首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
Identifying the origin of nitrate is important for the control and management of groundwater quality in aquifer systems. In the southern Apennines (Italy), the Mount Vulture volcanic aquifer is a large and valuable resource of potable and mineral water supply. Unfortunately, signs of anthropogenic impact, especially nitrogen contamination, have recently become evident. In this study, and for the first time, stable isotope ratios (δ15N and δ18O) of NO3 ? were determined in groundwater to identify their origins and evaluate the presence of transformation processes. The Mount Vulture groundwaters are meteoric in origin, as demonstrated by measurements of δD and δ18O, and can be divided into two distinct areas based on their NO3 ? content. In the southeastern area, characterized by active agricultural land use, the high NO3 ? content and the δ15N–NO3 isotopic values are due to anthropogenic contamination (inorganic fertilizer). In groundwaters from the western area, the NO3 ? contents below 4 mg/L and the δ15N–NO3 values can be associated at organic soil N. Evidence for local denitrification may be assumed in a few groundwater samples of the western area showing relatively heavy δ15N values and low concentrations of nitrate. Finally, the low measured δ18O values indicate that nitrification occurred in both investigated areas.  相似文献   

2.
Major ions and important trace elements in addition to δ18O and δ2H were analysed for 43 groundwater samples sampled from the Al-Batin alluvial fan aquifer, South Iraq. The most dominant ions (with respect to molarity) were: Na+ > Cl? > SO4 2? > Ca2+ > Mg2+ > NO3 ? > HCO3 ?, with total dissolved solids (TDS) averaging 7855 mg/L. High concentrations were found for the trace elements U, Mo, V, B, Sr, and Cr. This study suggests a hydraulic connection exists near the fan apex between the uppermost part of the Al-Batin aquifer and the underlying Dammam aquifer by means of the Abu-Jir fault system. Except for the effects of extensive irrigation, fertilizer use, and poorly maintained sewers, the groundwater chemistry is mainly controlled by geological processes such as dissolution of evaporites and the enrichment of dissolved ions as a result of the high evaporation and low recharge rate. Furthermore, it is shown that the Kuwaiti fuel–oil burning during Gulf War in 1991 contributed to the enrichment of V and Mo in the studied aquifer. The spatial distribution of most ions appears to generally increase from the south-west towards the north-east, in the direction of groundwater flow. The stable isotopes show heavier values in groundwater with a gradually increasing trend in the direction of groundwater flow due to the decreasing depth to groundwater and thus increasing of evaporation from both groundwater or irrigation return water. Additionally, the stable isotope signature suggests that rainfall from sources in the Arabian Gulf and the Arabian Sea is the major source of recharge for the Al-Batin aquifer. Except for two samples of groundwater, all samples were not suitable for potable use according to the WHO standards. Most of the groundwater is suitable for some agricultural purpose and for livestock water supply. Apart from the high salinity, boron represents the most critical element in the groundwater with respect to agricultural purposes.  相似文献   

3.
The hydrogeochemical and isotopic evolution of groundwaters in the Mio–Pliocene sands of the Complexe Terminal (CT) aquifer in central Algeria are described. The CT aquifer is located in the large sedimentary basin of the Great Oriental Erg. Down-gradient groundwater evolution is considered along the main representative aquifer cross section (south–north), from the southern recharge area (Tinrhert Plateau and Great Oriental Erg) over about 700 km. Groundwater mineralisation increases along the flow line, from 1.5 to 8 g l?1, primarily as a result of dissolution of evaporite minerals, as shown by Br/Cl and strontium isotope ratios. Trends in both major and trace elements demonstrate a progressive evolution along the flow path. Redox reactions are important and the persistence of oxidising conditions favours the increase in some trace elements (e.g. Cr) and also NO3 ?, which reaches concentrations of 16.8 mg l?1 NO3-N. The range in 14C, 0–8.4 pmc in the deeper groundwaters, corresponds with late Pleistocene recharge, although there then follows a hiatus in the data with no results in the range 10–20 pmc, interpreted as a gap in recharge coincident with hyper-arid but cool conditions across the Sahara; groundwater in the range 24.7–38.9 pmc signifies a distinct period of Holocene recharge. All δ18O compositions are enriched relative to deuterium and are considered to be derived by evaporative enrichment from a parent rainfall around ?11‰ δ18O, signifying cooler conditions in the late Pleistocene and possibly heavy monsoon rains during the Holocene.  相似文献   

4.
The Grombalia aquifer (NE Tunisia) is an example of an important source of water supply for regional and national development, where the weak controls over abstraction, fertilizer application and waste disposal, coupled with limited knowledge of aquifer dynamics, is causing aquifer over-exploitation and water quality degradation. Assessing the key role of groundwater in water-resources security is therefore of paramount importance to support new actions to preserve water quality and quantity in the long-run. This study presents one of the first investigations targeted at a complete assessment of aquifer dynamics in the Grombalia aquifer. A multi-tracer hydrogeochemical and isotopic (δ2H, δ18O and 3H) approach was used to study the influence of seasonal variation on piezometric levels, chemical and isotopic compositions, and groundwater recharge. A total of 116 samples were collected from private wells and boreholes during three periods in a 1 year monitoring campaign (February–March 2014, September 2014 and February 2015). Results revealed the overall unsuitability of groundwater for drinking and irrigation purposes (NO3?>?50 mg/L in 51% of the wells; EC >1,000 μS/cm in 99% of the wells). Isotopic balance coupled to piezometric investigation indicated the contribution of the shallow aquifer to deep groundwater recharge. The study also revealed the weakness of ‘business as usual’ management practices, highlighting possible solutions to tackle water-related challenges in the Grombalia region, where climate change, population growth and intensive agricultural activities have generated a large gap between demand and available water reserves, hence becoming a possible driver for social insecurity.  相似文献   

5.
The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74–83 mg L?1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between ?4.8 and ?7.9‰ and O isotope enrichment factors varying between ?3.8 and ?4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10–20 years) than in the north (20–30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.  相似文献   

6.
Groundwater of the unconfined aquifer (1,100 sq. km) of a two-tier coastal aquifer located in the Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran, is classified into fresh and brackish water types. Fresh groundwater (FGW) samples (n = 36) are characterized by Ca2+ > Na> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, values of the C-ratio (av. = 0.89) and CAI and values of the molar ratios of Ca2+/HCO3 ?, Ca2+/SO4 2?, Mg2+/HCO3 ? and Mg2+/SO4 2? indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicates, saline/sea water trapped in the aquifer sediments (now admixed with the groundwater) and ion exchange reactions. Values of the CAI and Na+/Cl? molar ratio suggest that the part of the Ca2+ (±Mg2+) content in 23 FGW samples is derived from clay minerals of the aquifer matrix, and part of the Na+ content in 20, 12, and 3 FGW samples is derived, respectively, from alkali feldspar weathering, clay minerals of the aquifer matrix and rain water and/or halite. Brackish groundwater (BGW) samples (n = 4) contain Cl? as the dominant anion and their average total ionic concentration (38.65 meq/L) is 1.79 times higher than that of the FGW samples (21.50 meq/L). BGW pockets were generated by non-conservative mixing of FGW with the upconed saline water from the underlying saline groundwater zone of the semi-confined aquifer along bore wells involved in excessive extraction of groundwater from the unconfined aquifer. Groundwater belongs essentially to “high salinity, low sodium” irrigation water class.  相似文献   

7.
The hydrogeochemistry and isotope geochemistry of groundwater from 85 wells in fractured dolomite aquifers of Central Slovenia were investigated. This groundwater represents waters strongly influenced by chemical weathering of dolomite with an average of δ13CCARB value of +2.2 ‰. The major groundwater geochemical composition is HCO3 ? > Ca2+ > Mg2+. Several differences in hydrogeochemical properties among the classes of dolomites were observed when they were divided based on their age and sedimentological properties, with a clear distinction of pure dolomites exhibiting high Mg2+/Ca2+ ratios and low Na+, K+ and Si values. Trace element and nutrient concentrations (SO4 2?, NO3 ?) were low, implying that karstic and fractured dolomite aquifers are of good quality to be used as tap water. Groundwater was generally slightly oversaturated with respect to calcite and dolomite, and dissolved CO2 was up to 46 times supersaturated relative to the atmosphere. The isotopic composition of oxygen (δ18OH2O), hydrogen (δDH2O) and tritium ranged from ?10.3 to ?8.4 ‰, from ?68.5 to ?52.7 ‰ and from 3.5 TU to 10.5 TU, respectively. δ18O and δD values fell between the GMWL (Global Meteoric Water Line) and the MMWL (Mediterranean Meteoric Water Line) and indicate recharge from precipitation with little evaporation. The tritium activity in groundwater suggests that groundwater is generally younger than 50 years. δ13CDIC values ranged from ?14.6 to ?9.3 ‰ and indicated groundwater with a contribution of degraded organic matter/dissolved inorganic carbon in the aquifer. The mass balances for groundwater interacting with carbonate rocks suggested that carbonate dissolution contributes from 43.7 to 65.4 % and degradation of organic matter from 34.6 to 56.3 %.  相似文献   

8.
The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na–NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca–HCO3, Ca–NO3, and Na–NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L?1 NO3–N (8 meq L?1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.  相似文献   

9.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

10.
Aquifer-based groundwater quality assessment offers critical insight into the major hydrochemical processes, and aids in making groundwater resources management decisions. The Texas Rolling Plains (TRP), spanning over 22 counties, is a major agro-ecological region in Texas from where highest groundwater nitrate (NO3 ?) levels in the state have been reported. In this study, we present a comparative assessment of major hydrochemical facies pertaining to NO3 ? contamination and a host of species such as sulfate (SO4 2?), chloride (Cl?), and total dissolved solids (TDS) in different water use classes in the Seymour and Blaine aquifers, underlying the TRP. Aquifer-stratified groundwater quality information from 1990 to 2010 was obtained from the Texas Water Development Board and aggregated over decadal scale. High groundwater salinization was found in the municipal water use class in the Blaine aquifer with about 100, 87 and 50 % of observations exceeding the secondary maximum contaminant level for TDS, SO4 2?, and Cl?, respectively in the 2000s (2000–2010). The NO3-contamination was more alarming in the Seymour aquifer with 82 and 61 % of observations, respectively, exceeding the maximum contaminant level (MCL) in the irrigation and municipal water use classes in the 2000s. Salinization was more influenced by SO4 2? and Cl? in the Blaine aquifer and by NO3 ? in the Seymour aquifer. High NO3 ? (>MCL) observations in the Seymour aquifer occurred in the Ca–HCO3 and Ca–Mg–HCO3 facies, the domains of fresh water recharge and anthropogenic influences (e.g., agricultural activities, waste disposal). High SO4 2?, Cl? and TDS observations in the Blaine aquifer dominated the Ca–Cl, Na–Cl, and mixed Ca(Mg)–SO4(Cl) facies indicating evaporite dissolution, mixing and solute exchange, and lack of fresh recharge.  相似文献   

11.
The Cuatrociénegas area is useful for the investigation of the effect of groundwater extraction in the Chihuahuan freshwater xeric ecoregion. It has been investigated at this time using a selection of geochemical indicators (major, minor and trace elements) and δ34S data, to characterize the origin of groundwater, the main geochemical processes and the mineral/groundwater interactions controlling the baseline geochemistry. The area is composed of limestones of Mesozoic age, with a composite thickness of about 500 m, overlaid by basin fill (poorly consolidated young sediments). Substantial water extraction and modification of natural discharges from the area along the last century have produced a detrimental impact on ecosystem structure and function. Water–rock interactions, mixing and evaporative processes dominate the baseline groundwater quality. Natural recharge is HCO3–Ca type in equilibrium with calcite, low salinity (TDS?<?500 mg/L), Cl? lower than 11 mg/L and average Li+ concentration of 0.005 mg/L. Along the groundwater flow systems, δ34S evidence and mass transfer calculations indicate that Cretaceous gypsum dissolution and dedolomitization reactions adjust water composition to the SO4–Ca type. The increase of water–rock interaction is reflected by Cl? values increase (average 68 mg/L), TDS up to about 1500 mg/L and an average Li+ concentration of 0.063 mg/L. Calculations with chemical geothermometers indicate that temperature at depth could be at maximum of 15–20 °C higher than field-measured temperature for pozas. After groundwater is discharged to the surface, chemical evolution continues; water evaporation, CO2 degassing and precipitation of minerals such as gypsum, calcite and kaolinite represent the final processes and reactions controlling water chemical composition.  相似文献   

12.
High water demand for domestic use in Douala with over 3 million inhabitants is met mainly by shallow groundwater. Field measurements and water sampling in January 2015 were carried out to examine the major controls on the groundwater composition and spatial view of ions in the water, timing of recharge and link between the recharge process and quality of the water. Fifty-two water samples were analysed for major ions and stable hydrogen and oxygen isotopes. Low pH values (3.61–6.92) in the groundwater indicated an acidic aquifer; thus, prone to acidification. The dominant water type was Na–Cl. Nitrate, which exceeded the WHO guide value of 50 mg/l in 22% of the groundwater, poses a health problem. Mass ratios of Cl?/Br? in the water ranged from 54 to 3249 and scattered mostly along the mixing lines between dilute waters, septic-tank effluent and domestic sewage. A majority of the samples, especially the high NO3 ? shallow wells, clustered around the septic-tank effluent-end-member indicating high contamination by seepage from pit latrines; hence, vulnerable to pollution. Stable isotopes in the groundwater indicated its meteoric origin and rapid infiltration after rainfall. The δ18O values showed narrow ranges and overlaps in rivers, springs, open wells and boreholes. These observations depict hydraulic connectivity, good water mixing and a homogeneous aquifer system mainly receiving local direct uniform areal recharge from rainfall. The rapid and diffused recharge favours the leaching of effluent from the pit toilets into the aquifer; hence, the high NO3 ? and Cl? in shallow wells. Silicate weathering, ion exchange and leaching of waste from pit toilets are the dominant controls on the groundwater chemistry. Drilling of deep boreholes is highly recommended for good-quality water supply. However, due the hydraulic connection to the shallow aquifer, geochemical modelling of future effects of such an exploitation of the deeper aquifer should support groundwater management and be ahead of the field actions.  相似文献   

13.
A diagnosis of the groundwater quality of 70 wells sampled during two climatic regimes (dry and raining seasons) from a semiarid area in Rajasthan, India, had been carried out using standard methods. Analysis of the results for various hydrochemical parameters wherein the geological units are alluvium, quartzite and granite gneisses showed that all the parameters did not fall within the World Health Organisation’s acceptable limits for irrigation and drinking water purposes. The order of major cations and anions obtained during the dry and raining seasons are Na+ ? Mg2+ ? Ca2+ ? K+ and Cl?? HCO3 ? ? SO4 2?? CO3 ?> F? ? NO3 ?, respectively. A maximum value of nitrate of 491.6 mg/l has been examined and its contamination is due to discriminated highly impacted groundwater samples by agricultural activity and small-scale urbanization. Fluoride (F?) concentration is 6.50 mg/l as a maximum value, whereas values in about 26 % of the samples are more than the permissible limit (1.5 mg/l) for drinking water. The cumulative probability distributions of the selected ions show two individual intersection points with three diverse segments, considered as regional threshold values and highly impacted threshold values for differentiating the samples with the effects of geogenic, anthropogenic and saline water mixing. The first threshold values indicate the background hydrochemical constituents in the study area. The second threshold value of 732 mg/l for bicarbonate indicates that sandy aquifer is being dissolved during wet period, whereas NO3 ? concentration of more than the initial threshold value (=75 mg/l) indicates discriminated highly impacted groundwater samples by agricultural activity and urbanization in dry season. Various parameters such as soluble sodium percentage (SSP), salinity (electrical conductivity (EC)), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), Kelley’s ratio (KR), permeability index (PI), residual sodium bicarbonate (RSB) and magnesium absorption ratio (MAR) for the well samples show that, overall, 46 % of groundwater samples are not suitable for irrigation. Further, chloro-alkaline indices (CAIs) were used for distinguishing regional recharge and discharge zones whereas corrosivity ratio (CR) utilized for demarcating areas to use metallic pipes for groundwater supply. In general, groundwater quality is mainly controlled by the chemical weathering of rock-forming minerals. The information obtained represents a base for future work that will help to assess the groundwater condition for periodical monitoring and managing the groundwater from further degradation.  相似文献   

14.
15.
Over the past decades, the Gujarat state of India experienced intensive agricultural and industrial activities, fertilizer consumption and abstraction of groundwater, which in turn has degraded the ground water quality. Protection of aquifers from nitrate pollution is a matter of prime concern for the planners and decision-makers. The present study assessed the spatial and temporal variation of groundwater nitrate levels in areas with different land use/land cover activities for both pre- and post-monsoon period. The pre-monsoon nitrate level (1.6–630.7 mg/L) in groundwater was observed to be higher as compared to the post-monsoon level (2.7–131.7 mg/L), possibly due to insufficient recharge and evaporation induced enrichment of agrichemical salts in groundwater. High HCO3 ? (200–1,000 mg/L) as well as SO4 2?/Cl? (0.111–0.992) in post-monsoon period provides a favourable environment for denitrification, and lower the NO3 levels during the post-monsoon period. The K vs NO3 scatter plot suggests a common source of these ions when the concentration is <5 mg/L, the relationships between different pollutants and nitrate also suggest that fertilizers and other sources, such as, animal waste, crop residue, septic tanks and effluents from different food processing units present in the area can be attributed to higher nitrate levels in the groundwater. Appropriate agronomic practices such as application of fertilizers based on calibrated soil tests and proper irrigation with respect to crop can minimize the requirement for inorganic fertilizers, which can bring down the cost of cultivation considerably, and also protect groundwater from further degradation.  相似文献   

16.
Groundwater of an aquifer located in the vicinity of a large coal washery near Zarand City, Iran consists of two hydrochemically differing facies, which have been informally designated as groundwater (A) and groundwater (B). Groundwater (A) is native, brackish in composition and is characterized by Na+ > Mg2+ > Ca2+ > K+ and SO4 2? > HCO3 ? > Cl? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of chloro-alkaline indices, C ratio and Na+/Cl? molar ratio indicate that in the groundwater (A), the ionic load of Ca2+, Mg2+, Na+, K+, SO4 2? and HCO3 ? is derived essentially from weathering of both carbonates and aluminosilicates and direct cation and reverse cation–anion exchange reactions. Groundwater (B) is the polluted variant of the groundwater (A), brackish to saline in composition, and unlike the groundwater (A), consists of HCO3 ? as the dominant anion. In comparison with the groundwater (A), the groundwater (B) contains higher concentrations of all ions, and its average ionic load (av. = 59.74 me/L) is 1.43 times higher than that of the groundwater (A) (av. = 41.54 me/L). Additional concentrations of Ca2+, Mg2+, K+, SO4 2?, Cl? and HCO3 ? in the groundwater (B) are provided mainly by downward infiltrating water from the coal washery tailings pond and reverse cation–anion exchange reaction between tailings pond water and exchanger of the aquifer matrix during non-conservative mixing process of groundwater (A) and tailings pond water. Certain additional concentrations of Na+, K+ and NO3 ? in the groundwater (B) are provided by other anthropogenic sources. Quality wise, both groundwaters are marginally suitable for cultivation of salt-tolerant crops only.  相似文献   

17.
Groundwater from karst subterranean streams is among the world’s most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are affected by both natural environment and people. Therefore, the study of karst groundwater hydrochemistry and its solutes’ sources is very important to ensure the normal function of life support systems. This paper focused on the major ion chemistry and sulfate isotope of karst groundwater in Chongqing for tracing the sulfate sources and related hydrochemical processes. Hydrochemical types of karst groundwater in Chongqing were mainly of the Ca-HCO3 type or Ca(Mg)-HCO3 type. However, some hydrochemical types were the K + Na + Ca-SO4 type (G25 site) or Ca-HCO3 + SO4 type (G26 and G14 sites), indicating that the hydrochemistry of these sites may be strongly influenced by anthropogenic activities or unique geological characteristics. The δ34S-SO4 2? of collected karst groundwater sample fell into a range of ?6.8 to 21.5 ‰, with a mean value of 5.6 ‰. In dolomite aquifer, the δ34S-SO4 2? value ranges from ?4.3 to 11.0 ‰, and in limestone aquifer, it ranged from ?6.8 to 21.5 ‰. The groundwater samples from different land use types showed distinctive δ34S-SO4 2? value. The δ34S-SO4 2? value of groundwater samples had range of ?6.8 to 16.7 ‰ (mean 4.0 ‰, n = 11) in cultivated land areas, 1.5–21.5 ‰ (mean 7.2 ‰, n = 20) in forested land areas, and ?4.3 to 0.8 ‰ (mean ?1.7 ‰, n = 2) in coalmine areas. The δ34S-SO4 2? values of groundwater samples collected from factory area and town area were 2.2 and 9.9 ‰, respectively. According to the δ34S information of potential sulfate sources, this paper discussed the possible sulfate sources of collected karst groundwater samples in Chongqing. The variations of both δ34S and 1/SO4 2? values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sulfide mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) contributed to sulfate in karst groundwater. The influence of oxidation of sulfide mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread. For protecting, sustaining, and utilizing the groundwater resources, the sewage possibly originating from urban, mine or industrial area must be controlled and treated, and the use of fertilizer should be limited.  相似文献   

18.
A significant component of domestic demand for water of urban areas located in the Gangetic plains is met by heavy pumping of groundwater. The present study is focused on the Patna municipal area, inhabited by 17 million people and spanning over 134 km2, where entire urban water demand is catered from pumping by wells of various capacities and designs. The present study examines the nature of the aquifer system within the urban area, the temporal changes in the water/piezometric level and the recharge mechanism of the deeper aquifers. The aquifer system is made up of medium-to-coarse unconsolidated sand, lying under a ~40-m-thick predominantly argillaceous unit holding 8- to 13-m-thick localised sand layers and continues up to 220 m below ground. Groundwater occurs under semi-confined condition, with transmissivity of aquifers in 5,500–9,200 m2 day?1 range. Hydraulic head of the deeper aquifer remains in 9–19 m range below ground, in contrast to 1–9 m range of that of the upper aquitard zone. The estimated annual groundwater extraction from the deeper aquifer is ~212.0 million m3, which has created a decline of 3.9 m in the piezometric level of the deeper aquifer during the past 30 years. Unregulated construction of deep tube wells with mushrooming of apartment culture may further exacerbate the problem. The sand layers within the aquitard zone are experiencing an annual extraction of 14.5 million m3 and have exhibited stable water level trend for past one and half decades. This unit is recharged from monsoon rainfall, besides contribution from water supply pipe line leakage and seepage from unlined storm water drains.  相似文献   

19.
Nitrate (NO3 ?) reduction processes are important for depleting the NO3 ? load from agricultural source areas before the discharge water reaches surface waters or groundwater aquifers. In this study, we experimentally demonstrate the co-occurrence of microbial iron sulfide oxidation by NO3 ? (MISON) and other NO3 ?-depleting processes in a range of contrasting sediment types: sandy groundwater aquifer, non-managed minerotrophic freshwater peat and two brackish muddy sediments. Approximately 1/3 of the net NO3 ? reduction was caused by MISON in three of the four environments despite the presence of organic carbon in the sediment. An apparent salinity limitation to MISON was observed in the most brackish environment. Addition of high surface area synthetically precipitated iron sulfide (FeS x ) to the aquifer sediment with the lowest natural FeS x reactivity increased both the relative fraction of NO3 ? reduction linked to MISON from approximately 30–100 % and the absolute rates by a factor of 17, showing that the potential for MISON-related NO3 ? reduction is environmentally significant and rate limited by the availability of reactive FeS x .  相似文献   

20.
Core sediments from three disturbed boreholes (JOR, GHAT, and RAJ) and two undisturbed boreholes (DW1 and DW2) were collected in the study area of the Chapai-Nawabganj district of northwestern Bangladesh for geochemical analyses. In the study area, groundwater samples from fourteen As-contained private wells and five nested piezometers at both the DW1 and DW2 boreholes were also collected and analyzed. The groundwater arsenic concentrations in the uppermost aquifer (10–40 m of depth) range from 3 to 315 μg/L (mean 47.73 ± 73.41 μg/L), while the arsenic content in sediments range from 2 to 14 mg/kg (mean 4.36 ± 3.34 mg/kg). An environmental scanning electron microscope (ESEM) with an energy dispersive X-ray spectrometer was used to investigate the presence of major and trace elements in the sediments. Groundwaters in the study area are generally the Ca–HCO3 type with high concentrations of As, but low levels of Fe, Mn, NO3 ? and SO 4 ?2 . The concentrations of As, Fe, Mn decrease with depth in the groundwater, showing vertical geochemical variations in the study area. Statistical analysis clearly shows that As is closely associated with Fe and Mn in the sediments of the JOR core (r = 0.87, p < 0.05 for Fe and r = 0.78, p < 0.05 for Mn) and GHAT core (r = 0.95, p < 0.05 for Fe and r = 0.93, p < 0.05 for Mn), while As is not correlated with Fe and Mn in groundwater. The comparatively low Fe and Mn concentrations in some groundwater and the ESEM image revealed that siderite precipitated as a secondary mineral on the surface of the sediment particles. The correlations along with results of sequential extraction experiments indicated that reductive dissolution of FeOOH and MnOOH represents a mechanism for releasing arsenic into the groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号