首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the effect of uncertainty due to limited information on the remediation design of a contaminated aquifer using the pump and treat method. The hydraulic conductivity and contaminant concentration distributions for a fictitious contaminated aquifer are generated assuming a limited number of sampling locations. Stochastic optimization with multiple realizations is used to account for aquifer uncertainty. The optimization process involves a genetic algorithm (GA). As the number of realizations increases, a greater extraction rate and more wells are needed. There was a total cost increase, but the optimal remediation designs became more reliable. Stochastic optimization analysis also determines the locations for extraction wells, the variation in extraction rates as a function of the change of well locations, and the reliability of the optimal designs. The number of realizations (stack number) that caused the design factors to converge could be determined. Effective stochastic optimization may be achieved by reducing computational resources. An increase in the variability of the conductivity distribution requires more extraction wells. Information about potential extraction wells can be used to prevent failure of the remediation task.  相似文献   

2.
Optimal cost pump-and-treat ground water remediation designs for containment of a contaminated aquifer are often developed using deterministic ground water models to predict ground water flow. Uncertainty in hydraulic conductivity fields used in these models results in remediation designs that are unreliable. The degree to which uncertainty contributes to the reliability of remediation designs as measured by the characterization of the uncertainty is shown to differ depending upon the geologic environments of the models. This conclusion is drawn from the optimal design costs for multiple deterministic models generated to represent the uncertainty of four distinct models with different geologic environments. A multi scenario approach that includes uncertainty into the remediation design called the deterministic method for optimization subject to uncertainty (DMOU) is applied to these distinct models. It is found that the DMOU is a method for determining a remediation design subject to uncertainty that requires minimal postprocessing efforts. Preprocessing, however, is required for the application of the DMOU to unique problems. In the ground water remediation design problems, the orientation of geologic facies with respect to the orientation of flow patterns, pumping well locations, and constraint locations are shown to affect the preprocessing, the solutions to the DMOU problems, and the computational efficiency of the DMOU approach. The results of the DMOU are compared to the results of a statistical analysis of the effects of the uncertainty on remediation designs. This comparison validates the efficacy of the DMOU and illustrates the computational advantages to using the DMOU over statistical measures.  相似文献   

3.
Two different deterministic and two alternative stochastic (i.e., geostatistical) approaches to modeling the distribution of hydraulic conductivity (K) in a nonuniform (sigma2ln(K)) = 0.29) glacial sand aquifer were used to explore the influence of conceptual model selection on simulations of three-dimensional tracer movement. The deterministic K models employed included a homogeneous effective K and a perfectly stratified 14 layer model. Stochastic K models were constructed using sequential Gaussian simulation and sequential i ndicator simulation conditioned to available K values estimated from measured grain size distributions. Standard simulation software packages MODFLOW, MT3DMS, and MODPATH were used to model three-dimensional ground water flow and transport in a field tracer test, where a pulse of bromide was injected through an array of three fully screened wells and extracted through a single fully screened well approximately 8 m away. Agreement between observed and simulated transport behavior was assessed through direct comparison of breakthrough curves (BTCs) and selected breakthrough metrics at the extraction well and at 26 individual multilevel sample ports distributed irregularly between the injection and extraction wells. Results indicate that conceptual models incorporating formation variability are better able to capture observed breakthrough behavior. Root mean square (RMS) error of the deterministic models bracketed the ensemble mean RMS error of stochastic models for simulated concentration vs. time series, but not for individual BTC characteristic metrics. The spatial variability models evaluated here may be better suited to simulating breakthrough behavior measured in wells screened over large intervals than at arbitrarily distributed observation points within a nonuniform aquifer domain.  相似文献   

4.
Typical pump-and-treat (PAT) optimization problems involve design of pumping schemes, while minimizing cost and meeting a set of constraints. Due to scarcity of information about the hydrogeological system, stochastic modeling approaches can be used to assess tradeoffs between optimality and reliability. Using a stochastic approach, the constrained, single-objective problem may be turned into a multiobjective problem by substituting constraint inequalities with an additional objective function (OF) that accounts for the reliability of the PAT process. In this work, two approaches are analyzed: in one case, the additional OF consists of the probability of failure of a given remediation policy; in another, the OF additional is represented by the recourse, namely the penalty cost induced by the violation of constraints. In order to overcome the overwhelming computational cost required by stochastic simulation, surrogate forms of the OFs are introduced. In the test case under investigation, such functions are estimated by a kriging interpolation of the OF over a series of data points obtained from stochastic simulations of flow and transport, and calibrated against stochastic optimization solutions. The analysis of the two approaches for addressing the tradeoff of cost vs. reliability indicates that recourse accounts not only for the frequency of constraint violations, as the probability of failure does, but also for the intensity with which these occur. Ultimately, the recourse method allows considering less restrictive policies, although these may be highly sensitive to the choice of penalty functions.  相似文献   

5.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

6.
A new probabilistic remediation simulation package, PREMChlor, was used to simulate the effect of contaminant source and plume remediation at a site contaminated by trichloroethylene (TCE). First, the PREMChlor model was calibrated to the plume using a deterministic approach to represent the site conditions prior to remediation activities, which occurred in 1999. The calibrated model was then used in a probabilistic mode to conduct a simulation of the effects of field source and plume remediation activities during the period after 1999. This probabilistic simulation considers uncertainties in seven key parameters: the initial source mass and concentration, the relationship between source mass removal and source concentration, the effectiveness of the source remediation, the groundwater velocity, the background plume degradation rate, and the plume treatment effectiveness. The simulation results compare favorably with the observed data collected after 1999, and show the influence of the remediation efforts on the plume.  相似文献   

7.
This study investigates stochastic optimization of dense nonaqueous phase liquid (DNAPL) remediation design at Dover Air Force Base Area 5 using emulsified vegetable oil (EVO) injection. The Stochastic Cost Optimization Toolkit (SCOToolkit) is used for the study, which couples semianalytical DNAPL source depletion and transport models with parameter estimation, error propagation, and stochastic optimization modules that can consider multiple sources and remediation strategies. Model parameters are calibrated to field data conditions on prior estimates of parameters and their uncertainty. Monte Carlo simulations are then performed to identify optimal remediation decisions that minimize the expected net present value (NPV) cleanup cost while maintaining concentrations at compliance wells under the maximum contaminant level (MCL). The results show that annual operating costs could be reduced by approximately 50% by implementing the identified optimal remediation strategy. We also show that recalibration and reoptimization after 50 years using additional monitoring data could lead to a further 60% reduction in annual operating cost increases the reliability of the proposed remediation actions.  相似文献   

8.
Zheng C  Wang PP 《Ground water》2002,40(3):258-266
While significant progress has been made in the theoretical development of the simulation/optimization (S/O) approach for ground water remediation design, its application to large, field-scale problems has remained limited. To demonstrate the applicability and usefulness of the S/O approach under real field conditions, an optimization demonstration project was conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts, involving the design of a pump-and-treat system for the containment and cleanup of a large trichloroethylene (TCE) plume. The optimization techniques used in this study are based on evolutionary algorithms coupled with a response function approach for greater computational efficiency. The S/O analysis was performed parallel to a conventional trial-and-error analysis based on simulation alone. The results of this study demonstrate that not only would it be possible to remove more TCE mass under the same amount of pumping assumed in the trial-and-error design, but also substantial cost savings could be achieved by reducing the number of wells needed and adapting dynamic pumping. In spite of the large model size of more than 500,000 nodes and a long planning horizon of 30 years, the optimization modeling was carried out successfully on desktop PCs. This field demonstration project clearly illustrates the potential benefits of applying optimization techniques in remediation system design.  相似文献   

9.
The remediation strategy for an industrial site located in a coastal area involves a pump and treat system and a horizontal flow barrier (HFB) penetrating the main aquifer. To validate the groundwater flow conceptual model and to verify the efficiency of the remediation systems, we carried out piezometric measurements, slug tests, pumping tests, flowmeter tests and multilevel sampling. Flowmeter tests are used to infer vertical groundwater flow directions, and base exchange index is used to infer horizontal flow directions at a metric scale. The selected wells are located both upstream and downstream of the HFB. The installation of the HFB produced constraints to the groundwater flow. A stagnant zone of contaminated freshwater floating over the salt wedge in the upper portion of the aquifer is detected downstream of the HFB. This study confirms that the adopted remediation system is efficiently working in the area upstream of the HFB and even downstream in the bottom part of the aquifer. At the same time, it has also confirmed that hot spots are still present in stagnant zones located downstream of the HFB in the upper part of the aquifer, requiring a different approach to accomplish remediation targets. The integrated approach for flow quantification used in this study allows to discriminate the direction and the magnitude of groundwater fluxes near an HFB in a coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
When operated properly, in situ soil venting or vapor extraction can be one of the most cost-effective remediation processes for soils contaminated with gasoline, solvents, or other relatively, volatile compounds. The components of soil-venting systems are typically off-the-shelf items, and the installation of wells and trenches can be done by reputable environmental firms. However, the design, operation, and monitoring of soil-venting systems are not trivial. In fact, choosing whether or not venting should be applied at a given site is a difficult decision in itself. If one decides to utilize venting, design criteria involving the number of wells, well spacing, well location, well construction, and vapor treatment systems must be addressed. A series of questions must be addressed to decide if venting is appropriate at a given site and to design cost-effective in situ soil-venting systems. This series of steps and questions forms a "decision tree" process. The development of this approach is an attempt to identify the limitations of in situ soil venting, and subjects or behavior that are currently difficult to quantify and for which future study is needed.  相似文献   

11.
Plume containment using pump-and-treat (PAT) technology continues to be a popular remediation technique for sites with extensive groundwater contamination. As such, optimization of PAT systems, where cost is minimized subject to various remediation constraints, is the focus of an important and growing body of research. While previous pump-and-treat optimization (PATO) studies have used discretized (finite element or finite difference) flow models, the present study examines the use of analytic element method (AEM) flow models. In a series of numerical experiments, two PATO problems adapted from the literature are optimized using a multi-algorithmic optimization software package coupled with an AEM flow model. The experiments apply several different optimization algorithms and explore the use of various pump-and-treat cost and constraint formulations. The results demonstrate that AEM models can be used to optimize the number, locations and pumping rates of wells in a pump-and-treat containment system. Furthermore, the results illustrate that a total outflux constraint placed along the plume boundary can be used to enforce plume containment. Such constraints are shown to be efficient and reliable alternatives to conventional particle tracking and gradient control techniques. Finally, the particle swarm optimization (PSO) technique is identified as an effective algorithm for solving pump-and-treat optimization problems. A parallel version of the PSO algorithm is shown to have linear speedup, suggesting that the algorithm is suitable for application to problems that are computationally demanding and involve large numbers of wells.  相似文献   

12.
Most established methods to characterize aquifer structure and hydraulic conductivities of hydrostratigraphical units are not capable of delivering sufficient information in the spatial resolution that is desired for sophisticated numerical contaminant transport modeling and adapted remediation design. With hydraulic investigation methods based on the direct-push (DP) technology such as DP slug tests, DP injection logging, and the hydraulic profiling tool, it is possible to rapidly delineate hydrogeological structures and estimate their hydraulic conductivity in shallow unconsolidated aquifers without the need for wells. A combined application of these tools was used for the investigation of a contaminated German refinery site and for the setup of hydraulic aquifer models. The quality of DP investigation and the models was evaluated by comparisons of tracer transport simulations using these models and measured breakthroughs of two natural gradient tracer tests. Model scenarios considering the information of all tools together showed good reproduction of the measured breakthroughs, indicating the suitability of the approach and a minor impact of potential technical limitations. Using the DP slug tests alone yielded significantly higher deviations for the determined hydraulic conductivities compared to considering two or three of the tools. Realistic aquifer models developed on basis of such combined DP investigation approaches can help optimize remediation concepts or identify flow regimes for aquifers with a complex structure.  相似文献   

13.
Light non-aqueous phase liquids (LNAPL) represent one of the most serious problems in aquifers contaminated with petroleum hydrocarbons liquids. To design an appropriate remediation strategy it is essential to understand the behavior of the plume. The aim of this paper is threefold: (1) to characterize the fluid distribution of an LNAPL plume detected in a volcanic low-conductivity aquifer (∼0.4 m/day from slug tests interpretation), (2) to simulate the recovery processes of the free-product contamination and (3) to evaluate the primary recovery efficiency of the following alternatives: skimming, dual-phase extraction, Bioslurping and multi-phase extraction wells. The API/Charbeneau analytical model was used to investigate the recovery feasibility based on the geological properties and hydrogeological conditions with a multi-phase (water, air, LNAPL) transport approach in the vadose zone. The modeling performed in this research, in terms of LNAPL distribution in the subsurface, show that oil saturation is 7% in the air–oil interface, with a maximum value of 70% in the capillary fringe. Equilibrium between water and LNAPL phases is reached at a depth of 1.80 m from the air–oil interface. On the other hand, the LNAPL recovery model results suggest a remarkable enhancement of the free-product recovery when simultaneous extra-phase extraction was simulated from wells, in addition to the LNAPL lens. Recovery efficiencies were 27%, 65%, 66% and 67% for skimming, dual-phase extraction, Bioslurping and multi-phase extraction, respectively. During a 3-year simulation, skimmer wells and multi-phase extraction showed the lowest and highest LNAPL recovery rates, with expected values from 207 to 163 and 2305 to 707 l-LNAPL/day, respectively. At a field level we are proposing a well distribution arrangement that alternates pairs of dual-phase well-Bioslurping well. This not only improves the recovery of the free-product plume, but also pumps the dissolve plume and enhances in situ biodegradation in the vadose zone. Thus, aquifer and soil remediation can be achieved at a shorter time. Rough calculations suggest that LNAPL can be recovered at an approximate cost of $6–$10/l.  相似文献   

14.
A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.  相似文献   

15.
In situ thermal remediation technologies provide efficient and reliable cleanup of contaminated soil and groundwater, but at a high cost of environmental impacts and resource depletion due to the large amounts of energy and materials consumed. This study provides a detailed investigation of four in situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life‐cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify options to reduce these adverse effects. The study identifies a number of options for environmental optimization of in situ thermal remediation. In general, environmental optimization can be achieved by increasing the percentage of heating supplied in off peak electricity demand periods as this reduces the pressure on coal‐based electricity and thereby reduces the environmental impacts due to electricity production by up to 10%. Furthermore, reducing the amount of concrete in the vapor cap by using a concrete sandwich construction can potentially reduce the environmental impacts due to the vapor cap by up to 75%. Moreover, a number of technology‐specific improvements were identified, for instance by the substitution of stainless steel types in wells, heaters, and liners used in thermal conduction heating, thus reducing the nickel consumption by 45%. The combined effect of introducing all the suggested improvements is a 10 to 21% decrease in environmental impacts and an 8 to 20% decrease in resource depletion depending on the thermal remediation technology considered. The energy consumption was found to be the main contributor to most types of environmental impacts; this will, however, depend on the electricity production mix in the studied region. The combined improvement potential is therefore to a large extent controlled by the reduction/improvement of energy consumption.  相似文献   

16.
A stochastic optimization model based on an adaptive feedback correction process and surrogate model uncertainty was proposed and applied for remediation strategy design at a dense non-aqueous phase liquids (DNAPL)-contaminated groundwater site. One hundred initial training samples were obtained using the Latin hypercube sampling method. A surrogate model of a multiphase flow simulation model was constructed based on these samples employing the self-adaptive particle swarm optimization kriging (SAPSOKRG) method. An optimization model was built, using the SAPSOKRG surrogate model as a constraint. Then, an adaptive feedback correction process was designed and applied to iteratively update the training samples, surrogate model, and optimization model. Results showed that the training samples, the surrogate model, and the optimization model were effectively ameliorated. However, the surrogate model is an approximation of the simulation model, and some degree of uncertainty exists even though the surrogate model was ameliorated. Therefore, residuals between the surrogate model and the simulation model were calculated, and an uncertainty analysis was conducted. Based on the uncertainty analysis results, a stochastic optimization model was constructed and solved to obtain optimal remediation strategies at different confidence levels (60, 70, 80, 90, 95%) and under different remediation objectives (average DNAPL removal rate ≥?70,?≥?75,?≥?80,?≥?85,?≥?90%). The optimization results demonstrated that the higher the confidence level and remediation objective, the more expensive was remediation. Therefore, decision makers can weigh remediation costs, confidence levels, and remediation objectives to make an informed choice. This also allows decision makers to determine the reliability of a selected strategy and provides a new tool for DNAPL-contaminated groundwater remediation design.  相似文献   

17.
Evaluation of stochastic reservoir operation optimization models   总被引:5,自引:0,他引:5  
This paper investigates the performance of seven stochastic models used to define optimal reservoir operating policies. The models are based on implicit (ISO) and explicit stochastic optimization (ESO) as well as on the parameterization–simulation–optimization (PSO) approach. The ISO models include multiple regression, two-dimensional surface modeling and a neuro-fuzzy strategy. The ESO model is the well-known and widely used stochastic dynamic programming (SDP) technique. The PSO models comprise a variant of the standard operating policy (SOP), reservoir zoning, and a two-dimensional hedging rule. The models are applied to the operation of a single reservoir damming an intermittent river in northeastern Brazil. The standard operating policy is also included in the comparison and operational results provided by deterministic optimization based on perfect forecasts are used as a benchmark. In general, the ISO and PSO models performed better than SDP and the SOP. In addition, the proposed ISO-based surface modeling procedure and the PSO-based two-dimensional hedging rule showed superior overall performance as compared with the neuro-fuzzy approach.  相似文献   

18.
Site closure for soil vacuum extraction (SVE) application typically requires attainment or specified soil concentration standards based on the premise that mass flux from the vadose zone to ground water not result in levels exceeding maximum contaminant levels (MCLs). Unfortunately, realization of MCLs in ground water may not be attainable at many sites. This results in soil remediation efforts that may be in excess of what is necessary for future protection of ground water and soil remediation goals which often cannot be achieved within a reasonable time period. Soil venting practitioners have attempted to circumvent these problems by basing closure on some predefined percent total mass removal, or an approach to a vapor concentration asymptote. These approaches, however, are subjective and influenced by venting design. We propose an alternative strategy based on evaluation of five components: (1) site characterization, (2) design. (3) performance monitoring, (4) rule-limited vapor transport, and (5) mass flux to and from ground water. Demonstration of closure is dependent on satisfactory assessment of all five components. The focus of this paper is to support mass flux evaluation. We present a plan based on monitoring of three subsurface zones and develop an analytical one-dimensional vertical flux model we term VFLUX. VFLUX is a significant improvement over the well-known numerical one-dimensional model. VLEACH, which is often used for estimation of mass flux to ground water, because it allows for the presence of nonaqueous phase liquids (NAPLs) in soil, degradation, and a lime-dependent boundary condition at the water table inter-face. The time-dependent boundary condition is the center-piece of our mass flux approach because it dynamically links performance of ground water remediation lo SVE closure. Progress or lack of progress in ground water remediation results in either increasingly or decreasingly stringent closure requirements, respectively.  相似文献   

19.
A critical sampling grid can be defined for an earth related natural variable distributed in space, according to established theoretical results and under certain mathematical conditions. Sampling above this critical limit does not substantially improve mapping results, while based on this limit the ideal process of reproducing the original phenomenon is theoretically defined. The aim of the present paper is, by using an innovative approach; to investigate the validity of commonly used interpolation algorithms, both stochastic and deterministic, below and above this critical sampling limit. When sampling is dense, application to a simulated spatial random field shows that the results are equally accurate with those derived with more sophisticated stochastic methods. On the other hand, when the sampling grid is sparse, deterministic methods produce less accurate results, therefore stochastic algorithms with minimum estimation error are a much better option. To further demonstrate these points, the interpolation algorithms were applied in three different sampling grid densities in a contaminated waste disposal site in Russia.  相似文献   

20.
A new tracer experiment (referred to as MADE‐5) was conducted at the well‐known Macrodispersion Experiment (MADE) site to investigate the influence of small‐scale mass‐transfer and dispersion processes on well‐to‐well transport. The test was performed under dipole forced‐gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late‐time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field‐experimental data were also used to evaluate two transport models: a stochastic advection‐dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual‐domain single‐rate (DDSR) mass‐transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high‐resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号