首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The solid and liquid particles which constitute polar stratospheric clouds (PSCs) are of manifold importance to the meteorology of the stratosphere. The heterogeneous reactions which take place on and within these particles release halogens from relatively inert reservoir species into forms which can destroy ozone in the polar spring. In addition, solid PSC particles are instrumental in the physical removal of nitrogen oxides (denitrification) and water (dehydration) of regions of the polar stratosphere. Denitrification, in particular, allows extended ozone destruction by slowing the conversion of chlorine radicals back into reservoir species.We review the historical development of PSC studies, with particular emphasis on results from the last decade, encompassing developments in observations, in laboratory experiments, and in theoretical treatments. The technical challenge of measuring sufficient of the parameters describing any given PSC, to allow its microphysics to be understood, has driven forward balloon-borne, aircraft, and satellite instrumentation. The technical challenge of finding suitable laboratory proxies for PSCs, in order to observe the microphysics under controlled conditions, has resulted in a wide variety of experimental designs, some of which maximise the probability of observing phase change, others which mimic the surface–volume ratios of PSCs more closely. The challenge to theory presented by PSCs has resulted in improvements in the thermodynamics of concentrated inorganic solutions of volatile compounds, and a new general theory of freezing of water ice from concentrated aqueous solutions. Of the major processes involving PSCs, heterogeneous reaction probabilities for ternary HNO3/H2SO4/H2O solutions, and heterogeneous freezing to produce nitric-acid hydrates, are the least well understood.  相似文献   

2.
A European campaign of ground-based radar, lidar and optical measurements was carried out during the winter of 1996/1997 (28 December–2 February) to study lee waves in the northern part of Scandinavia. The participants operated ozone lidars, backscatter lidars and MST radars at ALOMAR/Andoya and Esrange/Kiruna, and an ALIS imaging system in Kiruna. The Andoya site was generally windward of the Scandinavian mountains, the Kiruna site on the leeward side. The goal of the experiment was to examine the influence of lee waves on the formation of Polar Stratospheric Clouds (PSCs). This paper studies the radar data from MST-radar ESRAD located at Esrange [68.°N, 21.°E], i.e. in the lee of the mountains. We present three cases where strong lee waves were observed: in one case they propagated upwards to the lower stratosphere and in the other two cases they were trapped or absorbed in the troposphere. We examine the local waves and the direction and strength of the local wind using the radar, the synoptic meteorological situation using weather maps (European Meteorological Bulletin) and the synoptic stratospheric temperatures using ECMWF data. We observed that waves propagate up to the stratosphere during frontal passages. When anticyclonic ridges are present, the propagation to the stratosphere is very weak. This is due to trapping of the waves at or below the tropopause. We also show that the radar data alone can be used to characterise the different weather conditions for the three cases studied (through the variation of the height of the tropopause). The synoptic stratospheric temperatures in the three cases were similar, and were above the expected threshold for PSC formation. Lidar and visual observation of PSCs and nacreous clouds, respectively, showed that these were present only in the case when the lee waves propagated up to the lower stratosphere.  相似文献   

3.
A new two-dimensional zonal model of the stratosphere, based on a formulation in an isentropic framework, with complete chemistry has been coupled with a high resolution detailed microphysical model for polar stratospheric clouds (PSCs). The 2D model chemistry includes all presently known heterogeneous processes on sulfate aerosols and PSCs. The coupling of these two models, with inherently different time scales, is discussed. It is demonstrated that in order to obtain a realistic interrelationship between NOy and N2O an accurate simulation of the sedimentation by PSC particles is necessary. A good agreement of model PSC presence and observations is found for the Antarctic polar winter without the need to impose additional artificial temperature variations in the model. The calculated occurrence of polar stratospheric clouds and resulting heterogeneous chemistry during the Antarctic winter are discussed. Sensitivity of the polar stratospheric chemical composition and cloud formation for different perturbations is investigated by studying the effects of transport across the polar vortex boundary and heterogeneous processing by an enhanced sulfate aerosol load. The importance of including sedimentation for all cases is also discussed.  相似文献   

4.
Ocean-color remote sensing has been used as a tool to detect phytoplankton size classes (PSCs). In this study, a three-component model of PSC was reparameterized using seven years of pigment measurements acquired in the South China Sea (SCS). The model was then used to infer PSC in a cyclonic eddy which was observed west of Luzon Island from SeaWiFS chlorophyll-a (chla) and sea-surface height anomaly (SSHA) products. Enhanced productivity and a shift in the PSC were observed, which were likely due to upwelling of nutrient-rich water into the euphotic zone. The supply of nutrients promoted the growth of larger cells (micro- and nanoplankton), and the PSC shifted to greater sizes. However, the picoplankton were still important and contributed ∼48% to total chla concentration. In addition, PSC time series revealed a lag period of about three weeks between maximum eddy intensity and maximum chlorophyll, which may have been related to phytoplankton growth rate and duration of eddy intensity.  相似文献   

5.
We consider the problem of predicting the spatial field of particle-size curves (PSCs) from a sample observed at a finite set of locations within an alluvial aquifer near the city of Tübingen, Germany. We interpret PSCs as cumulative distribution functions and their derivatives as probability density functions. We thus (a) embed the available data into an infinite-dimensional Hilbert Space of compositional functions endowed with the Aitchison geometry and (b) develop new geostatistical methods for the analysis of spatially dependent functional compositional data. This approach enables one to provide predictions at unsampled locations for these types of data, which are commonly available in hydrogeological applications, together with a quantification of the associated uncertainty. The proposed functional compositional kriging (FCK) predictor is tested on a one-dimensional application relying on a set of 60 PSCs collected along a 5-m deep borehole at the test site. The quality of FCK predictions of PSCs is evaluated through leave-one-out cross-validation on the available data, smoothed by means of Bernstein Polynomials. A comparison of estimates of hydraulic conductivity obtained via our FCK approach against those rendered by classical kriging of effective particle diameters (i.e., quantiles of the PSCs) is provided. Unlike traditional approaches, our method fully exploits the functional form of PSCs and enables one to project the complete information content embedded in the PSC to unsampled locations in the system.  相似文献   

6.
A three-dimensional transport model has been used to compare and contrast the extent of processing by polar stratospheric clouds during the northern hemisphere winters of 1991/1992 and 1992/1993. The model has also been used to compare the potential for ozone loss between these two winters. The TOMCAT off-line model is forced using meteorological analyses from the ECMWF. During winter 1992/1993 polar stratospheric clouds (PSCs) in the model persisted into late February/early March, which is much later than in 1991/1992. This persistence of PSCs should have resulted in much more ozone loss in the later winter. Interestingly, however, the extent of PSC processing and ozone loss was greater in January 1992 than January 1993. In January 1992 PSCs occurred at the edge of a distorted polar vortex whilst in January 1993 the PSCs were located at the centre of a much more zonally symmetrical vortex. In March 1993, distortions of the vortex led to the tearing off of vortex air and its mixing into midlatitudes.  相似文献   

7.
Based on radiative transfer calculations, it is studied whether polar stratospheric clouds (PSCs) can be detected by the new Global Ozone Monitoring Experiment (GOME) on board the second European Research Satellite (ERS-2) planned to be launched in 1995. It is proposed to identify PSC-covered areas by use of an indicator, the Normalized Radiance Difference (NRD), which relates the difference of two spectral radiances at 0.515 µm and 0.67 µm to one radiance measured in the centre of the oxygen A-band at 0.76 µm. Simulations are carried out for two solar zenith angles, =78.5° and =86.2°. They indicate that, in presence of PSCs and with increasing solar zenith angles above =80°, the NRD decrease to values clearly below those derived under conditions of a cloud-free stratosphere. Results for =86.2° show that the method is successful independent of existing tropospheric clouds, of different tropospheric aerosol loadings, and of surface albedos. Results for =78.5° illustrate that PSC detection under conditions of smaller solar zenith angles <80° needs additional information about tropospheric clouds.  相似文献   

8.
The comprehensive chemistry module CHEM has been developed for application in general circulation models (GCMs) describing tropospheric and stratospheric chemistry, including photochemical reactions and heterogeneous reactions on sulphate aerosols and polar stratospheric clouds. It has been coupled to the spectral atmospheric GCM ECHAM3. The model configuration used in the current study has been run in an –off-line mode, i.e. the calculated chemical species do not affect the radiative forcing of the dynamic fields. First results of a 15-year model integration indicate that the model ECHAM3/CHEM runs are numerically efficient and stable, i.e. that no model drift can be detected in dynamic and chemical parameters. The model reproduces the main features regarding ozone, in particular intra- and interannual variability. The ozone columns are somewhat higher than observed (approximately 10%), while the amplitude of the annual cycle is in agreement with observations. A comparison with HALOE data reveals, however, a serious model deficiency regarding lower-stratosphere dynamics at high latitudes. Contrary to what is concluded by observations, the lower stratosphere is characterized by slight upward motions in the polar regions, so that some of the mentioned good agreements must be considered as fortuitous. Nevertheless, ECHAM3/CHEM well describes the chemical processes leading to ozone reduction. It has been shown that the mean fraction of the northern hemisphere, which is covered by polar stratospheric clouds (PSCs) as well as the temporal appearance of PSCs in the model, is in fair agreement with observations. The model results show an activation of chlorine inside the polar vortex which is stronger in the southern than in the northern winter hemisphere, yielding an ozone hole over the Antarctic; this hole, however, is also caused to a substantial degree by the dynamics. Interhemispheric differences concerning reformation of chlorine reservoir species HCl and ClONO2 in spring have also been well reproduced by the model.  相似文献   

9.
The Stratospheric Regular Sounding project was planned to measure regularly the vertical profiles of several tracers like ozone, water vapor, NOx, ClOx and BrOx radicals, aerosol, pressure and temperature, at three latitudes, to discriminate between the transport and photochemical terms which control their distribution. As part of this project, the “Istituto di Fisica dell’Atmosfera” launched nine laser backscattersondes (LABS) on board stratospheric balloons to make observations of background aerosol and PSCs. LABS was launched with an optical particle counter operated by the University of Wyoming. Observations have been performed in the arctic, mid-latitudes and tropical regions in different seasons. Polar stratospheric clouds have been observed in areas inside and outside the polar vortex edge. A background aerosol was observed both in mid-latitudes and in arctic regions with a backscattering ratio of 1.2 at 692 nm. Very stratified aerosol layers, possibly transported into the lower stratosphere by deep convective systems, have been observed in the lower stratosphere between 20 and 29 km in the tropics in the Southern Hemisphere.  相似文献   

10.
Space geodetic applications require to model troposphere delays as good as possible in order to achieve highly accurate positioning estimates. However, these models are not capable to consider complex refractivity fields which are likely to occur during extreme weather situations like typhoons, storms, heavy rain-fall, etc. Thus it has been investigated how positioning results can be improved if information from numerical weather models is taken into account. It will be demonstrated that positioning errors can be significantly reduced by the usage of ray-traced slant delays. Therefore, meso-scale and fine-mesh numerical weather models are utilized and their impact on the positioning results will be measured. The approach has been evaluated during a typhoon passage using global positioning service (GPS) observations of 72 receivers located around Tokyo, proving the usefulness of ray-traced slant delays for positioning applications. Thereby, it is possible reduce virtual station movements as well as improve station height repeatabilities by up to 30% w.r.t. standard processing techniques. Additionally the advantages and caveats of numerical weather models will be discussed and it will be shown how fine-mesh numerical weather models, which are restricted in their spatial extent, have to be handled in order to provide useful corrections.  相似文献   

11.
To reduce the potential risks of cadmium (Cd) and lead (Pb) entering the human food chain in vegetables, two pot experiments (Exp. 1 and Exp. 2) were carried out to screen for Cd and Pb pollution‐safe cultivars (PSCs) of Chinese flowering cabbage (Brassica parachinensis L.). The three Cd treatments in Exp. 1 (0.114, 0.667, and 1.127 mg kg?1) showed that Chinese flowering cabbage could easily take up Cd from polluted soils, and there were wide variations in Cd accumulation among different cultivars. The Cd accumulation trait at cultivar level was rather stable under different soil Cd treatments. In Exp. 2, seven cultivars that had been shown in Exp. 1 to be typical high or low accumulators of Cd were selected and six Cd + Pb joint exposure treatments were applied to them. The results showed that there were similar trends of accumulation between Cd and Pb for the tested cultivars, but Pb accumulation by the species was much poorer than that of Cd. It was worth noting that an increase in soil Pb levels significantly (p < 0.01) depressed shoot Cd accumulation. Six cultivars were selected as Cd + Pb PSCs. This study showed that it is feasible to apply a PSC strategy in Chinese flowering cabbage cultivation, to cope with the Cd and Pb contamination commonly found in agricultural soils.  相似文献   

12.
A main task of weather services is the issuing of warnings for potentially harmful weather events. Automated warning guidances can be derived, e.g., from statistical post-processing of numerical weather prediction using meteorological observations. These statistical methods commonly estimate the probability of an event (e.g. precipitation) occurring at a fixed location (a point probability). However, there are no operationally applicable techniques for estimating the probability of precipitation occurring anywhere in a geographical region (an area probability). We present an approach to the estimation of area probabilities for the occurrence of precipitation exceeding given thresholds. This approach is based on a spatial stochastic model for precipitation cells and precipitation amounts. The basic modeling component is a non-stationary germ-grain model with circular grains for the representation of precipitation cells. Then, we assign a randomly scaled response function to each precipitation cell and sum these functions up to obtain precipitation amounts. We derive formulas for expectations and variances of point precipitation amounts and use these formulas to compute further model characteristics based on available sequences of point probabilities. Area probabilities for arbitrary areas and thresholds can be estimated by repeated Monte Carlo simulation of the fitted precipitation model. Finally, we verify the proposed model by comparing the generated area probabilities with independent rain gauge adjusted radar data. The novelty of the presented approach is that, for the first time, a widely applicable estimation of area probabilities is possible, which is based solely on predicted point probabilities (i.e., neither precipitation observations nor further input of the forecaster are necessary). Therefore, this method can be applied for operational weather predictions.  相似文献   

13.
应用地基GPS遥感倾斜路径方向大气水汽总量   总被引:26,自引:2,他引:24       下载免费PDF全文
应用地基GPS沿倾斜路径方向遥测大气水汽总量,是获得测站周围水汽三维空间分布信息(水汽层析)的基础.本文介绍了地基GPS沿倾斜路径方向遥感大气水汽总量的原理和方法;首先用湿梯度、后处理残差联合计算接收机上空不同方位上大气水汽各向异性成分,在此基础上重构倾斜路径水汽总量.为验证GPS观测结果精度,用微波辐射计(WVR)与GPS一起进行了联合观测,不同观测地点和时间的对比结果表明,二者root mean square (RMS)误差小于4mm,证明应用此种方法地基GPS可较精确地反演出倾斜路径方向大气水汽总量,而且这种反演方法适合于近实时大气遥感探测.地基GPS测量具有全天候可连续观测等优点,可以弥补常规观测的不足,为气候研究提供高精度且连续的水汽数据资料;组网观测可以为数值天气预报提供好的初始场,提高模式预报精度.  相似文献   

14.
The recently commissioned Poker Flat Incoherent Scatter Radar (PFISR) began a continuous operation measurement program for the duration of the International Polar Year (IPY). The IPY began on 1 March 2007 and is an 18-month period of intense polar study. PFISR began its IPY campaign on 1 March 2007 and this paper describes the first 10 months of observations. The PFISR IPY science goals revolve around distinguishing between ionospheric climate and weather variability, and to determine the relative role of geomagnetic weather from the magnetosphere versus that driven from the atmosphere below. This latter goal may well be aided by the fact that the IPY period is at solar minimum, a time when major geomagnetic activity occurrence should be minimized. However, as nature would have it once the IPY observations began it was found that geomagnetic activity was a recurrent feature lasting the entire 10 months being discussed here. The PFISR IPY database will also be used as a long-term fiducial data set against which ionospheric models are to be compared. Hence, this paper provides a documentation of the contents of the database. Case studies as well as statistical studies of how the ionospheric climate and weather can be separated are presented. A particular emphasis is placed upon the F-region ion temperature observations. These appear to provide a very direct measure of geomagnetic energy input to the ionosphere–thermosphere system. Examples are shown in which 150 K F-region ion temperature increases are associated with very moderate geomagnetic disturbances in which the daily average 3-h Kp is only 2.5.  相似文献   

15.
Correctly representing weather is critical to hydrological modelling, but scarce or poor quality observations can often compromise model accuracy. Reanalysis datasets may help to address this basic challenge. The Climate Forecast System Reanalysis (CFSR) dataset provides continuous, globally available records, and CFSR data have produced satisfactory hydrological model performance in some temperate and monsoonal locations. However, the use of CFSR for hydrological modelling in tropical and semi‐tropical basins has not been adequately evaluated. Taking advantage of exceptionally high rainfall station density in the catchments of the Rio Grande de Loiza above San Juan, Puerto Rico, we compared model performance based on CFSR records with that based on publicly available weather stations in the Global Historical Climate Network (GHCN, n = 21) and on a dataset of rainfall records maintained by the United States Geological Survey Caribbean Water Science Center (USGS, n = 24). For an implementation of the Soil and Water Assessment Tool (SWAT) with subbasins defined at 11 streamflow gages, uncalibrated measures of Nash–Sutcliffe efficiency (NSE) were >0 at 8 of 11 gages using USGS precipitation data for daily simulations over the period 1998–2012, but were <0 using GHCN weather station records (8 of 11) and CFSR reanalysis data (9 of 11). Autocalibration of individual SWAT models for each of the 11 basins against each of the available weather datasets yielded NSE values > 0 using all precipitation inputs, including CFSR. However, the ground weather station closest to the geographic basin centre produced the highest NSE values in only 5 of 11 cases. The spatially interpolated CFSR data performed as well or better than single ground observations made further than 20–30 km, and sometimes better than individual weather stations <10 km from the basin centroid. In addition to demonstrating the need to evaluate available weather inputs, this research reinforces the value of CFSR data as a means to supplement ground records and consistently determine a baseline for hydrologic model performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) Svalbard radar (ESR), and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system) Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm) enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996); however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.  相似文献   

17.
Two Doppler imaging systems (DIS) or wide-field imaging Fabry-Perot interferometers (FPI), have recently been commissioned, one at the Auroral Station, Adventdalen, Longyearbyen, Svalbard, and the second at the IRF, Kiruna, Sweden. These instruments can provide wide-field (600 * 800 km) images of neutral wind flows in the upper thermosphere, by measuring the Doppler shift of the atomic oxygen forbidden near 630 nm, which is emitted from an altitude of approximately 240 km. From the instrument in Svalbard, at mid-winter, it is possible to observe the dayside polar cusp and the polar cap throughout the entire day, whereas from Kiruna, the night-time auroral oval is observable during the hours of darkness. Measurements of thermospheric dynamics from the DIS can be used in conjunction with observations of ionospheric plasma flows and thermal plasma densities by the EISCAT-Svalbard radar (ESR) and by EISCAT, along with other complementary observations by co-located instruments such as the auroral large-scale imaging system (ALIS). Such combined data sets will allow a wide range of scientific studies to be performed concerning the dynamical response of the thermosphere and ionosphere, and the important energetic and momentum exchange processes resulting from their complex interactions. These processes are particularly important in the immediate vicinity of the polar cusp and within the auroral oval. Early results from Svalbard in late 1995 will be discussed. The DIS in Kiruna observed two interesting geomagnetic disturbances in early 1997, the minor geomagnetic storm of 10, 11 January, and the disturbed period from 7–10 February. During these events, the thermospheric wind response showed some interesting departures from the average behaviour, which we attribute to the result of strong and variable Lorenz forcing (ion drag) and Joule and particle heating during these geomagnetic disturbances.  相似文献   

18.
Stochastic weather generators have evolved as tools for creating long time series of synthetic meteorological data at a site for risk assessments in hydrologic and agricultural applications. Recently, their use has been extended as downscaling tools for climate change impact assessments. Non‐parametric weather generators, which typically use a K‐nearest neighbour (K‐NN) resampling approach, require no statistical assumptions about probability distributions of variables and can be easily applied for multi‐site use. Two characteristics of traditional K‐NN models result from resampling daily values: (1) temporal correlation structure of daily temperatures may be lost, and (2) no values less than or exceeding historical observations can be simulated. Temporal correlation in simulated temperature data is important for hydrologic applications. Temperature is a major driver of many processes within the hydrologic cycle (for example, evaporation, snow melt, etc.) that may affect flood levels. As such, a new methodology for simulation of climate data using the K‐NN approach is presented (named KnnCAD Version 4). A block resampling scheme is introduced along with perturbation of the reshuffled daily temperature data to create 675 years of synthetic historical daily temperatures for the Upper Thames River basin in Ontario, Canada. The updated KnnCAD model is shown to adequately reproduce observed monthly temperature characteristics as well as temporal and spatial correlations while simulating reasonable values which can exceed the range of observations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The circulation, hygrothermal property and moisture transport character of typical hot and humid weather were analyzed in Beijing areas from July 30 to August 4, 2002. It was pointed out that, under the control of subtropical anticyclone which stretches to the west and north, downdraft suppresses the lifting of lower-troposphere moisture, which makes moisture keep in the lower troposphere. That is the direct reason causing hot and humid weather. Considering the non-uniformity saturated character in real atmosphere, generalized moist potential vorticity (GMPV) equation is derived by the introduction of generalized moist potential temperature concept. The analysis of GMPV shows that negative GMPV anomaly occurs in the lower troposphere. It has indicative sense to hot and humid weather. Thus, the GMPV anomaly can be utilized to identify this kind of weather and to make a short-term prediction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号