首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondrites but are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal‐rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment (PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675 (CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time‐of‐flight mass spectrometry and fluorescence, and gas chromatography isotope ratio mass spectrometry. The δ13C/12C ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (13–16 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.2–2 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of β‐, γ‐, and δ‐amino acids compared to the corresponding α‐amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.  相似文献   

2.
Abstract– To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered CI, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultra performance liquid chromatography‐fluorescence detection and time‐of‐flight mass spectrometry (UPLC‐FD/ToF‐MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (CI1), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two‐ to five‐carbon acyclic amino alkanoic acids with concentrations ranging from approximately 1 to 2,700 parts‐per‐billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five‐carbon (C5) amino acids with much higher relative abundances of the γ‐ and δ‐amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by α‐amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, α‐aminoisobutyric acid (α‐AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, nonracemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with l ‐isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable l ‐isovaline excesses. These results are consistent with the theory that aqueous alteration played an important role in amplification of small initial left handed isovaline excesses on the parent bodies.  相似文献   

3.
Exogenous delivery of amino acids and other organic molecules to planetary surfaces may have played an important role in the origins of life on Earth and other solar system bodies. Previous studies have revealed the presence of indigenous amino acids in a wide range of carbon‐rich meteorites, with the abundances and structural distributions differing significantly depending on parent body mineralogy and alteration conditions. Here we report on the amino acid abundances of seven type 3–6 CK chondrites and two Rumuruti (R) chondrites. Amino acid measurements were made on hot water extracts from these meteorites by ultrahigh‐performance liquid chromatography with fluorescence detection and time‐of‐flight mass spectrometry. Of the nine meteorites analyzed, four were depleted in amino acids, and one had experienced significant amino acid contamination by terrestrial biology. The remaining four, comprised of two R and two CK chondrites, contained low levels of amino acids that were predominantly the straight chain, amino‐terminal (n‐ω‐amino) acids β‐alanine, and γ‐amino‐n‐butyric acid. This amino acid distribution is similar to what we reported previously for thermally altered ureilites and CV and CO chondrites, and these n‐ω‐amino acids appear to be indigenous to the meteorites and not the result of terrestrial contamination. The amino acids may have been formed by Fischer–Tropsch‐type reactions, although this hypothesis needs further testing.  相似文献   

4.
Abstract— CM2 carbonaceous chondrites are the most primitive material present in the solar system, and some of their subtypes, the CM and CI chondrites, contain up to 2 wt% of organic carbon. The CM2 carbonaceous chondrites contain a wide variety of complex amino acids, while the CI1 meteorites Orgueil and Ivuna display a much simpler composition, with only glycine and β‐alanine present in significant abundances. CM1 carbonaceous chondrites show a higher degree of aqueous alteration than CM2 types and therefore provide an important link between the CM2 and CI1 carbonaceous chondrites. Relative amino acid concentrations have been shown to be indicative for parent body processes with respect to the formation of this class of compounds. In order to understand the relationship of the amino acid composition between these three types of meteorites, we have analyzed for the first time three Antarctic CM1 chondrites, Meteorite Hills (MET) 01070, Allan Hills (ALH) 88045, and LaPaz Icefield (LAP) 02277, using gas chromatography‐mass spectrometry (GC‐MS) and high performance liquid chromatography‐fluorescence detection (HPLC‐FD). The concentrations of the eight most abundant amino acids in these meteorites were compared to those of the CM2s Murchison, Murray, Mighei, Lewis Cliff (LEW) 90500, ALH 83100, as well as the CI1s Orgueil and Ivuna. The total amino acid concentration in CM1 carbonaceous chondrites was found to be much lower than the average of the CM2s. Relative amino acid abundances were compared in order to identify synthetic relationships between the amino acid compositions in these meteorite classes. Our data support the hypothesis that amino acids in CM‐ and CI‐type meteorites were synthesized under different physical and chemical conditions and may best be explained with differences in the abundances of precursor compounds in the source regions of their parent bodies in combination with the decomposition of amino acids during extended aqueous alteration.  相似文献   

5.
Abstract— High‐performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated from a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P‐ or D‐type asteroids. If the Tagish Lake meteorite was indeed derived from these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.  相似文献   

6.
Abstract– Asteroids and their fragments have impacted the Earth for the last 4.5 Gyr. Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites ranged from 300 to 3200 parts‐per‐billion (ppb), generally much less abundant than in amino acid‐rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low‐temperature aqueously altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker–cyanohydrin synthesis, the thermally altered meteorites studied here are dominated by small, straight‐chain, amine terminal (n‐ω‐amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n‐ω‐amino acids measured in one of the CV chondrites (δ13C approximately ?25‰) are consistent with 13C‐depletions observed previously in hydrocarbons produced by Fischer‐Tropsch type reactions. The predominance of n‐ω‐amino acid isomers in thermally altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.  相似文献   

7.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   

8.
Abstract— –CR chondrites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites. Three CRs, Elephant Moraine (EET) 92042, Graves Nunataks (GRA) 95229, and Grosvenor Mountains (GRO) 95577, were analyzed for their amino acid content using high‐performance liquid chromatography with UV fluorescence detection (HPLC‐FD) and gas chromatography–mass spectrometry (GC‐MS). Our data show that EET 92042 and GRA 95229 are the most amino acid–rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 ppm to 249 ppm. The most abundant amino acids present in the EET 92042 and GRA 95229 meteorites are the α‐amino acids glycine, isovaline, α‐aminoisobutyric acid (α‐AIB), and alanine, with δ13C values ranging from +31.6‰ to +50.5‰. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly indicate an extraterrestrial origin for these compounds. Compared to Elephant Moraine (EET) 92042 and GRA 95229, the more aqueously altered GRO 95577 is depleted in amino acids. In both CRs and CMs, the absolute amino acid abundances appear to be related to the degree of aqueous alteration in their parent bodies. In addition, the relative abundances of α‐AIB and β‐alanine in the Antarctic CRs also appear to depend on the degree of aqueous alteration.  相似文献   

9.
The analysis of water‐soluble organic compounds in meteorites provides valuable insights into the prebiotic synthesis of organic matter and the processes that occurred during the formation of the solar system. We investigated the concentration of aliphatic monoamines present in hot acid water extracts of the unaltered Antarctic carbonaceous chondrites, Dominion Range (DOM) 08006 (CO3) and Miller Range (MIL) 05013 (CO3), and the thermally altered meteorites, Allende (CV3), LAP 02206 (CV3), GRA 06101 (CV3), Allan Hills (ALH) 85002 (CK4), and EET 92002 (CK5). We have also reviewed and assessed the petrologic characteristics of the meteorites studied here to evaluate the effects of asteroidal processing on the abundance and molecular distributions of monoamines. The CO3, CV3, CK4, and CK5 meteorites studied here contain total concentrations of amines ranging from 1.2 to 4.0 nmol g?1 of meteorite; these amounts are 1–3 orders of magnitude below those observed in carbonaceous chondrites from the CI, CM, and CR groups. The low‐amine abundances for CV and CK chondrites may be related to their extensive degree of thermal metamorphism and/or to their low original amine content. Although the CO3 meteorites, DOM 08006 and MIL 05013, do not show signs of thermal and aqueous alteration, their monoamine contents are comparable to those observed in moderately/extensively thermally altered CV3, CK4, and CK5 carbonaceous chondrites. The low content of monoamines in pristine CO carbonaceous chondrites suggests that the initial amounts, and not asteroidal processes, play a dominant role in the content of monoamines in carbonaceous chondrites. The primary monoamines, methylamine, ethylamine, and n‐propylamine constitute the most abundant amines in the CO3, CV3, CK4, and CK5 meteorites studied here. Contrary to the predominance of n‐ω‐amino acid isomers in CO3 and thermally altered meteorites, there appears to be no preference for the larger n‐amines.  相似文献   

10.
The rapid recovery of the Winchcombe meteorite offers a valuable opportunity to study the soluble organic matter (SOM) profile in pristine carbonaceous astromaterials. Our interests in the biologically relevant molecules, amino acids—monomers of protein, and the most prevalent meteoritic organics—polycyclic aromatic hydrocarbons (PAHs) are addressed by analyzing the solvent extracts of a Winchcombe meteorite stone using gas chromatography mass spectrometry. The Winchcombe sample contains an amino acid abundance of ~1132 parts-per-billion that is about 10 times lower than other CM2 meteorites. The detection of terrestrially rare amino acids, including α-aminoisobutyric acid (AIB); isovaline; β-alanine; α-, β-, and γ-amino-n-butyric acids; and 5-aminopentanoic acid, and the racemic enantiomeric ratios (D/L = 1) observed for alanine and isovaline indicate that these amino acids are indigenous to the meteorite and not terrestrial contaminants. The presence of predominantly α-AIB and isovaline is consistent with their formation via the Strecker-cyanohydrin synthetic pathway. The L-enantiomeric excesses in isovaline previously observed for aqueously altered meteorites were viewed as an indicator of parent body aqueous processing; thus, the racemic ratio of isovaline observed for Winchcombe, alongside the overall high free:total amino acid ratio, and the low amino acid concentration suggest that the analyzed stone is derived from a lithology that has experienced brief episode(s) of aqueous alteration. Winchcombe also contains 2- to 6-ring alkylated and nonalkylated PAHs. The low total PAHs abundance (6177 ppb) and high nonalkylated:alkylated ratio are distinct from that observed for heavily aqueously altered CMs. The weak petrographic properties of Winchcombe, as well as the discrepancies observed for the Winchcombe SOM content—a low total amino acid abundance comparable to heavily altered CMs, and yet the high free:total amino acid and nonalkylated:alkylated PAH ratios are on par with the less altered CMs—suggest that Winchcombe could represent a class of weak, poorly lithified meteorite not been previously studied.  相似文献   

11.
Abstract– Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound‐specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α‐H, α‐NH2 amino acids that correspond to predictions made for formation via Strecker‐cyanohydrin synthesis. We also observe light δ13C signatures for β‐alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight‐chain, amine‐terminal amino acids (n‐ω‐amino acids). Higher deuterium enrichments are observed in α‐methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent‐body chemistry.  相似文献   

12.
Abstract– We have examined Fe/Mn systematics of 34 type IIA chondrules in eight highly unequilibrated CO, CR, and ordinary chondrites using new data from this study and prior studies from our laboratory. Olivine grains from type IIA chondrules in CO chondrites and unequilibrated ordinary chondrites (UOC) have significantly different Fe/Mn ratios, with mean molar Fe/Mn = 99 and 44, respectively. Olivine analyses from both these chondrite groups show well‐defined trends in Mn versus Fe (afu) and molar Fe/Mn versus Fe/Mg diagrams. In general, type IIA chondrules in CR chondrites have properties intermediate between those in UOC and CO chondrites. In most UOC and CR type IIA chondrules, the Fe/Mn ratio of olivine decreases during crystallization, whereas in CO chondrites the Fe/Mn ratio does not appear to change. It is difficult to interpret the observed Fe/Mn trends in terms of differing moderately volatile element depletions inherited from precursor materials. Instead, we suggest that significant differences in the abundances of silicates and sulfides ± metals in the precursor material, as well as open‐system behavior during chondrule formation, were responsible for establishing the different Fe/Mn trends. Using Fe‐Mn‐Mg systematics, we are able to identify relict grains in type IIA chondrules, which could be derived from previous generations of chondrules, including chondrules from other chondrite groups, and possibly chondritic reservoirs that have not been sampled previously.  相似文献   

13.
X‐ray microcomputed tomography (μCT) is a useful means of characterizing cosmochemical samples such as meteorites or robotically returned samples. However, there are occasional concerns that the use of μCT may be detrimental to the organic components of a chondrite. Small organic compounds such as amino acids comprise up to ~10% of the total solvent extractable carbon in CM carbonaceous chondrites. We irradiated three samples of the Murchison CM carbonaceous chondrite under conditions akin to and harsher than those typically used during typical benchtop X‐ray μCT imaging experiments to determine if detectable changes in the amino acid abundance and distribution relative to a nonexposed Murchison control sample occurred. After subjecting three meteorite samples to ionizing radiation dosages between ~300 Gray (Gy) and 3 kGy with bremstrahlung X‐rays, we analyzed the amino acid content of each sample. Within sampling and analytical errors, we cannot discern differences in the amino acid abundances and amino acid enantiomeric ratios when comparing the control samples (nonexposed Murchison) and the irradiated samples. We conclude that a polychromatic X‐ray μCT experiment does not alter the abundances of amino acids to a degree greater than how well those abundances are measured with our techniques and therefore any damage to amino acids is minimal.  相似文献   

14.
Evaluating the water‐soluble organic composition of carbonaceous chondrites is key to understanding the inventory of organic matter present at the origins of the solar system and the subsequent processes that took place inside asteroid parent bodies. Here, we present a side‐by‐side analysis and comparison of the abundance and molecular distribution of aliphatic amines, aldehydes, ketones, mono‐ and dicarboxylic acids, and free and acid‐releasable cyanide species in the CM2 chondrites Aguas Zarcas and Murchison. The Aguas Zarcas meteorite is a recent fall that occurred in central Costa Rica and constitutes the largest recovered mass of a CM‐type meteorite after Murchison. The overall content of organic species we investigated was systematically higher in Murchison than in Aguas Zarcas. Similar to previous meteoritic organic studies, carboxylic acids were one to two orders of magnitude more abundant than other soluble organic compound classes investigated in both meteorite samples. We did not identify free cyanide in Aguas Zarcas and Murchison; however, cyanide species analyzed after acid digestion of the water‐extracted meteorite mineral matrix were detected and quantified at slightly higher abundances in Aguas Zarcas compared to Murchison. Although there were differences in the total abundances of specific compound classes, these two carbonaceous chondrites showed similar isomeric distributions of aliphatic amines and carboxylic acids, with common traits such as a complete suite of structural isomers that decreases in concentration with increasing molecular weight. These observations agree with their petrologic CM type‐2 classification, suggesting that these meteorites experienced similar organic formation processes and/or conditions during parent body aqueous alteration.  相似文献   

15.
Abstract– Two new fragments of the Almahata Sitta meteorite and a sample of sand from the related strewn field in the Nubian Desert, Sudan, were analyzed for two to six carbon aliphatic primary amino acids by ultrahigh performance liquid chromatography with UV‐fluorescence detection and time‐of‐flight mass spectrometry (LC‐FT/ToF‐MS). The distribution of amino acids in fragment #25, an H5 ordinary chondrite, and fragment #27, a polymict ureilite, were compared with results from the previously analyzed fragment #4, also a polymict ureilite. All three meteorite fragments contain 180–270 parts‐per‐billion (ppb) of amino acids, roughly 1000‐fold lower than the total amino acid abundance of the Murchison carbonaceous chondrite. All of the Almahata Sitta fragments analyzed have amino acid distributions that differ from the Nubian Desert sand, which primarily contains l ‐α‐amino acids. In addition, the meteorites contain several amino acids that were not detected in the sand, indicating that many of the amino acids are extraterrestrial in origin. Despite their petrological differences, meteorite fragments #25 and #27 contain similar amino acid compositions; however, the distribution of amino acids in fragment #27 was distinct from those in fragment #4, even though both are polymict ureilites from the same parent body. Unlike in CM2 and CR2/3 meteorites, there are low relative abundances of α‐amino acids in the Almahata Sitta meteorite fragments, which suggest that Strecker‐type chemistry was not a significant amino acid formation mechanism. Given the high temperatures that asteroid 2008 TC3 appears to have experienced and lack of evidence for aqueous alteration on the asteroid, it is possible that the extraterrestrial amino acids detected in Almahata Sitta were formed by Fischer‐Tropsch/Haber‐Bosch type gas‐grain reactions at elevated temperatures.  相似文献   

16.
The Paris meteorite is one of the most primitive carbonaceous chondrites. It is reported to be the least aqueously altered CM chondrite, and to have experienced only weak thermal metamorphism. We have analyzed for the first time the amino acid and hydrocarbon contents of this pristine meteorite by gas chromatography–mass spectrometry (GC–MS). When plotting the relative amino acids abundances of several CM chondrites according to the increasing hydrothermal scale (petrologic subtypes), from the CM2.7/2.8 Paris to the CM2.0 MET 01070, Paris has the lowest relative abundance of β‐alanine/glycine (0.15), which fits with the relative abundances of β‐alanine/glycine increasing with increasing aqueous alteration for CM chondrites. These results confirm the influence of aqueous alteration on the amino acid abundances and distribution. The amino acid analysis shows that the isovaline detected in this meteorite is racemic (d /l  = 0.99 ± 0.08; l ‐enantiomer excess = 0.35 ± 0.5%; corrected d /l  = 1.03; corrected l ‐enantiomer excess = ?1.4 ± 2.6%). The identified hydrocarbons show that Paris has n‐alkanes ranging from C16 to C25 and 3‐ to 5‐ring nonalkylated polycyclic aromatic hydrocarbons (PAHs). The lack of alkylated PAHs in Paris seems to be also related to this low degree of aqueous alteration on its parent body. The extraterrestrial hydrocarbon content, suggested by the absence of any biomarker, may well have a presolar origin. The chemistry of the Paris meteorite may thus be closely related to the early stages of the solar nebula with a contribution from interstellar (molecular cloud) precursors.  相似文献   

17.
Abstract— We have analyzed Shi?r 033, a CR chondrite from the Omani desert, using several different analytical techniques designed to study the degree of terrestrial alteration of this meteorite and also its petrologic classification. Bulk chemical analyses (including organic carbon and mean total H2O content) are consistent with a CR classification. Additionally, oxygen isotope analysis on a bulk sample indicates that Shi?r 033 is of type CR2. Amino acid analysis using liquid chromatography with UV fluorescence detection (HPLC‐FD) and liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) show that the absolute and the relative amino acid content of Shi?r 033 is distinct from other carbonaceous chondrites. Oxygen isotope analysis of a phyllosilicate‐rich dark inclusion shows that this inclusion is closer to CV3 or CO3 chondrites. The effects of terrestrial weathering in Shi?r 033 are evident from the dark inclusion carbon isotopic data, bulk chemistry (through the elevated concentrations of Sr and Ba), and amino acid data, which suggests extensive amino acid contamination of the meteorite from the fall site soil. Nevertheless, Shi?r 033 contains a small fraction of indigenous components, as indicated by the presence of the extraterrestrial amino acid α‐aminoisobutyric acid (AIB) that was not detected in the Shi?r soils. Finally, the terrestrial age of Shi?r 033 was determined and is discussed in the context of high levels of contamination.  相似文献   

18.
Abstract— Micrometeorites (MMs) are extraterrestrial particles ranging in size from 25 μm to 2 mm that survive atmospheric entry and are collected on the Earth's surface. They represent the largest mass flux (MF) of extraterrestrial material (30,000 ± 20,000 t/yr) to the present‐day Earth. Studies of large collections of MMs suggest that about 20% have not been heated to high temperatures and that they contain organic carbon. Since non‐protein amino acids have been found in some carbonaceous meteorites, they might also be found in unmelted MMs. However, previous searches for amino acids in MMs were inconclusive. We combined a new extraction method for amino acids with a highly sensitive analytical method to detect and quantitate amino acids in MMs collected at the South Pole. We found the non‐protein amino acid α‐amino isobutyric acid (AIB) in one of our samples. The non‐detection of this amino acid in the other samples analyzed suggests that there are amino acid‐containing and amino acid‐free MMs, with ?14% of the MMs containing AIB. Since the MF of MMs is much higher than that of carbonaceous chondrites (CMs), amino acids in these small particles would represent an important source of exogenous delivery of organic molecules. Therefore, the results are discussed on the basis of their implications for astrobiology.  相似文献   

19.
Abstract— –We have analyzed ice samples and meteorites from the LaPaz region of Antarctica to investigate the composition of polycyclic aromatic hydrocarbons (PAHs) and amino acids with the goal to understand whether or not there is a compositional relationship between the two reservoirs. Four LL5 ordinary chondrites (OCs) and one CK carbonaceous chondrite were collected as part of the 2003/2004 ANSMET season. Ice samples collected from directly underneath the meteorites were extracted. In addition, exhaust particles from the snowmobiles used during the expedition were collected to investigate possible contributions from this source. The meteorite samples, the particulate matter and solid‐state extracts of the ice samples and the exhaust filters were subjected to two‐step laser mass spectrometry (L2MS) to investigate the PAH composition. For amino acids analysis, the meteorites were extracted with water and acid hydrolyzed, and the extracts were analyzed with offline OPA/NAC derivatization combined with liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC‐FD/ToF‐MS). PAHs in the particulate matter of the ice were found to be qualitatively similar to the meteorite samples, indicating that micron‐sized grains of the meteorite may be embedded in the ice samples. The concentration levels of dissolved PAHs in all the ice samples were found to be below the detection limit of the L2MS. The PAH composition of the snowmobile exhaust is significantly different to the one in particulate matter, making it an unlikely source of contamination for Antarctic meteorites. The amino acids glycine, β‐alanine and γ‐amino‐n‐butyric acid that were detected at concentrations of 3 to 19 parts per billion (ppb) are probably indigenous to the Antarctic meteorites. Some of the LaPaz ice samples were also found to contain amino acids at concentration levels of 1 to 33 parts per trillion (ppt), in particular α‐aminoisobutyric acid (AIB), an abundant non‐protein amino acid of extraterrestrial origin found in some carbonaceous chondrites. We hypothesize that this amino acid could have been extracted from Antarctic micrometeorites and the particulate matter of the meteorites during the concentration procedure of the ice samples.  相似文献   

20.
New chemical analyses of the Krymka and Manych chondrites and a review of data for other low-iron type 3 chondrites show that the ratio of metallic to total iron varies widely in LL3 chondrites and is an imperfect basis for distinguishing between these meteorites and L3 chondrites. More reliable chemical criteria — total Fe/Mg and Ni/Mg ratios, and Fe-S relationships — indicate that Krymka, Manych, Carraweena and Bishunpur are LL3 chondrites rather than samples of an iron-poor subgroup of the L-group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号