首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ocean Modelling》2011,39(3-4):203-216
A fully nonlinear, non-hydrostatic model, MITgcm, is used to investigate internal solitary waves (ISWs) from the Luzon Strait (LS). As the ISWs in the South China Sea (SCS) have drawn more and more attention in recent years, they are studied in various ways, i.e., via remote sensing images, in situ measurements, and numerical simulations. The inspiration of this paper derived from the potential flaws of different numerical models that were employed to examine ISWs. In this study, we performed three-dimensional (3D) experiments with realistic topography and stratification, as well as with fully non-hydrostatic terms in the model, which was rather important for investigating the ISWs.Modeling results showed that baroclinic tides in the LS were essentially three-dimensional (3D), and that wave structures around two ridges in the strait were complicated with interesting internal oceanic phenomena. Several zonal cross-sections were chosen to illustrate vertical structures of zonal velocity field, and to show their meridional variances together with surface horizontal velocity gradients in order to highlight the advantages of 3D modeling with fully nonlinear, non-hydrostatic terms. Following Vlasenko et al. (2005), analysis of two parameters (Froude number and slope parameter that is defined as the ratio of inclination of topography to slope of radiated rays) that govern generation regime indicated that internal waves produced in the LS were subject to a mixed lee wave regime rather than baroclinic tide regime or unsteady lee wave regime.The propagation of ISWs beyond the generation area showed that manifestation of 3D effects was not very obvious, which, through further analysis, was mainly attributed to homogeneity of topography, inaccuracy of barotropic forcing, and Kuroshio intrusion in the LS. To better understand the necessity of 3D modeling, we chose several zonal cross-sections and performed various sensitivity experiments to show discrepancies between 2D and 3D cases.  相似文献   

2.
A three-dimensional (3-D) coupled physical and biological model was used to investigate the physical processes and their influence on the ecosystem dynamics of the Bohai Sea of China. The physical processes include M2 tide, time-varying wind forcing and river discharge. Wind records from 1 to 31 May in 1993 were selected to force the model. The biological model is based on a simple, nitrate and phosphate limited, lower trophic food web system. The simulated results showed that variation of residual currents forced by M2 tide, river discharge and time-varying wind had great impact on the distribution of phytoplankton biomass in the Laizhou Bay. High phytoplankton biomass appeared in the upwelling region. Numerical experiments based on the barotropic model and baroclinic model with no wind and water discharge were also conducted. Differences in the results by the baroclinic model and the barotropic model were significant: more patches appeared in the baroclinic model comparing with the barotropic model. And in the baroclinic model, the subsurface maximum phytoplankton biomass patches formed in the stratified water.  相似文献   

3.
The three-dimensional numerical model SUNTANS is applied to investigate river plume mixing in Otsuchi Bay, an estuary located along the Sanriku Coast of Iwate, Japan. Results from numerical simulations with different idealized forcing scenarios (barotropic tide, baroclinic tide, and diurnal wind) are compared with field observations to diagnose dominant mixing mechanisms. Under the influence of combined barotropic, baroclinic and wind forcing, the model reproduces observed salinity profiles well and achieves a skill score of 0.94. In addition, the model forced by baroclinic internal tides reproduces observed cold-water intrusions in the bay, and barotropic tidal forcing reproduces observed salt wedge dynamics near the river mouths. Near these river mouths, vertically sheared flows are generated due to the interaction of river discharge and tidal elevations. River plume mixing is quantified using vertical salt flux and reveals that mixing near the vicinity of the river mouth, is primarily generated by the barotropic tidal forcing. A 10 ms?1 strong diurnal breeze compared to a 5 ms?1 weak breeze generates higher mixing in the bay. In contrast to the barotropic forcing, internal tidal (baroclinic) effects are the dominant mixing mechanisms away from the river mouths, particularly in the middle of the bay, where a narrow channel strengthens the flow speed. The mixing structure is horizontally asymmetric, with the middle and northern parts exhibiting stronger mixing than the southern part of the bay. This study identifies several mixing hot-spots within the bay and is of great importance for the coastal aquaculture system.  相似文献   

4.
We document the accuracy and convergence of solutions for a z-coordinate primitive-equation model of internal tide generation and propagation. The model, which is based on MOM3 numerics, is linearized around a state of rest to facilitate comparison with analytic estimates of baroclinic generation at finite-amplitude topography in a channel forced by barotropic tidal flow at its boundaries. Unlike the analytical model, the numerical model includes mixing of both buoyancy and momentum, and several definitions of “baroclinic conversion” are possible. These are clarified by writing out the energetics of the linearized equations in terms of barotropic kinetic energy, baroclinic kinetic energy, and available potential energy. The tidal conversion computed from the model, defined as the rate of conversion of barotropic kinetic energy into available potential energy, agrees well with analytical predictions. A comparison of different treatments of bottom topography (full-cells, partial-cells, and ghost-cells) indicates that the partial-cell treatment is the most accurate in this application. Convergence studies of flow over a smooth supercritical ridge show that the dissipation along tidal characteristics is, apparently, an integrable singularity. When the ocean bottom is not smooth, the accuracy and convergence of the model depend on the power spectrum of the topography. A numerical experiment suggests that the power spectrum of the resolved topography must roll off faster than k−2 to obtain convergent results from a linear numerical model of this type.  相似文献   

5.
The purpose of this study is to find a combination of optimal numerical algorithms for time-stepping and mode-splitting suitable for a high-resolution, free-surface, terrain-following coordinate oceanic model. Due to mathematical feedback between the baroclinic momentum and tracer equations and, similarly, between the barotropic momentum and continuity equations, it is advantageous to treat both modes so that, after a time step for the momentum equation, the computed velocities participate immediately in the computation of tracers and continuity, and vice versa, rather than advancing all equations for one time step simultaneously. This leads to a new family of time-stepping algorithms that combine forward–backward feedback with the best known synchronous algorithms, allowing an increased time step due to the enhanced internal stability without sacrificing its accuracy. Based on these algorithms we design a split-explicit hydrodynamic kernel for a realistic oceanic model, which addresses multiple numerical issues associated with mode splitting. This kernel utilizes consistent temporal averaging of the barotropic mode via a specially designed filter function to guarantee both exact conservation and constancy preservation properties for tracers and yields more accurate (up to second-order), resolved barotropic processes, while preventing aliasing of unresolved barotropic signals into the slow baroclinic motions. It has a more accurate mode-splitting due to redefined barotropic pressure-gradient terms to account for the local variations in density field, while maintaining the computational efficiency of a split model. It is naturally compatible with a variety of centered and upstream-biased high-order advection algorithms, and helps to mitigate computational cost of expensive physical parameterization of mixing processes and submodels.  相似文献   

6.
珠江河口一维河网、三维河口湾水动力连接计算   总被引:5,自引:2,他引:3  
对珠江河口一维河网和三维河口湾斜压模型的水动力连接计算进行了研究。通过一维河网求解公式递推出口门连接处水位、流量关系式,然后依据三维模型计算得到口门连接处流量值,根据口门连接处的水位及流量连接条件计算出口门连接处的水位值,以此水位作为边界条件分别计算一维河网和三维河口湾斜压模型,实现了一维和三维斜压模型的水动力连接计算。对模型的连接计算进行验证对比,结果基本令人满意。  相似文献   

7.
It is well known that, within the linear nonviscous equations of tidal dynamics, the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components unlimitedly increase when approaching the critical latitude. It is also known that the linear equations of tidal dynamics with a constant and specified vertical eddy viscosity indicate the occurrence of significant tidal velocity shears in the near-bottom layer, which are responsible for increasing the baroclinic tidal energy dissipation, the turbulent kinetic energy, and the thickness of the bottom boundary layer. The first circumstance—the growth of the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components—is due to the elimination in the original equations of small terms, which are small everywhere except for the critical latitude zone. The second circumstance—the occurrence of significant tidal velocity shears—is due to the fact that internal tidal waves, which induce the dissipation of the baroclinic tidal energy and the diapycnal diffusion, are either not taken into account or described inadequately. It is suggested that diapycnal diffusion can lead to the degeneration (complete or partial) of tidal velocity shears, with all the ensuing consequences. The aforesaid is confirmed by simulation results obtained using the QUODDY-4 high-resolution three-dimensional finite-element hydrostatic model along the 66.25° E section, which passes in the Kara Sea across the critical latitude.  相似文献   

8.
吐噶喇海峡是西北太平洋重要的内潮产生区域,该区域内产生的内潮对于东海陆架和西北太平洋的混合和物质输运有十分重要的作用。水平分辨率为3km的JCOPE-T(JapanCoastalOcean PredictabilityExperiment—Tides)水动力学模式的结果表明,吐噶喇海峡的内潮主要产生在地形变化剧烈的海山和海岛附近,其引起的等密面起伏振幅可达30m。吐噶喇海峡的内潮在垂直于等深线方向分为两支向外传播:一支向西北方向传播,进入东海陆架后迅速减小;另一支向东南方向传播,进入西北太平洋。吐噶喇海峡潮能丰富,其在约半个月内的平均输入的净正压潮能通量为13.92GW,其中约有3.73GW转化为内潮能量。生成的内潮能量有77.2%在当地耗散,传出的内潮能通量为0.84GW,主要通过西北和东南两个边界传出。该区域潮能通量有显著的大小潮变化,大潮期间输入的正压潮净能通量和产生的内潮能通量均约为小潮期间的2倍,但其主要产生区域基本不变,且内潮能量耗散比率均在产生的内潮通量的76%—79%。另外,内潮能通量的传播方向也没有发生变化,仍主要通过西北和东南两个边界传出。因此,大小潮的变化仅影响吐噶喇海峡处产生的内潮能量的大小,不影响其产生区域、传播方向和耗散比率。  相似文献   

9.
A three-dimensional hydrodynamic model of the Upper Chesapeake Bay was used to examine the nature and cause of an intensification of subtidal, southward surface current in the middle reaches of the basin. The deep navigation channel along the eastern boundary was found to be ultimately responsible. The deep channel allows the density and tidally-induced subtidal currents to intensify over it, producing the eastern intensification. Both mechanisms operate in the non-rotating limit and consequently do not diminish with vanishing effect of the earth's rotation. Density-induced forcing is predominantly baroclinic, generating a northward undercurrent in the deep channel and a southward current aloft which attenuates westward. Tidal forcing is mostly barotropic, producing southward mean current in the deep channel and return flow to the west. Historic data lend support to the model results.  相似文献   

10.
象山港水交换特性研究   总被引:4,自引:0,他引:4  
在验证良好的三维斜压潮流数学模型的基础上,以溶 解态的保守性物质为示踪剂,建立对流-扩散型的海湾水交换数值模型,计算了象山港水体半交换时间和平均滞留时间,并研究了斜压动力对湾内外水交换的贡献。研究结果表明,象山港水交换速度的区域性变化较大,水体半交换时间和平均滞留时间由象山港口门向湾顶逐渐增加,口门附近半交换时间在5d以内,平均滞留时间为5~10 d;湾顶水交换速度缓慢,水体半交换时间为30~35 d,平均滞留时间为35~40d。斜压动力对狭湾外段水交换影响较弱,对狭湾内段有较大的影响。  相似文献   

11.
An algorithm is proposed for solving three-dimensional ocean hydrodynamics equations without hydrostatic approximation and traditional simplification of Coriolis acceleration. It is based on multicomponent splitting of the modified model with artificial compressibility. The original system of equations is split into two subsystems describing the transport of three velocity components and adjustment of the density and velocity fields. At the adjustment stage, the horizontal velocity components are represented as a sum of the depth means and deviations; the two corresponding subsystems are derived. For barotropic dynamics, the compressibility effect is represented as the boundary condition at the free surface, while for the baroclinic subsystem, it is introduced as ε-regularization of the continuity equation. Then, the baroclinic equations are split into two subsystems describing the hydrostatic and nonhydrostatic dynamics. The nonhydrostatic dynamics is computed at a separate splitting stage. The algorithm is included into the Institute of Numerical Mathematics of the Russian Academy of Sciences model based on “primitive” equations and verified by solving the hydrodynamics problem for the Sea of Marmara.  相似文献   

12.
An internal gravity wave model was employed to simulate the generation of internal solitary waves(ISWs) over a sill by tidal flows. A westward shoaling pycnocline parameterization scheme derived from a three-parameter model was adopted, and then 14 numerical experiments were designed to investigate the influence of the pycnocline thickness, density difference across the pycnocline, westward shoaling isopycnal slope angle and pycnocline depth on the ISWs. When the pycnocline thickness on both sides of the sill increases, the total barotropic kinetic energy, total baroclinic energy and ratio of baroclinic kinetic energy(KE) to available potential energy(APE) decrease, whilst the depth of isopycnal undergoing maximum displacement and ratio of baroclinic energy to barotropic energy increase. When the density difference on both sides of the sill decreases synchronously, the total barotropic kinetic energy, ratio of baroclinic energy to barotropic energy and total baroclinic energy decrease, whilst the depth of isopycnal undergoing maximum displacement increases. When the westward shoaling isopycnal slope angle increases, the total baroclinic energy increases whilst the depth of turning point almost remains unchanged. When the depth of westward shoaling pycnocline on both sides of the sill reduces, the ratio of baroclinic energy to barotropic energy and total baroclinic energy decrease, whilst the total barotropic kinetic energy and ratio of KE to APE increase. When one of the above four different influencing factors was increased by 10% while the other factors keep unchanged, the amplitude of the leading soliton in ISW Packet A was decreased by 2.80%, 7.47%, 3.21% and 6.42% respectively. The density difference across the pycnocline and the pycnocline depth are the two most important factors in affecting the characteristics and energetics of ISWs.  相似文献   

13.
《Oceanologica Acta》2003,26(5-6):597-607
A three-dimensional baroclinic shelf sea model is employed to simulate the tidal and non-tidal residual current in the South China Sea. The four most significant constituents, M2, S2, K1 and O1, are included in the experiments with tidal effect. At most stations, the computed harmonic constants agree well with the observed ones. The circulations of the South China Sea in summer (August) and winter (December) are mainly discussed. It is shown that the barotropic tidal residual current is too weak to affect the South China Sea circulation, whilst the contribution of the baroclinic tidal residual current to the South China Sea circulation would be important in the continental shelf sea areas, especially in the Gulf of Thailand and Gulf of Tonkin. In the deep-sea areas, the upper barotropic or baroclinic tidal residual current is relatively very weak, however, the speed order of the deep baroclinic tidal residual current can be the same as that of the mean current without tidal effect. Moreover, the baroclinic tidal residual current seems to be related to the different seasonal stratification of ocean.  相似文献   

14.
吕彪 《中国海洋工程》2013,27(4):509-522
A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k-ε equations in this model. The eddy viscosity is calculated from the k-ε turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field,and then applied to simulate the tidal flow in the Bohai Sea.  相似文献   

15.
厦门海域浅水三维潮流场动力学模型   总被引:2,自引:0,他引:2       下载免费PDF全文
基于Casulli的三维浅水模型,改进浅滩处理方法,并入简化的紊流闭合模型,形成完整的海洋动力学基本方程组,改进了紊流闭合模型的求解方法,动力学模拟结果与实测结果符合良好,海域中大量浅滩的干出与淹没的面积和位置与实际情况吻合良好.本模型是厦门海域海洋动力学理论研究中第一个完全的三维斜压潮流场模型,全部程序用FORTRAN语言独立开发和编写.  相似文献   

16.
珠江河口西南风强迫下潮流场的数值模拟   总被引:1,自引:0,他引:1  
包芸  任杰 《海洋通报》2003,22(4):8-14
采用Backhaus三维斜压模型模拟了均匀西南风场对珠江口近岸海域的影响,并与无风情况作了对比;通过对珠江河口盐度场及风生环流的分析比较,结果表明,模型较为真实地再现了夏季珠江河口的水动力学特性。  相似文献   

17.
黑潮延伸体上游中尺度涡场的年代际振荡及其相关机制   总被引:1,自引:1,他引:0  
黑潮延伸体上游区域的中尺度涡场的涡动能和涡特征尺度存在显著地年代际振荡,和黑潮延伸体路径的年代际变化有很好的相关性。当黑潮延伸体路径比较稳定时,其上游区域涡动能比较高,涡特征尺度比较大,反之相反。通过对黑潮延伸体上游区域的中尺度涡场进行集合分析发现:当黑潮延伸体处于稳定状态时,上游涡场几乎是各向均匀地,有轻微的径向伸长;而当黑潮延伸体处于不稳定状态时,上游的中尺度涡场有显著地纬向伸长。对与中尺度涡场的产生相关的线性斜压不稳定和正压不稳定进行了计算分析,结果显示,线性斜压不稳定不是控制中尺度涡场年代际变化的机制,而正压不稳定对中尺度涡场的年代际变化有积极的贡献。不稳定产生的中尺度涡之间存在非线性涡-涡相互作用。  相似文献   

18.
The three-dimensional structure and associated dynamics of the prominent cold (cyclonic) West Luzon Eddy (WLE) were investigated by a high-resolution regional ocean model. The WLE was horizontally and vertically heterogeneous, exhibiting asymmetric structures in the circulation, vorticity, vertical motion and energy distributions within the eddy. The asymmetry was mainly attributed to the existence of an eddy dipole formed by a coexisting warm (anti-cyclonic) eddy to the south of the WLE. Analysis of the momentum balance revealed that the coexistence of two eddies intensified barotropic pressure gradients in the southern WLE to locally enhance the eastward jet. The positive (negative) vorticity of the jet strengthened (weakened) the eddy in the southern sector (periphery), which, together with the formation of a subsurface density front, intensified (suppressed) the corresponding upward motion and cooling. The baroclinic pressure gradients opposed the dominant barotropic components and spun down the eddy at greater depths with stronger weakening in the southern sector near the front. Asymmetric energy distributions showed that larger mean kinetic energy (MKE) and eddy available potential energy (EAPE) were stored in the southern sector of the WLE. While the larger MKE was directly linked with the stronger barotropic currents, the larger EAPE in the southern WLE was formed by baroclinic energy conversions due to a strong density gradient at the front.  相似文献   

19.
A numerical model is developed for the generation of internal waves induced by a barotropic tidal wave travelling over large bottom features. Motion equations consider the non-linear terms, as well as the terms responsible for horizontal turbulent exchange. The fluid is assumed to be continuously stratified. In the framework of the developed model, a packet of short non-linear internal waves is shown to occur together with a long baroclinic tide. In the absence of non-linear terms in the equations of motion, the model data are qualitatively and quantitatively consistent with the data provided by known linear models.Translated by V. Puchkin.  相似文献   

20.
The effect of stratification on very long-period waves trapped on a straight continental shelf of constant depth is examined for a two-layer model. There are 4 modes in this system. The characteristics of the mode with the largest phase velocity can be approximated by the barotropic mode. The mode corresponding to the barotropic shelf-wave mode is modified by the baroclinic motions significantly, and in the limit of very narrow shelf width, the mode characteristics are transformed from those of the barotropic shelf-wave to the baroclinic Kelvin wave if the long-shore wave length is larger than the internal deformation radius. In this case, the stratification has an apparent effect of increasing phase velocity of barotropic shelf-waves. The remaining two modes are dominated by baroclinic motions with significant contribution from barotropic motions: among which the one has a shelf-wave characteristics for small values of the shelf width and approaches the mode corresponding to the baroclinic Kelvin wave in shallower water for large shelf width and the other is a stationary mode. If the long-shore wave length is much shorter than the internal deformation radius, the motions in the upper and lower layers are decoupled: the surface and bottom modes analogous to those discussed byRhines (1970) appears.If the interface is deeper than the shelf depth, the stationary mode is absent and the characteristics of the third mode approaches those of the baroclinic double Kelvin wave mode as the shelf width increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号