首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We calculate the broad-band radio–X-ray spectra predicted by microblazar and microquasar models for ultraluminous X-ray sources (ULXs), exploring the possibility that their dominant power-law component is produced by a relativistic jet, even at near-Eddington mass accretion rates. We do this by first constructing a generalized disc–jet theoretical framework in which some fraction of the total accretion power, P a, is efficiently removed from the accretion disc by a magnetic torque responsible for jet formation. Thus, for different black hole masses, mass accretion rates and magnetic coupling strength, we self-consistently calculate the relative importance of the modified disc spectrum, as well as the overall jet emission due to synchrotron and Compton processes. In general, transferring accretion power to a jet makes the disc fainter and cooler than a standard disc at the same mass accretion rate; this may explain why the soft spectral component appears less prominent than the dominant power-law component in most bright ULXs. We show that the apparent X-ray luminosity and spectrum predicted by the microquasar model are consistent with the observed properties of most ULXs. We predict that the radio synchrotron jet emission is too faint to be detected at the typical threshold of radio surveys to date. This is consistent with the high rate of non-detections over detections in radio counterpart searches. Conversely, we conclude that the observed radio emission found associated with a few ULXs cannot be due to beamed synchrotron emission from a relativistic jet.  相似文献   

2.
The galactic black hole candidate Cygnus X-1 is observed to be in one of two X-ray spectral states: either the low/hard (low soft X-ray flux and a flat power-law tail) or high/soft (high blackbody-like soft X-ray flux and a steep power-law tail) state. The physical origin of these two states is unclear. We present here a model of an ionized accretion disc, the spectrum of which is blurred by relativistic effects, and fit it to the ASCA , Ginga and EXOSAT data of Cygnus X-1 in both spectral states. We confirm that relativistic blurring provides a much better fit to the low/hard state data and, contrary to some previous results, find the data of both states to be consistent with an ionized thin accretion disc with a reflected fraction of unity extending to the innermost stable circular orbit around the black hole. Our model is an alternative to those that, in the low/hard state, require the accretion disc to be truncated at a few tens of Schwarzschild radii, within which there is a Thomson-thin, hot accretion flow. We suggest a mechanism that may cause the changes in spectral state.  相似文献   

3.
The X-ray quasi-periodic oscillation (QPO) seen in RE J1034+396 is so far unique amongst active galactic nuclei (AGN). Here, we look at another unique feature of RE J1034+396, namely its huge soft X-ray excess, to see if this is related in any way to the detection of the QPO. We show that all potential models considered for the soft energy excess can fit the 0.3–10 keV X-ray spectrum, but the energy dependence of the rapid variability (which is dominated by the QPO) strongly supports a spectral decomposition where the soft excess is from low-temperature Comptonization of the disc emission and remains mostly constant, while the rapid variability is produced by the power-law tail changing in normalization. The presence of the QPO in the tail rather than in the disc is a common feature in black hole binaries (BHBs), but low-temperature Comptonization of the disc spectrum is not generally seen in these systems. The main exception to this is GRS 1915+105, the only BHB which routinely shows super-Eddington luminosities. We speculate that the super-Eddington accretion rates lead to a change in disc structure, and that this also triggers the X-ray QPO.  相似文献   

4.
We present an ASCA observation of the broad-line radio galaxy 3C 111. The X-ray spectrum is well described by a model consisting of a photoelectrically absorbed power-law form. The inferred absorbing column density is significantly greater than expected on the basis of 21-cm measurements of Galactic H  I . Whilst this may be the result of intrinsic absorption from a circumnuclear torus or highly warped accretion disc, inhomogeneities and molecular gas within the foreground giant molecular cloud may also be responsible for some of this excess absorption. We also claim a marginal detection of a broad iron Kα line which is well explained as being a fluorescent line originating from the central regions of a radiatively efficient accretion disc. This line appears weak in comparison to those found in (radio-quiet) Seyfert nuclei. We briefly discuss the implications of this fact.  相似文献   

5.
We report the detection of hard X-ray emission components in the spectra of six nearby, giant elliptical galaxies observed with the ASCA satellite. The systems studied, which exhibit strong dynamical evidence for supermassive black holes in their nuclei, are M87, NGC 1399 and NGC 4696 (the dominant galaxies of the Virgo, Fornax and Centaurus clusters, respectively) and NGC 4472, 4636 and 4649 (three further giant ellipticals in the Virgo cluster). The ASCA data for all six sources provide clear evidence for hard emission components, which can be parametrized by power-law models with photon indices in the range Γ=0.6–1.5 (mean value 1.2) and intrinsic 1–10 keV luminosities of 2×1040–2×1042 erg s−1. Our results imply the identification of a new class of accreting X-ray source, with X-ray spectra significantly harder than those of binary X-ray sources, Seyfert nuclei or low-luminosity active galactic nuclei, and bolometric luminosities relatively dominated by their X-ray emission. We discuss various possible origins for the hard X-ray emission and argue that it is most likely to be due to accretion on to the central supermassive black holes, via low radiative efficiency accretion flows coupled with strong outflows. In the case of M87, our detected power-law flux is in good agreement with a previously reported measurement from ROSAT High Resolution Imager observations, which were able to resolve the jet from the nuclear X-ray emission components. We confirm previous results showing that the use of multiphase models in the analysis of the ASCA data leads to determinations of approximately solar emission-weighted metallicities for the X-ray gas in the galaxies. We also present results on the individual element abundances in NGC 4636.  相似文献   

6.
We use non-simultaneous Ginga ASCA ROSAT observations to investigate the complex X-ray spectrum of the Seyfert 2 galaxy Mrk 3. We find that the composite spectrum can be well described in terms of a heavily cut-off hard X-ray continuum, iron Kα emission and a soft X-ray excess, with spectral variability confined to changes in the continuum normalization and the flux in the iron line. Previous studies have suggested that the power-law continuum in Mrk 3 is unusually hard. We obtain a canonical value for the energy index of the continuum (i.e., α ≈ 0.7) when a warm absorber (responsible for an absorption edge observed near 8 keV) is included in the spectral model. Alternatively, the inclusion of a reflection component yields a comparable power-law index. The soft-excess flux cannot be modelled solely in terms of pure electron scattering of the underlying power-law continuum. However, a better fit to the spectral data is obtained if we include the effects of both emission and absorption in a partially photoionized scattering medium. In particular, the spectral feature prominent at ∼ 0.9 keV could represent O VIII recombination radiation produced in a hot photoionized medium. We discuss our results in the context of other recent studies of the soft X-ray spectra of Seyfert 2 galaxies.  相似文献   

7.
We re-analyse the ASCA Ginga X-ray data from BY Cam, a slightly asynchronous magnetic accreting white dwarf. The spectra are strongly affected by complex absorption, which we model as a continuous (power-law) distribution of covering fraction and column of neutral material. This absorption causes a smooth hardening of the spectrum below ∼ 3 keV, and is probably produced by material in the pre-shock column which overlies the X-ray emission region. The ASCA data show that the intrinsic emission from the shock is not consistent with a single-temperature plasma. Significant iron L emission coexisting with iron K shell lines from H- and He-like iron clearly shows that there is a wide range of temperatures present, as expected from a cooling shock structure. The Ginga data provide the best constraints on the maximum temperature emission in the shocked plasma, with kT max = 21+18−4 keV. Cyclotron cooling should also be important; it suppresses the highest temperature bremsstrahlung components, so the X-ray data provide only a lower limit on the mass of the white dwarf of M  ≥ 0.5 M⊙. Reflection of the multitemperature bremsstrahlung emission from the white dwarf surface is also significantly detected.   We stress the importance of modelling all these effects in order to gain a physically self-consistent picture of the X-ray spectra from polars in general and BY Cam in particular.  相似文献   

8.
We investigate the process of synchrotron radiation from thermal electrons at semirelativistic and relativistic temperatures. We find an analytic expression for the emission coefficient for random magnetic fields with an accuracy significantly higher than those derived previously. We also present analytic approximations to the synchrotron turnover frequency, treat Comptonization of self-absorbed synchrotron radiation, and give simple expressions for the spectral shape and the emitted power. We also consider modifications of the above results by bremsstrahlung.
We then study the importance of Comptonization of thermal synchrotron radiation in compact X-ray sources. We first consider emission from hot accretion flows and active coronae above optically thick accretion discs in black hole binaries and active galactic nuclei (AGNs). We find that for plausible values of the magnetic field strength, this radiative process is negligible in luminous sources, except for those with hardest X-ray spectra and stellar masses. Increasing the black hole mass results in a further reduction of the maximum Eddington ratio from this process. Then, X-ray spectra of intermediate-luminosity sources, e.g. low-luminosity AGNs, can be explained by synchrotron Comptonization only if they come from hot accretion flows, and X-ray spectra of very weak sources are always dominated by bremsstrahlung. On the other hand, synchrotron Comptonization can account for power-law X-ray spectra observed in the low states of sources around weakly magnetized neutron stars.  相似文献   

9.
X-ray spectra of accretion discs with dynamic coronae   总被引:1,自引:0,他引:1  
We compute the X-ray spectra produced by non-static coronae atop accretion discs around black holes and neutron stars. The hot corona is radiatively coupled to the underlying disc (the reflector) and generates an X-ray spectrum which is sensitive to the bulk velocity of the coronal plasma, β = v / c . We show that an outflowing corona reproduces the hard-state spectrum of Cyg X-1 and similar objects. The dynamic model predicts a correlation between the observed amplitude of reflection R and the X-ray spectrum slope Γ since both strongly depend on β . A similar correlation was observed and its shape was well fitted by the dynamic model. The scattering of soft radiation in an outflowing corona can also account for the observed optical–UV polarization pattern in active galactic nuclei.  相似文献   

10.
11.
We report the results of a systematic timing analysis of RXTE observations of GRS 1915+105 when the source was in its variability class θ, characterized by alternating soft and hard states on a time-scale of a few hundred seconds. The aim was to examine the high-frequency part of the power spectrum in order to confirm the hectohertz quasi-periodic oscillations (QPO) previously reported from observations from mixed variability behaviours. During the hard intervals (corresponding to state C in the classification of Belloni et al.), we find a significant QPO at a frequency of ∼170 Hz, although much broader (Q∼2) than previously reported. No other significant peak is observed at frequencies >30 Hz. A time-resolved spectral analysis of selected observations shows that the hard intervals from class θ show a stronger and steeper  (Γ= 2.8–3.0)  power-law component than hard intervals from other classes. We discuss these results in the framework of hectohertz QPOs reported from GRS 1915+105 and other black hole binaries.  相似文献   

12.
We study the soft X-ray variability of Cygnus X-3. By combining data from the All-Sky Monitor and Proportional Counter Array instruments on the RXTE satellite with EXOSAT /Medium Energy (ME) detector observations, we are able to analyse the power density spectrum (PDS) of the source from 10−9 to 0.1 Hz, thus covering time-scales from seconds to years. As the data on the longer time-scales are unevenly sampled, we combine traditional power spectral techniques with simulations to analyse the variability in this range. The PDS at higher frequencies  (≳10−3 Hz)  are for the first time compared for all states of this source. We find that it is for all states well described by a power law, with index  ∼−2  in the soft states and a tendency for a less steep power law in the hard state. At longer time-scales, we study the effect of the state transitions on the PDS, and find that the variability below  ∼10−7 Hz  is dominated by the transitions. Furthermore, we find no correlation between the length of a high/soft-state episode and the time since the previous high/soft state. On intermediate time-scales, we find evidence for a break in the PDS at time-scales of the order of the orbital period. This may be interpreted as evidence for the existence of a tidal resonance in the accretion disc around the compact object, and constraining the mass ratio to   M 2/ M 1≲ 0.3  .  相似文献   

13.
I solve analytically the viscous evolution of an irradiated accretion disc, as seen during outbursts of soft X-ray transients. The solutions predict steep power-law X-ray decays L X ∼ (1 + t/tvisc)−4, changing to L X ∼ (1 − t/t'visc)4 at late times, where t visc, t 'visc are viscous time-scales. These forms closely resemble the approximate exponential and linear decays inferred by King and Ritter in these two regimes. The decays are much steeper than for unirradiated discs because the viscosity is a function of the central accretion rate rather than of local conditions in the disc.  相似文献   

14.
We compute the hard X-ray spectra from a hot plasma pervaded by small cold dense clouds. The main cooling mechanism of the plasma is Compton cooling by the soft thermal emission from the clouds. We compute numerically the equilibrium temperature of the plasma together with the escaping spectrum. The spectrum depends mainly on the amount of cold clouds filling the hot phase. The clouds covering factor is constrained to be low in order to produce spectra similar to those observed in Seyfert galaxies and X-ray binaries, implying that an external reflector is required in order to reproduce the full range of observed reflection amplitudes. We also derive analytical estimates for the X-ray spectral slope and reflection amplitude using an escape probability formalism.  相似文献   

15.
We report on the properties of a 99.3-d periodic modulation in the X-ray transient XTE J1716−389. We associate this source with the transient KS J1716−389, first detected by the Mir /Kvant module in 1994. The spectral characteristics of XTE J1716−389, a high intrinsic absorption column, strong emission features and a power-law spectrum, make it very similar to the class of highly absorbed X-ray binaries detected by INTEGRAL . We associate the 99.3-d periodic behaviour with the geometrical obscuration that results from a precessing circumbinary disc that is moving in and out of the field of view, comparable to what has been proposed for SS 433. We therefore propose that XTE J1716−389 is a high-mass X-ray binary with a supergiant companion that is similar not only to SS 433, but also to the new class of highly obscured X-ray binaries, suggesting that SS 433 is a member of much wider population that is now being detected by INTEGRAL .  相似文献   

16.
We present time-resolved spectroscopy of the soft X-ray transient XTE J2123–058 in outburst. A useful spectral coverage of 3700–6700 Å was achieved spanning two orbits of the binary, with single-epoch coverage extending to ∼9000 Å. The optical spectrum approximates a steep blue power law, consistent with emission on the Rayleigh–Jeans tail of a hot blackbody spectrum. The strongest spectral lines are He  ii 4686 Å and C  iii /N  iii 4640 Å (Bowen blend) in emission. Their relative strengths suggest that XTE J2123–058 was formed in the Galactic plane, not in the halo. Other weak emission lines of He  ii and C  iv are present, and Balmer lines show a complex structure, blended with He  ii . He  ii 4686-Å profiles show a complex multiple S-wave structure, with the strongest component appearing at low velocities in the lower-left quadrant of a Doppler tomogram. H α shows transient absorption between phases 0.35 and 0.55. Both of these effects appear to be analogous to similar behaviour in SW Sex type cataclysmic variables. We therefore consider whether the spectral line behaviour of XTE J2123–058 can be explained by the same models invoked for those systems.  相似文献   

17.
This paper summarises the X-ray properties of NGC 1068 from the observers perspective and reports new observations with the ROSAT HRI. Below ? 2 keV, the spectrum is steep and probably represents thermal emission from gas with temperature kT ? 0.1 - 0.6 keV. Above ? 2 keV, the spectrum is much flatter and may be described by a power-law with energy index α ? 0.3. Images with the ROSAT HRI reveal that about half the X-ray flux in the 0.1 - 2.4 keV band is extended on scales > 5″ (360 pc). Recent ROSAT PSPC observations of starburst galaxies show integrated soft X-ray spectra which are very similar to that of NGC 1068 below 2 keV. The spatially extended, steep, soft X-ray emission of NGC 1068 probably originates through thermal emission from a hot wind driven by the disk starburst, the Seyfert nucleus or a combination of the two. On the other hand, the hard emission above 2 keV is almost certainly dominated by the Seyfert nucleus.  相似文献   

18.
We present simultaneous ASCA and RXTE observations of Ark 564, the brightest known 'narrow-line' Seyfert 1 in the 2–10 keV band. The measured X-ray spectrum is dominated by a steep (Γ≈2.7) power-law continuum extending to at least 20 keV, with imprinted Fe K-line and edge features and an additional 'soft excess' below ∼1.5 keV. The energy of the iron K-edge indicates the presence of highly ionized material, which we identify in terms of reflection from a strongly irradiated accretion disc. The high reflectivity of this putative disc, together with its strong intrinsic O  viii Ly α and O  viii recombination emission, can also explain much of the observed soft excess flux. Furthermore, the same spectral model also provides a reasonable match to the very steep 0.1–2 keV spectrum deduced from ROSAT data. The source is much more rapidly variable than 'normal' Seyfert 1s of comparable luminosity, increasing by a factor of ∼50 per cent in 1.6 h, with no measurable lag between the 0.5–2 keV and 3–12 keV bands, consistent with much of the soft excess flux arising from reprocessing of the primary power-law component in the inner region of the accretion disc. We note, finally, that if the unusually steep power-law component is a result of Compton cooling of a disc corona by an intense soft photon flux, then the implication is that the bulk of these soft photons lie in the unobserved extreme ultraviolet.  相似文献   

19.
We report the discovery of a new hysteresis effect in black hole X-ray binary state transitions, that of the near-infrared (NIR) flux (which most likely originates in the jets) versus X-ray flux. We find, looking at existing data sets, that the IR emission of black hole X-ray transients appears to be weaker in the low/hard state rise of an outburst than the low/hard state decline of an outburst at a given X-ray luminosity. We discuss how this effect may be caused by a shift in the radiative efficiency of the inflowing or outflowing matter, or variations in the disc viscosity or the spectrum/power of the jet. In addition we show that there is a correlation (in slope but not in normalization) between IR and X-ray luminosities on the rise and decline, for all three low-mass black hole X-ray binaries with well-sampled IR and X-ray coverage:   L NIR∝ L 0.5–0.7X  . In the high/soft state this slope is much shallower;   L NIR∝ L 0.1–0.2X  , and we find that the NIR emission in this state is most likely dominated by the viscously heated (as opposed to X-ray heated) accretion disc in all three sources.  相似文献   

20.
We analyzed the recently published kHz quasi-period oscillaiton (QPO) data in the neutron star low-mass X-ray binaries (LMXBs), in order to investigate the different correlations of the twin-peak kHz QPOs in bright Z sources and in the less luminous Atoll sources. We find a power-law relation  ν1∼ν b 2  between the upper and the lower kHz QPOs with different indices: b ≃ 1.5 for the Atoll source 4U 1728-34 and b ≃ 1.9 for the Z source Sco X-1. The implications of our results for the theoretical models for kHz QPOs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号