impact into granular material targets that consist of 384,000 particles, and compare the results with those from experimental studies. It is shown that the excavation stage of cratering derived from experimental studies is represented well by our simulation: the size of the crater cavity, and the ejecta velocity and angle distributions are consistent with those obtained in laboratory experiments. The impact simulation code developed in this study is thus suggested to be useful for the analysis of the impact cratering process on granular material.  相似文献   

12.
Using an electron transport model, we calculate the electron density of the electron impact-produced nighttime ionosphere of Mars and its spatial structure. As input we use Mars Global Surveyor electron measurements, including an interval when accelerated electrons were observed. Our calculations show that regions of enhanced ionization are localized and occur near magnetic cusps. Horizontal gradients in the calculated ionospheric electron density on the night side of Mars can exceed 104 cm−3 over a distance of a few tens of km; the largest gradients produced by the model are over 600 cm−3 km−1. Such large gradients in the plasma density have several important consequences. These large pressure gradients will lead to localized plasma transport perpendicular to the ambient magnetic field which will generate horizontal currents and electric fields. We calculate the magnitude of these currents to be up to 10 nA/m2. Additionally, transport of ionospheric plasma by neutral winds, which vary in strength and direction as a function of local time and season, can generate large (up to 1000 nA/m2) and spatially structured horizontal currents where the ions are collisionally coupled to the neutral atmosphere while electrons are not. These currents may contribute to localized Joule heating. In addition, closure of the horizontal currents and electric fields may require the presence of vertical, field-aligned currents and fields which may play a role in high altitude acceleration processes.  相似文献   

13.
Star formation is thought to be triggered by gravitational collapse of the dense cores of molecular clouds. Angular momentum conservation during the collapse results in the progressive increase of the centrifugal force, which eventually halts the inflow of material and leads to the development of a central mass surrounded by a disc. In the presence of an angular momentum transport mechanism, mass accretion onto the central object proceeds through this disc, and it is believed that this is how stars typically gain most of their mass. However, the mechanisms responsible for this transport of angular momentum are not well understood. Although the gravitational field of a companion star or even gravitational instabilities (particularly in massive discs) may play a role, the most general mechanisms are turbulence viscosity driven by the magnetorotational instability (MRI), and outflows accelerated centrifugally from the surfaces of the disc. Both processes are powered by the action of magnetic fields and are, in turn, likely to strongly affect the structure, dynamics, evolutionary path and planet-forming capabilities of their host discs. The weak ionisation of protostellar discs, however, may prevent the magnetic field from effectively coupling to the gas and shear and driving these processes. Here I examine the viability and properties of these magnetically-driven processes in protostellar discs. The results indicate that, despite the weak ionisation, the magnetic field is able to couple to the gas and shear for fluid conditions thought to be satisfied over a wide range of radii in these discs.  相似文献   

14.
Feynman's approach has been used to derive the equation of dynamics for type II superconductors from the Schr?dinger equation. A closed set of equations for the study of vortex dynamics has been obtained. These equations have been used for calculating electric and magnetic fields inside the core of neutron stars. In particular, the contribution of vortices to the generation of electric and magnetic fields inside the core of the star is explicitly displayed.  相似文献   

15.
A series of experiments is underway using the Omega laser to examine radiative shocks of astrophysical relevance. In these experiments, the laser accelerates a thin layer of low-Z material, which drives a strong shock into xenon gas. One-dimensional numerical simulations using the HYADES radiation hydrodynamics code predict that radiation cooling will cause the shocked xenon to collapse spatially, producing a thin layer of high density (i.e., a collapsed shock). Preliminary experimental results show a less opaque layer of shocked xenon than would be expected assuming that all the xenon accumulates in the layer and that the X-ray source is a pure Kα source. However, neither of these assumptions is strictly correct. Here we explore whether radial mass and/or energy transport may be significant to the dynamics of the system. We report the results of two-dimensional numerical simulations using the ZEUS-2D astrophysical fluid dynamics code. Particular attention is given to the simulation method.  相似文献   

16.
The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot, collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles.A particularly interesting feature of magnetospheric electric fields is the fact that they can have substantial components along the geomagnetic field. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic-mirror effect, anomalous resistivity, collisionless thermoelectric effect and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May, 1978.Reprinted, with due permission fromRev. Geophys. Space Phys. 15, (1977), 457  相似文献   

17.
Flux expulsion is an important consequence of the interaction of magnetic fields with fluid convection and has been well studied for particular cases of steady, single-cell flows. Here we examine a related phenomenon in inhomogeneous turbulence using direct numerical simulations. To understand our numerical results, we analyse average properties of our model, and obtain mean transport coefficients which can be used to describe the approach of the system to its final state. For the kinematic problem these transport coefficients give an excellent prediction of the expulsion process; however, the enhanced transport is suppressed by dynamical back-reaction of the Lorentz force. Finally, we discuss the astrophysical implications for magnetic fields in stellar convection zones. Segregation of magnetic fields from turbulent motion not only allows strong toroidal fields to accumulate in regions of convective overshoot but also permits significant poloidal fields to be maintained by dynamo action in stars like the Sun.  相似文献   

18.
The axisymmetric component of the large-scale solar magnetic fields has a pronounced poleward branch at higher latitudes. In order to clarify the origin of this branch we construct an axisymmetric model of the passive transport of the mean poloidal magnetic field in the convective zone, including meridional circulation, anisotropic diffusivity, turbulent pumping and density pumping. For realistic values of the transport coefficients we find that diffusivity is prevalent, and the latitudinal distribution of the field at the surface simply reflects the conditions at the bottom of the convective zone. Pumping effects concentrate the field to the bottom of the convective zone; a significant part of this pumping occurs in a shallow subsurface layer, normally not resolved in dynamo models. The phase delay of the surface poloidal field relative to the bottom poloidal field is found to be small. These results support the double dynamo wave models, may be compatible with some form of a mixed transport scenario, and exclude the passive transport theory for the origin of the polar branch.  相似文献   

19.
We study the ion dynamics in a magnetic field reversal with a constant electric field and with a model of three dimensional magnetic turbulence. By computing the mean square displacements in the plane of the current sheet we find superdiffusive and superballistic transport regimes. Since velocity increases with the length of the free path, we have accelerated Lévyflights. The possibility to generate power law velocity distribution functions is pointed out, as well as the long memory effects and non local properties of ion transport. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号