首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

2.
The rates and altitudes for the dissociation of atmospheric constituents of Titan are calculated for solar UV, solar wind protons, interplanetary electrons, Saturn magnetospheric particles, and cosmic rays. The resulting integrated synthesis rates of organic products range from 102–103 g cm?2 over 4.5 × 109 years for high-energy particle sources to 1.3 × 104 g cm?2 for UV at λ < 1550 A?, and to 5.0 × 105 g cm?2 if λ > 1550 A? (acting primarily on C2H2, C2H4, and C4H2) is included. The production rate curves show no localized maxima corresponding to observed altitudes of Titan's hazes and clouds. For simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at 2825 km. Such condensates comprise the principal cloud mass, with molecules of greater complexity condensing at higher altitudes. The scattering optical depths of the condensates of molecules produced in the Titanian mesosphere are as great as ~ 102/(particulate radius, μm) if column densities of condensed and gas phases are comparable. Visible condensation hazes of more complex organic compounds may occur at altitudes up to ~ 3060 km provided only that the abundance of organic products declines with molecular mass no faster than laboratory experiments indicate. Typical organics condensing at 2900 km have molecular masses = 100–150 Da. At current rates of production the integrated depth of precipitated organic liquids, ices, and tholins produced over 4.5 × 109 years ranges from a minimum ~ 100 m to kilometers if UV at λ > 1550 A? is important. The organic nitrogen content of this layer is expected to be ~ 10?1?10?3 by mass.  相似文献   

3.
L. Trafton  D.A. Ramsay 《Icarus》1980,41(3):423-429
Observations of Uranus during the 1975, 1976, and 1978 apparitions reveal a weak absorption at the wavelength of the R5(1) line of HD with equivalent width 1.0 ± 0.4 mA?. The DH ratio in Uranus' atmosphere implied by this line and other published spectra is (4.8 ± 1.5) × 10?5, and may not be significantly different from that in the atmospheres of Jupiter and Saturn. In addition, the spectra exhibit two weak absorption at 6044.76 ± 0.02 and 6045.54 ± 0.02 A? which we were unable to identify. No trace of absorption is visible near these wavelengths or near the HD wavelength in a laboratory spectrum of 4.92 km-am CH4 which we obtained in an attempt to identify these absorption features and to verify that the HD feature does not arise from CH4.  相似文献   

4.
Spectropolarimetry of Jupiter at resolutions between 22 and 35 Å reveals a strong increase of linear polarization in the 7250-A? CH4 band. This is very probably due to the decreasing contribution toward the band center of the higher orders of scattering, which have a smaller net polarization than the first few orders. The linear polarization is also enhanced in the band at 7900 A? comprising the 7920-A? NH3 and 7600- to 8200-A? CH4 bands. The normalized circular polarization shows a feature at 7250 A? with a dispersion shape. This is most probably produced in a double-scattering process involving either a solid or liquid aerosol with an absorption at 7250 A?. Methane aerosols, the obvious candidates from a spectroscopic point of view, are, however, forbidden if current estimates of the Jovian atmospheric temperature are correct.  相似文献   

5.
Using a low-resolution spectrograph and a CCD array, a spectrum of Pluto from 0.58 to 1.06 μm was obtained. The spectrum had a resolution of ~25 A? and a signal-to-noise ratio of ~300. It showed CH4 absorption bands at 6200, 7200, 7900, 8400, 8600, 8900 and 10,000 Å. The strongest of these bands was at 8900 Å with an absorption depth of 0.23. This band was heavily saturated, compared to the weaker bands, providing proof for the gaseous origin of the observed absorptions. By applying CH4 band model parameters to our data, a total CH4 abundance of 80 ± 20 m-am was derived. This translates into a one-way abundance of 27 ± 7 m-am and a CH4 surface pressure of 1.5 × 10?4 atm. An upper limit to the total pressure of ~0.05 atm could be set. First-order calculations on atmospheric escape showed that this methane atmosphere would be stable if the mass of Pluto is increased 50% over its current value and its radius is 1400 km. Alternatively a heavier gas mixed with the CH4 atmosphere would aid its stability. The relatively large amount of gaseous CH4 observed implies that the absorption bands recently reported at 1.7 and 2.3 μm are likely due to atmospheric CH4 absorptions rather than surface frost as interpreted earlier.  相似文献   

6.
T.E. Cravens  A.E.S. Green 《Icarus》1978,33(3):612-623
The intensities of radiation from the inner comas of comets which are composed primarily of water and carbon monoxide have been calculated. Only “airglow” emissions initiated by the absorption of extreme ultraviolet radiation have been considered. The photoionizations of H2O, CO, CO2, and N2 are the most important emission sources, although photoelectron excitation is also considered. Among the emission features for which intensities were calculated are H2O+ (A?2A1?X?2B1), CO+ (first negative), CO (fourth positive), CO (Cameron), CO2+ (B?2?u?X?2IIg), N2 (Vegard-Kaplan), N2+ (first negative), and OI (1304 Å). In the inner coma (collision region) these airglow mechanisms are shown to be possible competitors with the usually assumed resonance scattering and flourescence excitation mechanisms which are appropriate for the outer coma and tail.  相似文献   

7.
D.Chris Benner  Uwe Fink 《Icarus》1980,42(3):343-353
Laboratory band-model absorption coefficients of CH4 are used to calculate the Uranus spectrum from 5400 to 10,400 Å. A good fit of both strong and weak bands for the Uranus spectrum over the entire wavelength interval is achieved for the first time. Three different atmospheric models are employed: a reflecting layer model, a homogeneous scattering layer model, and a clear atmosphere sandwiched between two scattering layers. The spectrum for the reflecting layer model exhibits serious discrepancies but shows that large amounts of CH4 (5–10 km-am) are necessary to reproduce the Uranus spectrum. Both scattering models give reasonably good fits. The homogeneous model requires a particle scattering albedo (g?wp) ? 0.998 and an abundance per scattering mean free path (a?) ofa?1 km-am. The parameters derived from the sandwich layer model are: forsb the upper scattering layer a continuum single scattering albedo (g?w0) of 0.995 and a scattering optical depth variable with wavelength consistent with Rayleigh scattering; for the clear layer they are a CH4 abundance (a) of 2.2 km-am and an effective pressure (p) ? 0.1 atm; for the lower cloud deck a Lambert reflectivity (L) of 0.9 resulted. A severe depletion of CH4 in the upper scattering layer is required. An enrichment of CH4/H2 over the solar ratio by a factor of 4–14 in the lower atmosphere is, however, indicated.  相似文献   

8.
The phase function ω?(1 + a cos θ) for anisotropic scattering is applied to a homogeneous atmospheric model to ascertain the effects of anisotropy on the near-infrared spectrum of Venus. L. D. G. Young's equivalent widths for the 820 Å CO2 band are analyzed to derive allowed combinations of CO2 specific abundance, continuum albedo, pressure, and degree of anisotropy. From these combinations, values are derived for the photon mean-free path and total optical thickness of the clouds. The Venera 10 measurement of the transmitted flux at 7200 Å is then used in conjunction with spherical albedo requirements to reduce the range of possible solutions to the equivalent-width analysis. Through the application of approximate similarity relations, the “true” (i.e., anisotropic) atmospheric parameters are derived from the isotropic values. For an assumed Mie scatterer with an average anisotropy factor of 〈cos θ〉 = 0.7, the results indicate a total optical thickness of about 55 with a single-scattering albedo of 0.9992 to 0.9995.  相似文献   

9.
The resonant electron impact quenching of metastable molecules might be important for understanding the phenomena in the upper atmosphere. In order to obtain information about the relative importance of this scattering event the resonant cross sections for electron scattering by metastable nitrogen in the A3u+ state were calculated using the “boomerang” model and quenching rates for this state were evaluated for the altitudes of 130,170 and 210km. The obtained quenching rates are small (?5 × 10?3 s?1), even with respect to the radiative transition rate showing that under the considered conditions this process is unimportant for population of nitrogen A3u+ state in the Earth's thermosphere.  相似文献   

10.
Laboratory cross-section data on the excitation of the OII(2s 2p44P → 2s2 2p34S; λ834 Å) resonance transition and on the production of O+ and O2+ ions by electron impact on atomic oxygen are used to show that the ratio σ(λ834 A?)σ(O+ + O2+) is nearly constant for incident electron energies > 50 eV. Under auroral conditions, the total electron-ion pair production rate from electron impact on O can be inferred from λ834 Å volume emission rate measurements using the result that η(O+ + O2+)$?8.4η(λ834 A?). These findings, along with earlier work on the simultaneous ionization-excitation of the 1 Neg (0,0) band of N2+ and the 1 Neg (1, 0) band of O+2, allow the specific ionization rates for the principal atmospheric constituents (O+, O+2, N+2), for the multiply-ionized species (O2+, O2+2, N2+2), and for the dissociatively produced atomic ions to be inferred in aurora from remote satellite observations.  相似文献   

11.
P. Drossart  T. Encrenaz 《Icarus》1982,52(3):483-491
The abundance of H2O is derived from the 1900- to 2100-cm?1 region of the Voyager 1 IRIS spectra. Scale variations of about a factor of 2 are seen in the water abundance between the North and South Equatorial Belts. Averaged over the full disk, the mixing ratio is H2OH2=(4.0±1.0) × 10?6, if H2O is uniformly mixed in the atmospheric region having temperatures of 230 to 270°K; this result implies a solar depletion by a factor of 100 in this region. In the belts, the best agreement is obtained for a H2O/H2 mixing ratio of 4.0 × 10?6 in the NEB and 7.2 × 10?6 in the SEB, assuming a constant mixing ratio.  相似文献   

12.
J.R. Johnson  U. Fink  S.M. Larson 《Icarus》1984,60(2):351-372
Spectra of the four comets, Tuttle, Stephan-Oterma, Brooks 2, and Bowell, were taken with a prototype space telescope charge coupled device (CCD) camera using a 500 × 500 Texas Instruments chip. The spectra extended from 5600 to 10,400 Å at a resolution of ~25 A?. The spatial coverage along the slit was 180?; its resolution was defined by the seeing (2–3?). Both absolute flux scales and spectral albedos were determined with the data reduction procedure which included flat fielding and sky subtraction. Comet Tuttle displayed extensive emissions by NH2, the red system of CN, and the C2 Swan bands as well as emissions by the forbidden oxygen lines [OI] 1D at 6300 and 6364 Å, and the ionic species H2O+. A feature at 6851 Å has been tentatively identified as the 3-0 band of CS+. Notable is the absence of the C2 Phillips bands whose transitions are optimally placed in our spectrum. The much dustier comet, Stephan-Oterma showed emissions by CN, NH2, and [OI] while only [OI] could be discerned in the noisier Brooks 2 spectrum. The fresh comet Bowell exhibited an unusually extended coma with an albedo times cross section two orders of magnitude larger than the other comets, a very flat albedo spectrum, and no emission features. For Tuttle and Stephan-Oterma, CN and NH2 column densities using a number of bands were calculated. The CN band intensity ratios show good agreement with theoretical fluorescence models. The spatial profiles for CN and NH2 were compared to two step Haser model decay calculations. The scale lengths most consistent with the data were compared with values previously reported and with values expected for various photodissociation reactions. Production rates were calculated for CN and NH2. These should be less model dependent because of the simultaneous collection of spectral and spatial information. The production rate ratios of the parents of CN and NH2 to the parent of OH are several orders of magnitude smaller than the solar abundance ratios of C/O and N/O.  相似文献   

13.
In situ measurements of stratospheric H2SO4 and HSO3vapors using passive chemical ionization mass spectrometry were made in October 1982 after the eruption of volcano El Chichon. Data were obtained between about 20 and 41 km showing [H2SO4 + HSO3] sum concentrations between about 104 and 2 × 105 cm?3 below 29 km and a steep rise above this altitude. Maximum [H2SO4 + HSO3] values of about 3 × 106 cm?3 are reached above 35 km.Partial [HSO3] concentrations increase above 34 km reaching about 4 × 105cm?3 around 40 km. From the measurements it is concluded that H2SO4 and probably HSO3photolysis have an important influence above 34 km leading to the observed increase of [HSO3] and a depletion of H2SO4vapor.It also seems that the data support the view of heterogeneous HSO3 removal. If correct, this would imply that stratospheric aerosols are formed primarily from HSO3 rather than H2SO4vapor.  相似文献   

14.
Rosseland mean opacities a?R(T,lgPe) [see Table 2] per unit hydrogen particle are calculated in this paper for the atmosphere of the solar type [see Table 1].The sources of the continuous opacities under consideration in this paper are as follows: (1) H?, HI, H?2, H+2 He?, HeI, HeII, CI, CII, CIII, NI, NII, NIII, OI, OII, NaI, MgI, MgII, AlI, AlII, SiI, SiII, CII, KI, CaII in the form of absorption. (2) HI, HeI, CI, NI, OI, H2 in the form of Rayleigh scattering. (3) Free electrons in the form of Thomson scattering.  相似文献   

15.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

16.
The Stokes parameters of resonance radiation scattered by a Na atom with the angular momentum F aligned by directed unpolarized radiation in a magnetic field H ~ 10?5?10?1 Oe are presented. An influence of the orientation of the magnetic field on these parameters are studied; the intensity ratio I(D2)I(D1) changes within ±5%, and the polarization degree P(D2) within ±25%. Measurements of I(D2)I(D1) and P(D2), if the geometry of scattering is known, may give information on the direction of the magnetic field in the sodium atmospheres of comets, as well as Io's sodium cloud or man-made cosmic clouds.  相似文献   

17.
M. Podolak  R.E. Danielson 《Icarus》1977,30(3):479-492
The scattering and absorption properties of Axel dust were investigated by means of Mie theory. We find that a flat distribution of particle radii between 0 and 0.1 μm, and an imaginary part of the index of refraction which varies as λ?2.5 produce a good fit to the variation of Titan's geometric albedo with wavelength (λ) provided that τext, the extinction optical depth of Titan's atmosphere at 5000 Å, is about 10. The real part of the complex index is taken to be 2.0. The model assumes that the mixing ratio of Axel dust to gas is uniform above the surface of Titan. The same set of physical properties for Axel dust also produces a good fit to Saturn's albedo if τext = 0.7 at 5000 Å. To match the increase in albedo shortward of 3500 Å, a clear layer (containing about 7 km-am H2) is required above the Axel dust. Such a layer is also required to explain the limb brightening in the ultraviolet. These models can be used to analyze the observed equivalent widths of the visible methane bands. The analysis yields an abundance of the order of 1000 m-am CH4 in Titan's atmosphere. The derived CH4/H2 mixing ratio for Saturn is about 3.5 × 10?3 or an enhancement of about 5 over the solar ratio.  相似文献   

18.
We consider two samples of OB stars with different distance scales that we have studied previously. The first and second samples consist of massive spectroscopic binaries with photometric distances and distances determined from interstellar calcium lines, respectively. The OB stars are located at heliocentric distances up to 7 kpc. We have identified them with the Gaia DR1 catalogue. Using the proper motions taken from the Gaia DR1 catalogue is shown to reduce the random errors in the Galactic rotation parameters compared to the previously known results. By analyzing the proper motions and parallaxes of 208 OB stars from the Gaia DR1 catalogue with a relative parallax error of less than 200%, we have found the following kinematic parameters: (U, V) = (8.67, 6.63)± (0.88, 0.98) km s?1, Ω0 = 27.35 ± 0.77 km s?1 kpc?1, Ω′0 = ?4.13 ± 0.13 km s?1 kpc?2, and Ω″0 = 0.672 ± 0.070 km s?1 kpc?3, the Oort constants are A = ?16.53 ± 0.52 km s?1 kpc?1 and B = 10.82 ± 0.93 km s?1 kpc?1, and the linear circular rotation velocity of the local standard of rest around the Galactic rotation axis is V 0 = 219 ± 8 km s?1 for the adopted R 0 = 8.0 ± 0.2 kpc. Based on the same stars, we have derived the rotation parameters only from their line-of-sight velocities. By comparing the estimated values of Ω′0, we have found the distance scale factor for the Gaia DR1 catalogue to be close to unity: 0.96. Based on 238 OB stars of the combined sample with photometric distances for the stars of the first sample and distances in the calcium distance scale for the stars of the second sample, line-of-sight velocities, and proper motions from the Gaia DR1 catalogue, we have found the following kinematic parameters: (U, V, W) = (8.19, 9.28, 8.79)± (0.74, 0.92, 0.74) km s?1, Ω0 = 31.53 ± 0.54 km s?1 kpc?1, Ω′0 = ?4.44 ± 0.12 km s?1 kpc?2, and Ω″0 = 0.706 ± 0.100 km s?1 kpc?3; here, A = ?17.77 ± 0.46 km s?1 kpc?1, B = 13.76 ± 0.71 km s?1 kpc?1, and V 0 = 252 ± 8 km s?1.  相似文献   

19.
The calculated radiative lifetime of the metastable ion is 6.4 × 10?3s. Used in conjunction with the results of measurements by Erdman, Espy and Zipf this sets 1.3 × 10?18 cm2 as the upper limit to the cross section for the formation of N+(5S) in e - N2 collisions at 100eV which leaves the possibility that the process is responsible for the λ2145A? feature in auroras only just open. The cross section for the formation of N+(5S) in e — N collisions is large. However for this process to lead to the observed intensity of λ2145A? relative to λ3914A? the N:N2 abundance ratio would have to be as high as 1.6 × 10?2.  相似文献   

20.
The excitation, energy transfer and quenching of O2 (A3 Σu+, C3 Δu, c1 Σu?) and O(1S) are discussed, taking into account laboratory measurements and observations on the airglow of the Earth, Venus and Mars. The excitation of O(1S) occurs by the Barth mechanism with O2(c) as a precursor: the rate coefficient is 2.5 × 10?12 cm3 s?1 for υ > 0 and 2.5 × 10?12 exp(?1100T) cm3 s?1for υ = 0. The O2(c) can be formed directly by recombination or by O2(A) and O2(C) colliding with other molecules; the O2(c) yield through quenching of these states is about 0.3 in air and about 1.0 in carbon dioxide. The rate coefficients of some processes that control the molecular oxygen bands and the atomic oxygen green line are estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号