首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Of 16 sites collected in the Taru grits (Permian) and Maji ya Chumvi beds (Permo-Triassic) of East Africa only 6 sites from the Maji ya Chumvi sediments gave meaningful palaeomagnetic results. After thermal cleaning the 6 sites (32 samples) give an Early Triassic pole at 67°N, 269°E with A95 = 17° in excellent agreement with other African Mesozoic poles. There are now 26 Mesozoic palaeomagnetic poles for Africa from widely diverse localities ranging in present latitude from 35°N to 30°S. The poles subdivide into Triassic (17 poles) and Cretaceous (9 poles) groups whose means are not significantly different. The palaeomagnetic pole for Africa thus remained in much the same position for 170 m.y. from Early Triassic to Late Cretaceous. The data form an especially good set for estimating the palaeoradius using Ward's method. Values of 1.08 ± 0.15 and 1.03 ± 0.19 times the present radius are deduced for the Triassic and Cretaceous respectively with a mean value of 1.08 ± 0.13 for all the Mesozoic data combined. The analysis demonstrates that hypotheses of earth expansion are very unattractive.  相似文献   

2.
From Middle-Upper Jurassic volcanics at the western margin of the Maranha?o Basin (6.4°S, 47.4°W) 15 sites (121 samples) have a mean magnetization directionD = 3.9°,I = ?17.9° withα95 = 9.3°,k = 17.9 after AF cleaning (all sites have normal polarity). This yields a pole (named SAJ2) at 85.3°N, 82.5°E (A95 = 6.9°) which is near to the other known Middle Jurassic South American pole. For 21 sites (190 samples) from Lower Cretaceous basalt intrusions from the eastern part of the Maranha?o Basin (6.5°S, 42°W) the mean direction isD = 174.7°,I = +6.0° withα95 = 2.8°,k = 122 (all sites have reversed polarity) yielding a pole (SAK9) at 83.6°N, 261°E (A95 = 1.9°) in agreement with other Lower Cretaceous pole positions for South America. Comparing Mesozoic pole positions for South America and Africa in the pre-drift configuration after Bullard et al. [13] one finds a significant difference (with more than 95% probability) for the Lower Cretaceous and Middle Jurassic poles and also a probable difference for the mean Triassic poles indicating a small but probably stationary separation of the two continents from the predrift position in the Mesozoic until Lower Cretaceous time which may be due to an early rifting event.  相似文献   

3.
From Upper Cretaceous volcanic rocks of Southeast Sicily 107 cores from 19 sites were collected giving a mean palaeomagnetic pole position at 62°N, 223°E, A95 = 5.4° after AF-cleaning. This pole agrees with the Upper Cretaceous pole of Northern Africa indicating that no large post-Cretaceous relative motion has occurred between Africa and Sicily.  相似文献   

4.
The mean palaeomagnetic pole position obtained from Upper Cretaceous rocks in west Sicily is at 21°N, 100°E (A95 = 15°), and at 38°N, 67°E (A95 = 31°) obtained from Middle Jurassic rocks. These pole positions are completely different from comparable pole positions for southeast Sicily and Africa and imply a clockwise rotation of west Sicily since the Upper Cretaceous of about 90° relative to southeast Sicily and Africa and also a clockwise rotation of about 60° relative to “stable” Europe. The sense of rotation of west Sicily is opposite to any known rotation of other crustal blocks in the central Mediterranean.  相似文献   

5.
One hundred samples from nine sites in Upper Cretaceous volcanics (K/Ar age 85–99 m.y.) of the magmatic province of Cabo de Santo Agostinho, Pernambuco (8.4°S, 35.0°W) yield a mean direction of magnetizationD = 0.4°, I = ?20.6°withα95 = 4.8°, k = 114 after AF cleaning. All sites have normal polarity with a mean pole, named SAK10, at 87.6°N, 135°E withA95 = 4.5° which is close to other Upper Cretaceous poles for South America. These poles are compared with Upper Cretaceous poles of Africa for various reconstructions of the two continents.  相似文献   

6.
Palaeomagnetic study of Middle Liassic siltstones shows a stable magnetization with a mean direction of D = 12.3°, I = 64.6° (N = 60, k = 26, α95 = 3.9°) corresponding to a palaeomagnetic pole at 79.8°N, 125.6°E, similar to that for southern Germany and confirming predictions based on palaeogeographic reconstructions using North American data. Sideritic concretions of Lower Liassic age show a higher magnetic stability with a mean direction of D = 12.6°, I = 61.4° (N = 125, k = 50, α95 = 1.8°) which is not significantly different from the siltstones. This confirms the sedimentological evidence that suggests that such concretions grew very shortly after deposition, i.e. within the Liassic, and suggests that similar concretions of other ages could thus be used for palaeomagnetic studies. Although the Liassic palaeomagnetic pole (76.9°N, 134.7°E), based on this work, appears valid it is still not possible to evaluate a sensible Mesozoic polar wandering curve for the North Atlantic bordering continents.  相似文献   

7.
Palaeomagnetic results are reported from the continental facies of the Triassic-Jurassic Isalo Group of Madagascar. Stability of the magnetic remanence was tested using the alternating field and progressive thermal demagnetization techniques. Results from 8 sites, 6 located in northwestern Madagascar and 2 from the southwestern region, yield a palaeomagnetic pole at 74.2°S, 97.1°E (N = 8, A95 = 6.3°). Three models previously proposed to describe the drift history of Madagascar relative to Africa are considered and the relevant geological and geophysical information is reviewed. The palaeomagnetic data are only consistent with the pre-drift model which places Madagascar off the east coast of Africa adjacent to Kenya and Tanzania. This is also the continental drift fit favoured on geological grounds.  相似文献   

8.
Palaeomagnetic results are reported from the predominantly green sediments of the Upper Permian to Lower Triassic Sakamena Group and the Upper Carboniferous to Lower Permian Sakoa Group of Madagascar. Secondary magnetizations could only be removed successfully through thermal demagnetization procedures and then only if the cleaning process was completed by 450°C. Heating in air caused extensive magnetochemical changes to occur above this temperature. Coercivity spectrum analysis and low-temperature characteristics of the heated and unheated green sediments indicate that considerable amounts of fine-grained single-domain magnetite are formed at 500°C or more from some non-magnetic mineral, probably the iron silicates. For this reason consistent palaeomagnetic data could only be obtained from about half the samples collected. Results from 4 sites (19 samples) of the Lower Sakamena Group give a palaeomagnetic pole at 64.9S, 113.9E (A95 = 5.6°) and 3 sites (16 samples) from the Glacial Series of the Sakoa Group give a pole at 47.9S, 84.1E (A95 = 8.1°). When compared with corresponding data from Africa these results confirm and strengthen our previous conclusions from the Triassic-Jurassic Isalo Group regarding the palaeoposition of Madagascar. All three poles are only consistent with the Smith and Hallam reconstruction which places Madagascar off the eastern coast of Africa adjacent to Kenya and Tanzania.  相似文献   

9.
Paleomagnetic studies have been made of certain constituents of the Bay St. George sub-basin. Specifically, results are reported from the Spout Falls Formation (Tournaisian), the Jeffreys Village Member of the Robinsons River Formation (Visean), and the Searston Formation (Namurian-Westphalian). The following magnetizations have been isolated: Spout Falls A (Tournaisian) with D = 343.5°, I = ?22.7°, k = 61.2, α95 = 7.1° and the corresponding pole at 28.6°N, 139.5°E (4.5°, 8.5°); Spout Falls B (Kiaman) with D = 166.7°, I = 12.2°, k = 51.7, α95 = 10.7° and the corresponding pole at 34.5°S, 42.7°W (5.5°, 10.9°); Jeffreys Village A (Visean) with D = 351.2°, I = ?27.3°, k = 54.0, α95 = 7.6° and the corresponding pole at 26.5°N, 130.7°E (4.5°, 8.3°); Searston A (Namurian) with D = 161.7°, I = 11.7°, k = 107, α95 = 7.4° and the corresponding pole at 33.9°S, 37.2°W (3.8°, 7.5°); and Searston C with D = 111.6°, I = ?13.8°, k = 28.8, α95 = 14.5° and the corresponding pole at 19.6°S, 19.0°E (7.6°, 14.8°). After comparison with paleopoles of similar ages derived from eastern and western Newfoundland rocks, from constituents of the east coast basin and for interior North America, it is concluded that: (1) it is unlikely that any large scale relative motion took place since the Early Carboniferous between eastern and western Newfoundland; (2) it is unlikely that any north-south relative motion took place between the east coast basin and the Bay St. George sub-basin; and (3) the Bay St. George sub-basin results do not support the earlier proposed displaced terrane hypothesis of the northern Appalachians in as much as the motions during the Carboniferous are not supported. There is evidence of the northward motion of the Appalachians and North America as a whole during the Carboniferous. The magnetostratigraphic horizon marker in the Carboniferous separating a dominant normal and reversed magnetization on the older side and an entirely reversed (Kiaman) magnetization on the younger side may be placed in the Bay St. George sub-basin at the base of the Searston Formation.  相似文献   

10.
Palaeomagnetic investigation of basic intrusives in the Proterozoic Mount Isa Province yields three groups of directions of stable components of NRM after magnetic cleaning in fields up to 50 mT (1 mT= 10 Oe). The youngest group (IA) includes results from the Lakeview Dolerite, and yields a palaeomagnetic pole at 12°S, 124°E (A95 = 11°). The second group (IB) has a palaeomagnetic pole 53°S, 102°E (A95 = 11°). The third group (IC) is derived from the Lunch Creek Gabbro and contains normal and reversed polarities of magnetization with a palaeomagnetic pole at 63°S, 201°E (A95 = 9°). Some samples from the gabbro have anomalously low intensities of remanent magnetization in obscure directions attributed to the relative enhancement of the non-dipole component of the palaeomagnetic field during polarity reversal. The present attitude of the igneous lamination is probably of primary, not tectonic origin.  相似文献   

11.
The palaeomagnetism of Middle Triassic (224 ± 5 m.y.) igneous rocks from the Ischigualasto-Ischichuca Basin (67°40′W, 30°20′S) was investigated through 86 oriented hand samples from 11 sites. At least one reversal of the geomagnetic field has been found in these rocks. Nine sites yield a palaeomagnetic pole at 239°E, 79°S (α95 = 15°, k = 13).The K-Ar age determinations of five igneous units of the Puesto Viejo Formation give a mean age of 232 ± 4 m.y. (Early Triassic). The palaeomagnetism of six igneous units of the Puesto Viejo Formation (68°W, 35°S) was investigated through 60 oriented samples. These units, two reversed relative to the present magnetic field of the Earth and four normal, yield a pole at 236°E, 76°S (α95 = 18°, k = 14).Data from the Puesto Viejo Formation indicate, for the first time on the basis of palaeomagnetic and radiometric data, that the Illawarra Zone, which defines the end of the Kiaman Magnetic Interval, extends at least down to 232 ± 4 m.y. within the Early Triassic. The palaeomagnetic poles for the igneous rocks of the Ischigualasto-Ischichuca Basin and Puesto Viejo Formation form an “age group” with the South American Triassic palaeomagnetic poles (mean pole position: 239°E, 77°S; α95 = 6.6°, k = 190). The Middle and Upper Permian, Triassic and Middle Jurassic palaeomagnetic poles for South America would define a “time group” reflecting a quasi-static interval (mean pole position: 232°E, 81°S; α95 = 4°, k = 131).  相似文献   

12.
Proterozoic supracrustal rocks of southwest Greenland and amphibolite dykes intruding the basement possess a thermal remanent magnetisation acquired during slow regional uplift and cooling between 1800 and 1600 m.y. following the Ketilidian mobile episode. Most samples from amphibolite dykes (mean palaeomagnetic pole 214°E, 31°N) possess a stable remanence associated with development of hematite during regional thermal metamorphism. Metavolcanics from the eastern part (eight sites, palaeomagnetic pole 230°E, 60°N, A95 = 15°) and western part (twelve sites, 279°E, 59°N, A95 = 17°) of Ars?k Island have magnetisations postdating folding and are related to KAr ages dating regional cooling (1700-1600 m.y.); magnetic properties are highly variable and partially stable remanence resides predominantly in pyrrhotite.These results agree in part with other palaeomagnetic results from the northern margin of the same craton, and currently available palaeomagnetic results assigned to the interval 1850-1600 m.y. are evaluated to define apparent polar wander movements. Two large polar movements are recognised during this interval with the possibility of a third at ca. 1800 m.y. It is concluded that apparent polar wander movements in Proterozoic times are most accurately described in terms of closed loops.  相似文献   

13.
Palaeomagnetic results are reported from the De Beers, DuToitspan and Wesselton kimberlite pipes (86 ± 3Ma) at Kimberley and from the Finsch and Koffyfontein pipes. The latter are both less than 150 km from Kimberley and although undated are geologically correlated with the Kimberley pipes. Eighty blocks, oriented without recourse to magnetic methods, have been collected from the five pipes. The samples comprise kimberlite, accidental inclusions of widely varying lithologies and wall rock thus enabling inclusion and baked contact tests to be performed. Extensive alternating field and thermal demagnetization experiments show that the magnetization of the kimberlite is primary. Secular variation is not averaged out in any one pipe (with the possible exception of Finsch) and it is suggested the three Kimberley pipes were emplaced simultaneously. The mean pole position of the five pipes (57.2°E, 58.2°S withK = 25.8 andA95 = 15.3°) is believed to be a good estimate of the palaeomagnetic pole86 ± 3Ma ago. It is now possible to state that the African Mesozoic palaeomagnetic pole remained essentially in the same position until at least86 ± 3Ma ago.  相似文献   

14.
A total of 120 samples from 12 sites were collected from two flanks of a fold. Stepwise thermal demagnetization has successfully revealed characteristic magnetization components from the rocks in each case. A well-defined component determined from red fine-grained sandstone is clustered in the northeasterly direction with shallow upward inclination (D = 29.3°,I= -19.2°,k = 283.7, α95 = 7.3°. tilt-corrected). The pole position (39.5°N, 247.3°E,dp = 4.0°,dm = 7.6°) derived from this component is close to the Permian pole for the Yangtze Block, indicating that the red fine-grained sandstone has been overprinted. The red mudstone reveals two characteristic components Component A with lower unblocking temperature, characterized by northerly declination and moderate to steep inclination corresponds to a pole position overlay with the present North Pole. Component B (D = 129.1°,I=-23.6°,k = 44.6, α95 = 7.8°, tilt-corrected) with higher unblocking temperature, passes fold test, and yields a pole position (39.5°S, 185.l°E,dp = 4.4°,dm = 8.3°) different from the other poles for the Yangtze Block. It is therefore suggested that component B was probably a primary magnetization and the Yangtze Block was situated at low latitudes in the Southern Hemisphere in the Middle Cambrian.  相似文献   

15.
In the western part of the Gardar Igneous Province of southern Greenland, lamprophyre dykes intruded at ca. 1276-1254 m.y. RbSr biotite ages yield a palaeomagnetic pole at 206.5°E,3°N (nine sites, dψ = 5.1°, dχ = 10.1°) Slightly younger dolerite dykes with RbSr biotite ages in the range 1278-1263 m.y. give a pole at 201.5°E,8.5°N (24 sites, dψ = 4.7°, dχ = 9.4°), and the syeno-gabbro ring dyke of the Kûngnât complex (RbSr isochron age 1245 ± 17 m.y.) cutting both of these dykes swarms, gives a pole at 198.5°E, 3.5°N (four sites, dψ = 2.3°,dχ = 4.4°). All these rock units have the same polarity and the poles are identical to those from Mackenzie and related igneous rocks of North America (1280-1220 m.y.) after closure of the Davis Strait; they confirm that this part of the Gardar Province is a lateral extension of the Mackenzie igneous episode within the Laurentian craton.In the Tugtutôq region of the eastern part of the Gardar Province 47 NNE-trending dykes of various petrologic types, and intruded between 1175 ± 9 and 1168 ± 37 m.y. (RbSr isochron ages) yield a palaeomagnetic pole at 223.9° E, 36.4°N (dψ = 4.1°, dχ = 6.1°). Fifteen other dykes in this swarm were intruded during a transitional phase of the magnetic field which, however, does not appear to have achieved a complete reversal over a period of several millions of years. The majority of dykes studied are highly stable to AF and thermal demagnetisation and contain single high blocking temperature components with single Curie points in the range 380–560°C.Palaeomagnetic poles from the Gardar Province between ca. 1330 and 1160 m.y. in age define the earlier part of the Great Logan apparent polar-wander loop; they correlate closely with contemporaneous North American results and confirm the coherence of the Laurentian craton in Upper Proterozoic times.  相似文献   

16.
A magnetization which passes the fold test has been observed in 73 limestone samples (10 sites) from the Middle Jurassic Twin Creek Formation. The pole calculated from the site mean poles is located at 68.4°N, 145.0°E (K = 31.8,A95 = 8.7°). This pole lies in a segment of the North American apparent polar wander (APW) path for which there are only a few reliable poles in the literature. The results corroborate earlier studies which conclude that the Jurassic segment of the APW path does not include the present north pole. However, the position of the Twin Creek pole suggests that significantly more APW took place prior to the late Jurassic than previous studies indicated.  相似文献   

17.
A paleomagnetic and potassium-argon dating investigation has been carried out on a 530-km-long dike system which transects the western Iberian Peninsula in a northeasterly direction. The K-Ar age determinations were made on mineral separates exclusively. They range between 160 and 200 Ma and the authors suppose that this reflects the actual time interval of the intrusion, in accord with previous results. The paleomagnetic pole derived from 12 sites regularly distributed along the dike (71°N, 236°E) coincides well with other Mesozoic paleomagnetic poles from the western Africa. A contemporaneous pole from stable Europe is tentatively deduced from African and North American Late Triassic/Early Jurassic poles using different reconstruction models around the North Atlantic Ocean. The divergence between this pole and the Iberian pole corresponds to the result obtained for Permian poles.  相似文献   

18.
Thermal and alternating-current demagnetization combined with ore microscopy and measurements of the temperature dependence of saturation magnetization have been carried out on some Mesozoic, probably Cretaceous, basaltic lavas from two areas (Seidfjell and Sørlifjell) at Spitsbergen. The experimental studies suggest that the Seidfjell locality has undergone extensive oxidations, which resulted in remagnetization. The estimated palaeomagnetic pole for this area is 77°N 107°E, which suggests a remagnetization, probably some time in the Late Tertiary. On the other hand the experimental data from the Sørlifjell locality suggest that the magnetization is primarily of deuteric origin. The mean palaeomagnetic pole position for this latter formation is at 75°N 235°E, which is significantly different from previously published European Mesozoic data. However, closing the Neo-Arctic basin by rotating Spitsbergen towards the Lomonosov Ridge, makes the suggested Cretaceous pole coincide with poles of similar age from North-America. This suggests that the estimated pole from Sørlifjell is a good approximation for a Late Mesozoic palaeomagnetic pole for Europe and it also confirms that the process of continental separation in the Arctic has taken place in Tertiary time.  相似文献   

19.
An Upper Permian paleomagnetic pole has been determined for the Cribas Formation in eastern Timor. The co-ordinates for the mean pole are 159.8°E and 56.6°S,α95 = 9.0. The reliability of the pole is ascertained through thermal demagnetization, a fold test, comparison between red beds and a lava flow, and the presence of normal and reversed polarities. The Timor pole is in excellent agreement with the Australian Upper Permian and Triassic poles. From this it is inferred that autochthonous Timor formed part of the Australian continental margin at least since the Upper Permian.  相似文献   

20.
The Sulitjelma Gabbro situated at 67.2°N, 15.4°E was intruded close to the Late Ordovician climax of regional metamorphism in the northern Scandinavian Caledonides. Magnetic properties have been examined from samples collected at seven localities in the south western part of this body. Total NRM directions show a tendency to be aligned near the present earth's magnetic field direction in this region. Stability to a.f. demagnetisation is low and commensurate with low Koenigsberger ratios (0.001–0.16) and the presence of unoxidised magnetite as the principal remanence carrier. After cleaning the site mean directions no longer show an alignment near the present earth's field and of six statistically significant sites three are approximately reversed with respect to remainder. The combined mean direction after cleaning isD = 195°,I = 15° (precision parameterk = 6) and the derived virtual geomagnetic pole is at 0°E, 14°S (α95 = 23°). This pole is close to poles of comparable age from the British Isles and suggests that Britain and Norway were part of the same crustal plate in Ordovician times. Discrepancies between Siluro-Devonian results from the two regions may be due to inadequate age coverage of present results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号