首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present the results of our Thousand Asteroid Light Curve Survey (TALCS) conducted with the Canada-France-Hawaii Telescope in September 2006. Our untargeted survey detected 828 Main Belt asteroids to a limiting magnitude of g22.5 corresponding to a diameter range of 0.4 km . Of these, 278 objects had photometry of sufficient quality to perform rotation period fits. We debiased the observations and light curve fitting process to determine the true distribution of rotation periods and light curve amplitudes of Main Belt asteroids. We confirm a previously reported excess in the fraction of fast rotators but find a much larger excess of slow rotating asteroids (∼15% of our sample). A few percent of objects in the TALCS size range have large light curve amplitudes of ∼1 mag. Fits to the debiased distribution of light curve amplitudes indicate that the distribution of triaxial ellipsoid asteroid shapes is proportional to the square of the axis ratio, (b/a)2, and may be bi-modal. Finally, we find six objects with rotation periods that may be less than 2 h with diameters between 400 m and 1.5 km, well above the break-up limit for a gravitationally-bound aggregate. Our debiased data indicate that this population represents <4% of the Main Belt in the 1-10 km size range.  相似文献   

2.
A survey of 62 small near-Earth asteroids was conducted to determine the rotation state of these objects and to search for rapid rotation. Since results for 9 of the asteroids were previously published (Pravec, P., Hergenrother, C.W., Whiteley, R.J., Šarounová, L., Kušnirák, P., Wolf, M. [2000]. Icarus 147, 477-486; Pravec, P. et al. [2005] Icarus 173, 108-131; Whiteley, R.J., Tholen, D.J., Hergenrother, C.W. [2002a]. Icarus 157, 139-154; Hergenrother, C.W., Whiteley, R.J., Christensen, E.J. [2009]. Minor Planet Bull. 36, 16-18.), this paper will present results for the remaining 53 objects. Rotation periods significantly less than 2 h are indicative of intrinsic strength in the asteroids, while periods longer than 2 h are typically associated with gravitationally bound aggregates. Asteroids with absolute magnitude (H) values ranging from 20.4 to 27.4 were characterized. The slowest rotator with a definite period is 2004 BW18 with a period of 8.3 h, while 2000 DO8 and 2000 WH10 are the fastest with periods of 1.3 min. A minimum of two-thirds of asteroids with H > 20 are fast rotating and have periods significantly faster than 2.0 h. The percentage of rapid rotators increases with decreasing size and a minimum of 79% of H ? 24 objects are rapid rotators. Slowly-rotating objects, some with periods as long as 10-20 h, make up a small though significant fraction of the small asteroid population. There are three fast rotators with relatively large possible diameters (D): 2001 OE84 with 470 ? D ? 820 m (Pravec, P., Kušnirák, P., Šarounová, L., Harris, A.W., Binzel, R.P., Rivkin, A.S. [2002b]. Large coherent Asteroid 2001 OE84. In: Warmbein, B. (Eds.), Proceedings of Asteroids, Comets, Meteors - ACM 2002. Springer, Berlin, pp. 743-745), 2001 FE90 with 265 ? D ? 594 m (Hicks, M., Lawrence, K., Rhoades, H., Somers, J., McAuley, A., Barajas, T. [2009]. The Astronomer’s Telegrams, # 2116), and 2001 VF2 with a possible D of 145 ? D ? 665 m. Using the diameters derived from nominal absolute magnitudes and albedos, the remainder of the fast rotating population is completely consistent with D ? 200 m. Even when taking into account the largest possible uncertainties in the determination of diameters, the remainder must all have D ? 400 m. With the exceptions of 2001 OE84, this result agrees with previous upper diameter limits for fast rotators in Pravec and Harris (Pravec, P., Harris, A.W. [2000]. Icarus 148, 589-593) and Whiteley et al. (Whiteley, R.J, Tholen, D.J., Hergenrother, C.W. [2002a]. Icarus 157, 139-154.  相似文献   

3.
Anderson and Schubert [2007. Saturn's Gravitational field, internal rotation, and interior structure. Science 317, 1384-1387 (paper I)] proposed that Saturn's rotation period can be ascertained by minimizing the dynamic heights of the 100 mbar isosurface with respect to the geoid; they derived a rotation period of 10 h 32 m 35 s. We investigate the same approach for Jupiter to see if the Jovian rotation period is predicted by minimizing the dynamical heights of its isobaric (1 bar pressure level) surface using zonal wind data. A rotation period of 9 h 54 m 29.7 s is found. Further, we investigate the minimization method by fitting Pioneer and Voyager occultation radii for both Jupiter and Saturn. Rotation periods of 9 h 55 m 30 s and 10 h 32 m 35 s are found to minimize the dynamical heights for Jupiter and Saturn, respectively. Though there is no dynamical principle requiring the minimization of the dynamical heights of an isobaric surface, the successful application of the method to Jupiter lends support to its relevance for Saturn.We derive Jupiter and Saturn rotation periods using equilibrium theory to explain the difference between equatorial and polar radii. Rotation periods of 9 h 55 m 20 s and 10 h 31 m 49 s are found for Jupiter and Saturn, respectively. We show that both Jupiter's and Saturn's shapes can be derived using solid-body rotation, suggesting that zonal winds have a minor effect on the planetary shape for both planets.The agreement in the values of Saturn's rotation period predicted by the different approaches supports the conclusion that the planet's period of rotation is about 10 h 32 m.  相似文献   

4.
Both Uranus and Neptune are thought to have strong zonal winds with velocities of several 100 m s−1. These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets’ radio signals and of fits to the planets’ magnetic fields; 17.24 h and 16.11 h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet’s deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of ∼16.58 h for Uranus and ∼17.46 h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds.  相似文献   

5.
R. Gil-Hutton  A. Brunini 《Icarus》2008,193(2):567-571
In this paper we search for photometric data of asteroids in the Hilda region in the Moving Object Catalogue of the Sloan Digital Sky Survey to find the spectral characteristics of small members of this group. We found that the correlation between size and spectral slope previously suggested for Hilda asteroids is correct only for large objects (H<12) but it is not supported by data obtained for the small ones. The best possibility to explain this behavior is that a space weathering process affecting the surface properties of these primitive objects is operating, modulated by a collisional resurfacing process affected by the lack of small projectiles in the population. Despite the intrinsic limitations of the few band photometry of the Sloan Digital Sky Survey, the analysis presented is based mainly in the detection of spectral slopes providing enough good indication about the taxonomic type of these asteroids and making us confident about our conclusions.  相似文献   

6.
The results of photometric observations of eight main-belt asteroids with low surface albedo are presented. The magnitude-phase dependences including low phase angles (<1 deg) have been obtained for Asteroids 76 Freia (down to phase angle 0.1 deg, P-type), 190 Ismene (0.3 deg, P-type), 303 Josephina (0.2 deg, C-type), 309 Fraternitas (0.1 deg, C-type), 313 Chaldaea (0.1 deg, C-type), 444 Gyptis (0.8 deg, P-type), 615 Roswitha (0.1 deg, C-type), and 954 Li (0.03 deg, FCX-type). The behavior of brightness in the range of opposition effect is found to be practically linear for 190 Ismene with amplitude of opposition effect only 0.03 mag. Amplitudes of the opposition effect for other asteroids are close to a mean for this type. The obtained data allowed us also to determine the rotation periods of asteroids: 303 Josephina (12.497±0.001 h), 309 Fraternitas (11.205±0.005 h), 615 Roswitha (4.422±0.001 h) and 954 Li (7.207±0.002 h). The color indexes B-V, V-R and R-I have been determined for some asteroids.  相似文献   

7.
Laboratory impact experiments have found that the shape of fragments over a broad size range is distributed around the mean value of the axial ratio 2:√2:1, which is independent of a wide range of experimental conditions. We report the shape statistics of boulders with size of 0.1-30 m on the surface of Asteroid 25143 Itokawa based on high-resolution images obtained by the Hayabusa spacecraft in order to investigate whether their shape distribution is similar to the distribution obtained for fragments (smaller than 0.1 m) in laboratory impact experiments. We also investigated the shapes of boulders with size of 0.1-150 m on Asteroid 433 Eros using a few arbitrary selected images by the NEAR spacecraft, in order to compare those with the shapes on Asteroid Itokawa. In addition, the shapes of small- and fast-rotating asteroids (diameter <200 m and rotation period <1 h), which are natural fragments from past impact events among asteroids, were inferred from archived light curve data taken by ground-based telescopes. The results show that the shape distributions of laboratory fragments are similar to those of the boulders on Eros and of the small- and fast-rotating asteroids, but are different from those on Itokawa. However, we propose that the apparent difference between the boulders of Itokawa and the laboratory fragments is due to the migration of boulders. Therefore, we suggest that the shape distributions of the boulders ranging from 0.1 to 150 m in size and the small- and fast-rotating asteroids are similar to those obtained for the fragments generated in laboratory impact experiments.  相似文献   

8.
A. Carbognani 《Icarus》2010,205(2):497-504
In this paper we compare the observable properties of 962 numbered MBAs (Main Belt Asteroids) of Tholen/SMASSII C and S class, with diameter in the range 1-500 km, not belonging to families or binary systems. Above 20 km, the diameters distributions of C and S are similar while under 20 km there is a clear observative bias in favour of small S asteroids which prevents a direct comparison. There is a significant correlation between rotation frequency and diameter both for C and S: if the diameter decreases the rotation frequency tends to increase. There is also a significant correlation between the lightcurve amplitude and the diameter for both samples: if the diameter decreases the lightcurve amplitude tends to increase. For larger diameter the C amplitude tends to be systematically higher than S amplitude of about 0.1 magnitude, but the difference is not very significant. Between 48 and 200 km, the C asteroids have a rotation frequency distribution compatible with a Maxwellian. On the other side, for S asteroids, the compatibility with the Maxwellian concerns diameters greater than 33 km. Considering the rotational properties and the lightcurve amplitude it appears that there are no substantial differences between the samples of C and S asteroids taken into account, and this indicates a good homogeneity in the processes of collisional evolution.  相似文献   

9.
The Asteroid Photometric Catalogue was used to redetermine the rotation periods of all asteroids with data in the catalogue. The quality of the period determinations was divided into five groups. The total number of asteroids studied were 710 and 225 of these were considered not to be observed enough to yield any rotation period (code 0). For 121 asteroids the uncertainty was several hours (code d) and for 180 the uncertainty was less than one hour (code c). Code a was used for asteroids with reliable pole determinations (47 asteroids) and code b was used for asteroids with very reliable synodic rotation periods (137 asteroids). Some statistic properties of the rotation periods of asteroids are presented.  相似文献   

10.
The Asteroid Photometric Catalogue was used to redetermine the rotation periods of all asteroids with data in the catalogue. The quality of the period determinations was divided into five groups. The total number of asteroids studied were 710 and 225 of these were considered not to be observed enough to yield any rotation period (code 0). For 121 asteroids the uncertainty was several hours (code d) and for 180 the uncertainty was less than one hour (code c). Code a was used for asteroids with reliable pole determinations (47 asteroids) and code b was used for asteroids with very reliable synodic rotation periods (137 asteroids). Some statistic properties of the rotation periods of asteroids are presented.  相似文献   

11.
In order to gain further insight into their surface compositions and relationships with meteorites, we have obtained spectra for 17 C and X complex asteroids using NASA’s Infrared Telescope Facility and SpeX infrared spectrometer. We augment these spectra with data in the visible region taken from the on-line databases. Only one of the 17 asteroids showed the three features usually associated with water, the UV slope, a 0.7 μm feature and a 3 μm feature, while five show no evidence for water and 11 had one or two of these features. According to DeMeo et al. (2009), whose asteroid classification scheme we use here, 88% of the variance in asteroid spectra is explained by continuum slope so that asteroids can also be characterized by the slopes of their continua. We thus plot the slope of the continuum between 1.8 and 2.5 μm against slope between 1.0 and 1.75 μm, the break at ∼1.8 μm chosen since phyllosilicates show numerous water-related features beyond this wavelength. On such plots, the C complex fields match those of phyllosilicates kaolinite and montmorillonite that have been heated to about 700 °C, while the X complex fields match the fields for phyllosilicates montmorillonite and serpentine that have been similarly heated. We thus suggest that the surface of the C complex asteroids consist of decomposition products of kaolinite or montmorillonite while for the X complex we suggest that surfaces consist of decomposition products of montmorillonite or serpentine. On the basis of overlapping in fields on the continuum plots we suggest that the CI chondrites are linked with the Cgh asteroids, individual CV and CR chondrites are linked with Xc asteroids, a CK chondrite is linked with the Ch or Cgh asteroids, a number of unusual CI/CM meteorites are linked with C asteroids, and the CM chondrites are linked with the Xk asteroids. The associations are in reasonable agreement with chondrite mineralogy and albedo data.  相似文献   

12.
Schubart's model of a planar, elliptic restricted three-body problem is used to study the orbital motion of the Hilda asteroids from thePalomar-Leiden Survey. The 3:2 resonant coupling to Jupiter of some of these small asteroids are found to be stable. However, some of the small asteroids with absolute magnitudeg>15 have large amplitude of variation in their orbital elements in one libration period. Since the lifetime scales against catastrophic collision of the Hilda asteroids are estimated to be several times larger than those of the main belt objects, a significant portion of these resonant asteroids could be the original members of the Hilda group. From this point of view, it is suggested that such size-dependence of resonant orbital motions might be the result of the cosmogonic effects ofjet stream accretion.  相似文献   

13.
A. Carbognani 《Icarus》2011,211(1):519-527
A rotating frequency analysis in a previous paper, showed that two samples of C and S-type asteroids belonging to the Main Belt, but not to any families, present two different values for the transition diameter to a Maxwellian distribution of the rotation frequency, respectively 48 and 33 km. In this paper, after a more detailed statistical analysis, aiming to verify that the result is physically relevant, we found a better estimate for the transition diameter, respectively DC = 44 ± 2 km and DS = 30 ± 1 km. The ratio between these estimated transition diameters, DC/DS = 1.5 ± 0.1, can be supported with the help of the YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect, although other physical causes cannot be completely ruled out.In this paper we have derived a simple scaling law for YORP which, taking into account the different average heliocentric distance, the bulk density, the albedo and the asteroid “asymmetry surface factor”, has enabled us to reasonably justify the ratio between the diameters transition of C-type and S-type asteroids. The same scaling law can be used to estimate a new ratio between the bulk densities of S and C asteroids samples (giving ρS/ρC ≈ 2.9 ± 0.3), and can explain why the asteroids near the transition diameter have about the same absolute magnitude. For C-type asteroids, using the found density ratio and other estimates of S-type density, it is also possible to estimate an average bulk density equal to 0.9 ± 0.1 g cm−3, a value compatible with icy composition. The suggested explanation for the difference of the transition diameters is a plausible hypothesis, consistent with the data, but it needs to be studied more in depth with further observations.  相似文献   

14.
We study the dynamical evolution of the Hilda group of asteroids trough numerical methods, performing also a collisional pseudo-evolution of the present population, in order to calculate the rate of evaporation and its contribution to the cratering history of the Galilean satellites. If the present population of small asteroids in the Hilda's region follows the same size distribution observed at larger radii, we find that this family is the main contributor to the production of small craters (i.e., crater with diameters d∼4 km) on the Galilean system, overcoming the production by Jupiter Family Comets and by Trojan asteroids. The results of this investigation encourage further observational campaigns, in order to determine the size distribution function of small Hilda asteroids.  相似文献   

15.
CCD‐photometry was performed for two Jupiter Trojan asteroids (911) Agamemnon and (4709) Ennomos for which the diameters were obtained from occultation events. New data on rotation periods, lightcurve amplitudes, color indices, magnitude–phase slopes, and absolute magnitudes were obtained for these asteroids. We have used the diameters from occultations (166 and 99 km) and new data on absolute magnitudes at the instant occultation (7.95 and 8.85 mag) to revise their albedos to 0.042 (911 Agamemnon) and 0.052 (4709 Ennomos).  相似文献   

16.
V-type asteroids in the inner Main Belt (a < 2.5 AU) and the HED meteorites are thought to be genetically related to one another as collisional fragments from the surface of the large basaltic Asteroid 4 Vesta. We investigate this relationship by comparing the near-infrared (0.7-2.5 μm) spectra of 39 V-type asteroids to laboratory spectra of HED meteorites. The central wavelengths and areas spanned by the 1 and 2 μm pyroxene-olivine absorption bands that are characteristic of planetary basalts are measured for both the asteroidal and meteoritic data. The band centers are shown to be well correlated, however the ratio of areas spanned by the 1 and 2 μm absorption bands are much larger for the asteroids than for the meteorites. We argue that this offset in band area ratio is consistent with our currently limited understanding of the effects of space weathering, however we cannot rule out the possibility that this offset is due to compositional differences. Several other possible causes of this offset are discussed.Amongst these inner Main Belt asteroids we do not find evidence for non-Vestoid mineralogies. Instead, these asteroids seem to represent a continuum of compositions, consistent with an origin from a single differentiated parent body. In addition, our analysis shows that V-type asteroids with low inclinations (i < 6°) tend to have band centers slightly shifted towards long wavelengths. This may imply that more than one collision on Vesta’s surface was responsible for producing the observed population of inner belt V-type asteroids. Finally, we offer several predictions that can be tested when the Dawn spacecraft enters into orbit around Vesta in the summer of 2011.  相似文献   

17.
M.D. Melita  G. Strazzulla 《Icarus》2009,203(1):134-139
The Trojan asteroids orbit about the Lagrangian points of Jupiter and the residence times about their present location are very long for most of them. If these bodies originated in the outer Solar System, they should be mainly composed of water ice, but, in contrast with comets, all the volatiles close to the surface would have been lost long ago. Irrespective of the rotation period, and hence the surface temperature and ice sublimation rate, a dust layer exists always on the surface. We show that the timescale for resurfacing the entire surface of the Trojan asteroids is similar to that of the flattening of the red spectrum of the new dust by solar-proton irradiation. This, if the cut-off radius of the size distribution of the impacting objects is between 1 mm and 1 m and its slope is −3, for the entire size range. Therefore, the surfaces of most Trojan asteroids should be composed mainly of unirradiated dust.  相似文献   

18.
An analysis of the observations of the minor planets (153) Hilda, (279) Thule and (334) Chicago yields the following values for the reciprocal mass of Jupiter: (153) Hilda 1047.378±0.019, (279) Thule 1047.347±0.023, (334) Chicago 1047.325±0.010. A possible error in the mass of Saturn that might affect these results is discussed.Presented at IAU Colloquium No. 9, The IAU System of Astronomical Constants, Heidelberg, Germany, August 12–14, 1970.  相似文献   

19.
The European Near Earth Asteroid Research (EURONEAR) is a project which envisions to build a coordinated network which will follow-up and recover potentially hazardous asteroids (PHAs) and near earth asteroids (NEAs). We aim to include in EURONEAR two automated 1 m telescopes located in Chile and Europe, in addition to other non-permanent facilities. Astrometry will be the main aim of the project in order to secure and follow-up newly discovered NEAs, also to recover PHAs at their second or following oppositions, while photometry of bright PHAs will bring information on their physical properties. In this paper, first we review briefly the existent and past NEAs programs. Next, we include the results obtained in 2006 from three observing runs at Pic du Midi using the 1 m telescope, Haute-Provence employing the 1.2 m telescope, and Bucharest using a small 23 cm telescope. These add a total of 153 positions for 16 PHAs and NEAs, which were accepted by Minor Planet Center. Recently, a 1 m telescope was allocated by ESO in La Silla to be automated and used as the Southern dedicated facility by EURONEAR.  相似文献   

20.
The rotation period derived by Mueller and Samarasinha (Mueller, B.E.A., Samarasinha, N.H. [2002]. Earth Moon Planets 90, 463-471) of the Deep Space 1 (DS1) mission target, Comet 19P/Borrelly, using ground-based data from July 28 to August 1, 2000, is improved by two orders of magnitude. This precision is reached in a multistep process.Combining all available ground-based data in 2000 decreases the error by an order of magnitude. Next, assuming that the rotation period did not change between 2000 and 2001, constraints from the HST 2001 data (Weaver, H.A., Stern, S.A., Parker, J.Wm. [2003]. Astron. J. 126, 444-451) yield three possible rotation periods: P = 1.088 ± 0.003 days, P = 1.108 ± 0.002 days, and P = 1.135 ± 0.003 days, which are consistent with our initial derivation of P = 1.08 ± 0.04 days (Mueller, B.E.A., Samarasinha, N.H. [2002]. Earth Moon Planets 90, 463-471).These three periods are further refined and the error bars further improved by another order of magnitude by linking the combined ground-based data from 2000 to the nuclear orientation of Borrelly at the DS1 encounter in 2001 (see Table 2). Due to aliasing, there are seven possible rotation periods around P = 1.088 days, five possible periods around P = 1.108 days, and six possible periods around P = 1.135 days, with precisions of the order of 0.0002 days (≈17 s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号