首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, an unidentified 3.3-3.4 μm feature found in the solar occultation spectra of the atmosphere of Titan observed by Cassini/VIMS was tentatively attributed to the C-H stretching mode of aliphatic hydrocarbon chains attached to large organic molecules, but without properly extracting the feature from adjacent influences of strong CH4 and weak C2H6 absorptions (Bellucci et al., 2009). In this work, we retrieve the detailed spectral feature using a radiative transfer program including absorption and fluorescent emission of both molecules, as well as absorption and scattering by haze particles. The spectral features of the haze retrieved from the VIMS data at various altitudes are similar to each other, indicating relatively uniform spectral properties of the haze with altitude. However, slight deviations observed near 127 km and above 300 km suggest inhomogeneity at these altitudes. We find that the positions of the major spectral peaks occur at 3.33-3.37 μm, which are somewhat different from the typical 3.3 μm aromatic or 3.4 μm aliphatic C-H stretches usually seen in the spectra of dust particles of the interstellar medium and comets. The peaks, however, coincide with those of the solid state spectra of C2H6, CH4, and CH3CN; and a broad shoulder from 3.37 to 3.50 μm coincides with those of C5H12 and C6H12 as well as those of typical aliphatic C-H stretches. This result combined with high-altitude (∼1000 km) haze formation process recently reported by Waite et al. (2007) opens a new question on the chemical composition of the haze particles. We discuss the possibility that the 3 μm feature may be due to the solid state absorption bands of these molecules (or some other molecules) and we advocate additional laboratory measurements for the ices of hydrocarbon and nitrogen-bearing molecules present in Titan's atmosphere for the identification of this 3 μm feature.  相似文献   

2.
Limb and nadir spectra acquired by Cassini/CIRS (Composite InfraRed Spectrometer) are analyzed in order to derive, for the first time, the meridional variations of diacetylene (C4H2) and methylacetylene (CH3C2H) mixing ratios in Saturn’s stratosphere, from 5 hPa up to 0.05 hPa and 80°S to 45°N. We find that the C4H2 and CH3C2H meridional distributions mimic that of acetylene (C2H2), exhibiting small-scale variations that are not present in photochemical model predictions. The most striking feature of the meridional distribution of both molecules is an asymmetry between mid-southern and mid-northern latitudes. The mid-southern latitudes are found depleted in hydrocarbons relative to their northern counterparts. In contrast, photochemical models predict similar abundances at north and south mid-latitudes. We favor a dynamical explanation for this asymmetry, with upwelling in the south and downwelling in the north, the latter coinciding with the region undergoing ring shadowing. The depletion in hydrocarbons at mid-southern latitudes could also result from chemical reactions with oxygen-bearing molecules.Poleward of 60°S, at 0.1 and 0.05 hPa, we find that the CH3C2H and C4H2 abundances increase dramatically. This behavior is in sharp contradiction with photochemical model predictions, which exhibit a strong decrease towards the south pole. Several processes could explain our observations, such as subsidence, a large vertical eddy diffusion coefficient at high altitudes, auroral chemistry that enhances CH3C2H and C4H2 production, or shielding from photolysis by aerosols or molecules produced from auroral chemistry. However, problems remain with all these hypotheses, including the lack of similar behavior at lower altitudes.Our derived mean mixing ratios at 0.5 hPa of (2.4 ± 0.3) × 10−10 for C4H2 and of (1.1 ± 0.3) × 10−9 for CH3C2H are compatible with the analysis of global-average ISO observations performed by Moses et al. (Moses, J.I., Bézard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H., Allen, M. [2000a]. Icarus 143, 244-298). Finally, we provide values for the ratios [CH3C2H]/[C2H2] and [C4H2]/[C2H2] that can constrain the coupled chemistry of these hydrocarbons.  相似文献   

3.
Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 μm (2343.3 cm−1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule’s nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ∼4.255 μm (∼2350.2 cm−1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe’s CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior.The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 μm, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 μm centered on 4.28 μm. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper.  相似文献   

4.
Observations of the Composite InfraRed Spectrometer (CIRS) during the entire nominal Cassini mission (2004-2008) provide us with an accurate global view of composition and temperature in the middle atmosphere of Titan (between 100 and 500 km). We investigated limb spectra acquired at resolution at nine different latitudes between 56°S and 80°N, with a better sampling in the northern hemisphere where molecular abundances and temperature present strong latitudinal variations. From this limb data acquired between February 2005 and May 2008, we retrieved the vertical mixing ratio profiles of C2H2, C2H4, C2H6, C3H8, CH3C2H, C4H2, C6H6, HCN, HC3N and CO2. We present here for the first time, the latitudinal variations of the C2H6, C3H8, CO2, C2H4 and C6H6 vertical mixing ratios profiles. Some molecules, such as C2H6 or C3H8 present little variations above their condensation level. The other molecules (except CO2) show a significant enhancement of their mixing ratios poleward of 50°N. C2H4 is the only molecule whose mixing ratio decreases with height at latitudes below 46°N. Regions depleted in C2H2, HCN and C4H2 are observed around 400 km (0.01 mbar) and 55°N. We also inferred a region enriched in CO2 located between 30 and 40°N in the 2-0.7 mbar pressure range. At 80°N, almost all molecules studied here present a local minimum of their mixing ratio profiles near 300 km (∼0.07 mbar), which is in contradiction with Global Circulation Models that predict constant-with-height vertical profiles due to subsidence at the north pole.  相似文献   

5.
We apply a multivariate statistical method to Titan data acquired by different instruments onboard the Cassini spacecraft. We have searched through Cassini/VIMS hyperspectral cubes, selecting those data with convenient viewing geometry and that overlap with Cassini/RADAR scatterometry footprints with a comparable spatial resolution. We look for correlations between the infrared and microwave ranges the two instruments cover. Where found, the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for incidence angle, and the calibrated antenna temperature measured along with the scatterometry echoes, are combined with the infrared reflectances, with estimated errors, to produce an aggregate data set, that we process using a multivariate classification method to identify homogeneous taxonomic units in the multivariate space of the samples.In medium resolution data (from 20 to 100 km/pixel), sampling relatively large portions of the satellite’s surface, we find regional geophysical units matching both the major dark and bright features seen in the optical mosaic. Given the VIMS cubes and RADAR scatterometer passes considered in this work, the largest homogeneous type is associated with the dark equatorial basins, showing similar characteristics as each other on the basis of all the considered parameters.On the other hand, the major bright features seen in these data generally do not show the same characteristics as each other. Xanadu, the largest continental feature, is as bright as the other equatorial bright features, while showing the highest backscattering coefficient of the entire satellite. Tsegihi is very bright at 5 μm but it shows a low backscattering coefficient, so it could have a low roughness on a regional scale and/or a different composition. Another well-defined region, located southwest of Xanadu beyond the Tui Regio, seems to be detached from the surrounding terrains, being bright at 2.69, 2.78 and 5 μm but having a low radar brightness. In this way, other units can be found that show correlations or anti-correlations between the scatterometric response and the spectrophotometric behavior, not evident from the optical remote sensing data.  相似文献   

6.
R. de Kok  P.G.J. Irwin 《Icarus》2010,209(2):854-857
We use Cassini far-infrared limb and nadir spectra, together with recent Huygens results, to shed new light on the controversial far-infrared opacity sources in Titan’s troposphere. Although a global cloud of large CH4 ice particles around an altitude of 30 km, together with an increase in tropospheric haze opacity with respect to the stratosphere, can fit nadir and limb spectra well, this cloud does not seem consistent with shortwave measurements of Titan. Instead, the N2-CH4 collision-induced absorption coefficients are probably underestimated by at least 50% for low temperatures.  相似文献   

7.
Soon after the Cassini-Huygens spacecraft entered orbit about Saturn on 1 July 2004, its Visual and Infrared Mapping Spectrometer obtained two continuous spectral scans across the rings, covering the wavelength range 0.35-5.1 μm, at a spatial resolution of 15-25 km. The first scan covers the outer C and inner B rings, while the second covers the Cassini Division and the entire A ring. Comparisons of the VIMS radial reflectance profile at 1.08 μm with similar profiles at a wavelength of 0.45 μm assembled from Voyager images show very little change in ring structure over the intervening 24 years, with the exception of a few features already known to be noncircular. A model for single-scattering by a classical, many-particle-thick slab of material with normal optical depths derived from the Voyager photopolarimeter stellar occultation is found to provide an excellent fit to the observed VIMS reflectance profiles for the C ring and Cassini Division, and an acceptable fit for the inner B ring. The A ring deviates significantly from such a model, consistent with previous suggestions that this region may be closer to a monolayer. An additional complication here is the azimuthally-variable average optical depth associated with “self-gravity wakes” in this region and the fact that much of the A ring may be a mixture of almost opaque wakes and relatively transparent interwake zones. Consistently with previous studies, we find that the near-infrared spectra of all main ring regions are dominated by water ice, with a typical regolith grain radius of 5-20 μm, while the steep decrease in visual reflectance shortward of 0.6 μm is suggestive of an organic contaminant, perhaps tholin-like. Although no materials other than H2O ice have been identified with any certainty in the VIMS spectra of the rings, significant radial variations are seen in the strength of the water-ice absorption bands. Across the boundary between the C and B rings, over a radial range of ∼7000 km, the near-IR band depths strengthen considerably. A very similar pattern is seen across the outer half of the Cassini Division and into the inner A ring, accompanied by a steepening of the red slope in the visible spectrum shortward of 0.55 μm. We attribute these trends—as well as smaller-scale variations associated with strong density waves in the A ring—to differing grain sizes in the tholin-contaminated icy regolith that covers the surfaces of the decimeter-to-meter sized ring particles. On the largest scale, the spectral variations seen by VIMS suggest that the rings may be divided into two larger ‘ring complexes,’ with similar internal variations in structure, optical depth, particle size, regolith texture and composition. The inner complex comprises the C and B rings, while the outer comprises the Cassini Division and A ring.  相似文献   

8.
We obtained time-resolved, near-infrared spectra of Io during the 60-90 min following its reappearance from eclipse by Jupiter on five occasions in 2004. The purpose was to search for spectral changes, particularly in the well-known SO2 frost absorption bands, that would indicate surface-atmosphere exchange of gaseous SO2 induced by temperature changes during eclipse. These observations were a follow-on to eclipse spectroscopy observations in which Bellucci et al. [Bellucci et al., 2004. Icarus 172, 141-148] reported significant changes in the strengths of two strong SO2 bands in data acquired with the VIMS instrument aboard the Cassini spacecraft. One of the bands (4.07 μm [ν1 + ν3]) observed by Bellucci et al. is visible from ground-based observatories and is included in our data. We detected no changes in Io’s spectrum at any of the five observed events during the approximately 60-90 min during which spectra were obtained following Io’s emergence from Jupiter’s shadow. The areas of the three strongest SO2 bands in the region 3.5-4.15 μm were measured for each spectrum; the variation of the band areas with time does not exceed that which can be explained by the Io’s few degrees of axial rotation during the intervals of observation, and in no case does the change in band strength approach that seen in the Cassini VIMS data. Our data are of sufficient quality and resolution to show the weak 2.198 μm (4549.6 cm−1) 4ν1 band of SO2 frost on Io for what we believe is the first time. At one of the events (June 22, 2004), we began the acquisition of spectra ∼6 min before Io reappeared from Jupiter’s shadow, during which time it was detected through its own thermal emission. No SO2 bands were superimposed on the purely thermal spectrum on this occasion, suggesting that the upper limit to condensed SO2 in the vertical column above Io’s surface was ∼4 × 10−5 g cm−2.  相似文献   

9.
This report arises from an ongoing program to monitor Neptune’s largest moon Triton spectroscopically in the 0.8 to 2.4 μm range using IRTF/SpeX. Our objective is to search for changes on Triton’s surface as witnessed by changes in the infrared absorption bands of its surface ices N2,CH4,H2O, CO, and CO2. We have recorded infrared spectra of Triton on 53 nights over the ten apparitions from 2000 to 2009. The data generally confirm our previously reported diurnal spectral variations of the ice absorption bands (Grundy and Young, 2004). Nitrogen ice shows a large amplitude variation, with much stronger absorption on Triton’s Neptune-facing hemisphere. We present evidence for seasonal evolution of Triton’s N2 ice: the 2.15 μm absorption band appears to be diminishing, especially on the Neptune-facing hemisphere. Although it is mostly dissolved in N2 ice, Triton’s CH4 ice shows a very different longitudinal variation from the N2 ice, challenging assumptions of how the two ices behave. Unlike Triton’s CH4 ice, the CO ice does exhibit longitudinal variation very similar to the N2 ice, implying that CO and N2 condense and sublimate together, maintaining a consistent mixing ratio. Absorptions by H2O and CO2 ices show negligible variation as Triton rotates, implying very uniform and/or high latitude spatial distributions for those two non-volatile ices.  相似文献   

10.
11.
We present the discovery of a new vibrational band system of isotopic CO2 (carbon dioxide) near 3.3 μm, with multiple strong P, Q and R lines in the prime spectral region used to search for Mars CH4 (methane). The band system was discovered on Mars using high-resolution spectrometers (λ/δλ>40,000, CSHELL and NIRSPEC) at telescopes (NASA-IRTF and Keck-2) atop Mauna Kea, HI. The observed line intensities and frequencies agree very well with values predicted by a vibrational band model that we developed using known parameters for the molecular levels involved. Using this model, we synthesized spectra for different observing conditions (from Space and ground-based telescopes) and for different spectral resolving powers (5000 to 40,000). Although the total atmospheric burden on Mars is more than 150 times smaller than on Earth, the greater mixing ratio of CO2 ensures that its column abundance on Mars is almost 20 times greater than on Earth. Thus, weak telluric CO2 band systems appear much stronger on Mars. Many molecules of possible biological and geothermal interest have strong signatures at these wavelengths, in particular hydrocarbons owing to their strong ro-vibrational CH stretching modes. For example, the new isotopic CO2 band-system encompasses lines of CH4, C2H6 (ethane), CH3OH (methanol) and H2O (water). Implications for previous and future searches of biomarker gases are presented.  相似文献   

12.
We present spectra of Saturn's icy satellites Mimas, Enceladus, Tethys, Dione, Rhea, and Hyperion, 1.0-2.5 μm, with data extending to shorter (Mimas and Enceladus) and longer (Rhea and Dione) wavelengths for certain objects. The spectral resolution (R=λλ) of the data shown here is in the range 800-1000, depending on the specific instrument and configuration used; this is higher than the resolution (R=225 at 3 μm) afforded by the Visual-Infrared Mapping Spectrometer on the Cassini spacecraft. All of the spectra are dominated by water ice absorption bands and no other features are clearly identified. Spectra of all of these satellites show the characteristic signature of hexagonal H2O ice at 1.65 μm. We model the leading hemisphere of Rhea in the wavelength range 0.3-3.6 μm with the Hapke and the Shkuratov radiative transfer codes and discuss the relative merits of the two approaches to fitting the spectrum. In calculations with both codes, the only components used are H2O ice, which is the dominant constituent, and a small amount of tholin (Ice Tholin II). Tholin in small quantities (few percent, depending on the mixing mechanism) appears to be an essential component to give the basic red color of the satellite in the region 0.3-1.0 μm. The quantity and mode of mixing of tholin that can produce the intense coloration of Rhea and other icy satellites has bearing on its likely presence in many other icy bodies of the outer Solar System, both of high and low geometric albedos. Using the modeling codes, we also establish detection limits for the ices of CO2 (a few weight percent, depending on particle size and mixing), CH4 (same), and NH4OH (0.5 weight percent) in our globally averaged spectra of Rhea's leading hemisphere. New laboratory spectral data for NH4OH are presented for the purpose of detection on icy bodies. These limits for CO2, CH4, and NH4OH on Rhea are also applicable to the other icy satellites for which spectra are presented here. The reflectance spectrum of Hyperion shows evidence for a broad, unidentified absorption band centered at 1.75 μm.  相似文献   

13.
We present near-IR spectra of solid CO2 in H2O and CH3OH, and find they are significantly different from that of pure solid CO2. Peaks not present in either pure H2O or pure CO2 spectra become evident when the two are mixed. First, the putative theoretically forbidden CO2 (2ν3) overtone near 2.134 μm (4685 cm−1), that is absent from our spectrum of pure solid CO2, is prominent in the spectra of H2O/CO2=5 and 25 mixtures. Second, a 2.74-μm (3650 cm−1) dangling OH feature of H2O (and a potentially related peak at 1.89 μm) appear in the spectra of CO2-H2O ice mixtures, but are probably not diagnostic of the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with H2O. Warming causes some peak positions and profiles in the spectrum of a H2O/CO2=5 mixture to take on the appearance of pure CO2. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 (2ν3) overtone near 2.134 μm (4685 cm−1) is not present in pure CO2 but prominent in mixtures, it may be a good observational (spectral) indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. These observations may be applicable to Mars polar caps as well as outer Solar System bodies.  相似文献   

14.
We have analyzed data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft during the Titan flybys T0-T10 (July 2004-January 2006). The spectra characterize various regions on Titan from 70° S to 70° N with a variety of emission angles. We study the molecular signatures observed in the mid-infrared CIRS detector arrays (FP3 and FP4, covering roughly the 600-1500 cm−1 spectral range with apodized resolutions of 2.54 or 0.53 cm−1). The composite spectrum shows several molecular signatures: hydrocarbons, nitriles and CO2. A firm detection of benzene (C6H6) is provided by CIRS at levels of about 3.5×10−9 around 70° N. We have used temperature profiles retrieved from the inversion of the emission observed in the methane ν4 band at 1304 cm−1 and a line-by-line radiative transfer code to infer the abundances of the trace constituents and some of their isotopes in Titan's stratosphere. No longitudinal variations were found for these gases. Little or no change is observed generally in their abundances from the south to the equator. On the other hand, meridional variations retrieved for these trace constituents from the equator to the North ranged from almost zero (no or very little meridional variations) for C2H2, C2H6, C3H8, C2H4 and CO2 to a significant enhancement at high northern (early winter) latitudes for HCN, HC3N, C4H2, C3H4 and C6H6. For the more important increases in the northern latitudes, the transition occurs roughly between 30 and 50 degrees north latitude, depending on the molecule. Note however that the very high-northern latitude results from tours TB-T10 bear large uncertainties due to few available data and problems with latitude smearing effects. The observed variations are consistent with some, but not all, of the predictions from dynamical-photochemical models. Constraints are set on the vertical distribution of C2H2, found to be compatible with 2-D equatorial predictions by global circulation models. The D/H ratio in the methane on Titan has been determined from the CH3D band at 1156 cm−1 and found to be . Implications of this deuterium enrichment, with respect to the protosolar abundance on the origin of Titan, are discussed. We compare our results with values retrieved by Voyager IRIS observations taken in 1980, as well as with more recent (1997) disk-averaged Infrared Space Observatory (ISO) results and with the latest Cassini-Huygens inferences from other instruments in an attempt to better comprehend the physical phenomena on Titan.  相似文献   

15.
Galina M. Chaban 《Icarus》2007,187(2):592-599
An absorption band at ∼4.26 μm wavelength attributed to the asymmetric stretching mode of CO in CO2 has been found on two satellites of Jupiter and several satellites of Saturn. The wavelength of pure CO2 ice determined in the laboratory is 4.2675 μm, indicating that the CO2 on the satellites occurs either trapped in a host material, or in a chemical or physical complex with other materials, resulting in a blue shift of the wavelength of the band. In frequency units, the shifts in the satellite spectra range from 3.7 to 11.3 cm−1. We have performed ab initio quantum chemical calculations of CO2 molecules chemically complexed with one, two, and more H2O molecules and molecules of CH3OH to explore the possibility that the blue shift of the band is caused by chemical complexing of CO2 with other volatile materials. Our computations of the harmonic and anharmonic vibrational frequencies using high levels of theory show a frequency shift to the blue by 5 cm−1 from pure CO2 to CO-H2O, and an additional 5 cm−1 from CO2-H2O to CO2-2H2O. Complexing with more than two H2O molecules does not increase the blue shift. Complexes of CO2 with one molecule of CH3OH and with one CH3OH plus one H2O molecule produce smaller shifts than the CO2-2H2O complex. Laboratory studies of CO2:H2O in a solid N2 matrix also show a blue shift of the asymmetric stretching mode.  相似文献   

16.
Saturn's icy satellites are among the main scientific objectives of the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment. This paper contains a first systematic and comparative analysis of the full-disk spectral properties of Dione, Enceladus, Epimetheus, Hyperion, Iapetus, Mimas, Phoebe, Rhea and Tethys as observed by VIMS from July 2004 to June 2005. The disk integrated properties (350-5100 nm reflectance spectra and phase curves at 550-2232 nm) and images of satellites are reported and discussed in detail together with the observed geometry. In general, the spectra in the visible spectral range are almost featureless and can be classified according to the spectral slopes: from the bluish Enceladus and Phoebe to the redder Iapetus, Hyperion and Epimetheus. In the 1000-1300 nm range the spectra of Enceladus, Tethys, Mimas and Rhea are characterized by a negative slope, consistent with a surface largely dominated by water ice, while the spectra of Iapetus, Hyperion and Phoebe show a considerable reddening pointing out the relevant role played by darkening materials present on the surface. In between these two classes are Dione and Epimetheus, which have a flat spectrum in this range. The main absorption bands identified in the infrared are the 1520, 2020, 3000 nm H2O/OH bands (for all satellites), although Iapetus dark terrains show mostly a deep 3000 nm band while the 1520 and 2020 nm bands are very faint. In this spectral range, the Iapetus spectrum is characterized by a strong reddening. The CO2 band at 4260 nm and the Fresnel ice peak around 3100 nm are evident only on Hyperion, Phoebe and Iapetus. The phase curves at 550 and at 2232 nm are reported for all the available observations in the 0°-144° range; Rhea shows an opposition surge at visible wavelengths in the 0.5°-1.17° interval. The improvement on the retrieval of the full-disk reflectance spectra can be appreciated by a direct comparison with ground-based telescopic data available from literature. Finally, data processing strategies and recent upgrades introduced in the VIMS-V calibration pipeline (flat-field and destriping-despiking algorithm) are discussed in appendices.  相似文献   

17.
Cassini/VIMS limb observations have been used to retrieve vertical profiles of hydrogen cyanide (HCN) from its 3 μm emission in the region from 600 to 1100 km altitude at daytime. While the daytime emission is large up to about 1100 km, it vanishes at nighttime at very low altitudes, suggesting that the daytime emission originates under non-LTE conditions. The spectrally integrated radiances around 3.0 μm shows a monotonically decrease with tangent altitude, and a slight increase with solar zenith angle in the 40-80° interval around 800 km.A sophisticated non-LTE model of HCN energy levels has been developed in order to retrieve the HCN abundance. The population of the HCN 0 00 1 energy level, that contributes mostly to the 3.0 μm limb radiance, has been shown to change significantly with the solar zenith angle (SZA) and HCN abundance. Also its population varies with the collisional rate coefficients, whose uncertainties induced errors in the retrieved HCN of about 10% at 600-800 km and about 5% above. HCN concentrations have been retrieved from a set of spectra profiles, covering a wide range of latitudes and solar zenith angles, by applying a line-by-line inversion code. The results show a significant atmospheric variability above ∼800 km with larger values for weaker solar illumination. The HCN shows a very good correlation with solar zenith angles, irrespective of latitude and local time, suggesting that HCN at these high altitudes is in or close to photochemical equilibrium. A comparison with UVS and UVIS measurements show that these are close to the lower limit (smaller SZAs) of the VIMS observations above 750 km. However, they are in reasonable agreement when combining the rather large UV measurement errors and the atmospheric variability observed in VIMS. A comparison of the mean profile derived here with the widely used profile reported by Yelle and Griffith (Yelle R.V., Griffith, C.A. [2003]. Icarus 166, 107-115) shows a good agreement for altitudes ranging from 850 to 1050 km, while below these altitudes our result exhibits higher concentrations.  相似文献   

18.
Measuring the spatial distribution of chemical compounds in Saturn’s stratosphere is critical to better understand the planet’s photochemistry and dynamics. Here we present an analysis of infrared spectra in the range 600-1400 cm−1 acquired in limb geometry by the Cassini spacecraft between March 2005 and January 2008. We first determine the vertical temperature profiles from 3 to 0.01 hPa, at latitudes ranging from 70°N to 80°S. We infer a similar meridional temperature gradient at 1-2 hPa as in recent previous studies [Fletcher, L.N., Irwin, P.G.J., Teanby, N.A., Orton, G.S., Parrish, P.D., de Kok, R., Howett, C., Calcutt, S.B., Bowles, N., Taylor, F.W., 2007. Icarus 189, 457-478; Howett, C.J.A., Irwin, P.G.J., Teanby, N.A., Simon-Miller, A., Calcutt, S.B., Fletcher, L.N., de Kok, R., 2007. Icarus 190, 556-572]. We then retrieve the vertical profiles of C2H6 and C2H2 from 3 to 0.01 hPa and of C3H8 around 1 hPa. At 1 hPa, the meridional variation of C2H2 is found to follow the yearly averaged solar insolation, except for a strong equatorial mole fraction of 8×10-7, nearly two times higher than expected. This enhancement in abundance can be explained by the descent of hydrocarbon-rich air, with a vertical wind speed at the equator of 0.25±0.1 mm/s at 1 hPa and 0.4±0.15 mm/s at 0.1 hPa. The ethane distribution is relatively uniform at 1 hPa, with only a moderate 25% increase from 35°S to 80°S. Propane is found to increase from north to south by a factor of 1.9, suggesting that its lifetime may be shorter than Saturn’s year at 1 hPa. At high altitudes (1 Pa), C2H2 and C2H6 abundances depart significantly from the photochemical model predictions of Moses and Greathouse [Moses, J.I., Greathouse, T.K., 2005. J. Geophys. Res. 110, 9007], except at high southern latitudes (62, 70 and 80°S) and near the equator. The observed abundances are found strongly depleted in the 20-40°S region and enhanced in the 20-30°N region, the latter coinciding with the ring’s shadow. We favor a dynamical explanation for these anomalies.  相似文献   

19.
The Cassini Visual and Infrared Mapping Spectrometer (VIMS) is an imaging spectrometer covering the wavelength range 0.3-5.2 μm in 352 spectral channels, with a nominal instantaneous field of view of 0.5 mrad. The Cassini flyby of Jupiter represented a unique opportunity to accomplish two important goals: scientific observations of the jovian system and functional tests of the VIMS instrument under conditions similar to those expected to obtain during Cassini's 4-year tour of the saturnian system. Results acquired over a complete range of visual to near-infrared wavelengths from 0.3 to 5.2 μm are presented. First detections include methane fluorescence on Jupiter, a surprisingly high opposition surge on Europa, the first visual-near-IR spectra of Himalia and Jupiter's optically-thin ring system, and the first near-infrared observations of the rings over an extensive range of phase angles (0-120°). Similarities in the center-to-limb profiles of H+3 and CH4 emissions indicate that the H+3 ionospheric density is solar-controlled outside of the auroral regions. The existence of jovian NH3 absorption at 0.93 μm is confirmed. Himalia has a slightly reddish spectrum, an apparent absorption near 3 μm, and a geometric albedo of 0.06±0.01 at 2.2 μm (assuming an 85-km radius). If the 3-μm feature in Himalia's spectrum is eventually confirmed, it would be suggestive of the presence of water in some form, either free, bound, or incorporated in layer-lattice silicates. Finally, a mean ring-particle radius of 10 μm is found to be consistent with Mie-scattering models fit to VIMS near-infrared observations acquired over 0-120° phase angle.  相似文献   

20.
Limb spectra recorded by the Composite InfraRed Spectrometer (CIRS) on Cassini provide information on abundance vertical profiles of C2H2, C2H4, C2H6, CH3C2H, C3H8, C4H2, C6H6 and HCN, along with the temperature profiles in Titan's atmosphere. We analyzed two sets of spectra, one at 15° S (Tb flyby) and the other one at 80° N (T3 flyby). The spectral range 600-1400 cm−1, recorded at a resolution of 0.5 cm−1, was used to determine molecular abundances and temperatures in the stratosphere in the altitude range 100-460 km for Tb and 170-495 km for T3. Both temperature profiles show a well defined stratopause, at around 310 km (0.07 mbar) and 183 K at 13° S, and 380 km (0.01 mbar) with 207 K at 80° N. Near the north pole, stratospheric temperatures are colder and mesospheric temperatures are warmer than near the equator. C2H2, C2H6, C3H8 and HCN display vertical mixing ratio profiles that increase with height at 15° S and 80° N, consistent with their formation in the upper atmosphere, diffusion downwards and condensation in the lower stratosphere, as expected from photochemical models. The CH3C2H and C4H2 mixing ratios also increase with height at 15° S. But near the north pole, their profiles present an unexpected minimum around 300 km, observed for the first time thanks to the high vertical resolution of the CIRS limb data. C2H4 is the only molecule having a vertical abundance profile that decreases with height at 15° S. At 80° N, it also displays a minimum of its mixing ratio around the 0.1-mbar level. For C6H6, an upper limit of 1.1 ppb (in the 0.3-10 mbar range) is derived at 15° S, whereas a constant mixing ratio profile of is inferred near the north pole. At 15° S, the vertical profile of HCN exhibits a steeper gradient than other molecules, which suggests that a sink for this molecule exists in the stratosphere, possibly due to haze formation. All molecules display a more or less pronounced enrichment towards the north pole, probably due, in part, to subsidence of air at the north (winter) pole that brings air enriched in photochemical compounds from the upper atmosphere to lower levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号