首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three‐dimensional (3D) electrical resistivity modelling code is developed to interpret surface and subsurface data. Based on the integral equation, it calculates the charge density caused by conductivity gradients at each interface of the mesh, allowing the estimation of the potential everywhere without the need to interpolate between nodes. Modelling generates a huge matrix, made up of Green's functions, which is stored by using the method of pyramidal compression. The potential is compared with the analytical and the numerical solutions obtained by finite‐difference codes for two models: the two‐layer case and the vertical contact case. The integral method is more accurate around the source point and at the limits of the domain for the potential calculation using a pole‐pole array. A technique is proposed to calculate the sensitivity (Jacobian) and Hessian matrices in 3D. The sensitivity is based on the derivative with respect to the block conductivity of the potential computed using the integral equation; it is only necessary to compute the electrical field at the source location. A direct extension of this technique allows the determination of the second derivatives. The technique is compared with the analytical solutions and with the calculation of the sensitivity according to the method using the inner product of the current densities calculated at the source and receiver points. Results are very accurate when the Green's function that includes the source image is used. The calculation of the three components of the electric field on the interfaces of the mesh is carried out simultaneously and quickly, using matrix compression.  相似文献   

2.
We have derived a rapidly computed analytical solution for drawdown caused by a partially or fully penetrating directional wellbore (vertical, horizontal, or slant) via Green's function method. The mathematical model assumes an anisotropic, homogeneous, confined, box-shaped aquifer. Any dimension of the box can have one of six possible boundary conditions: 1) both sides no-flux; 2) one side no-flux – one side constant-head; 3) both sides constant-head; 4) one side no-flux; 5) one side constant-head; 6) free boundary conditions. The solution has been optimized for rapid computation via Poisson Resummation, derivation of convergence rates, and numerical optimization of integration techniques. Upon application of the Poisson Resummation method, we were able to derive two sets of solutions with inverse convergence rates, namely an early-time rapidly convergent series (solution-A) and a late-time rapidly convergent series (solution-B). From this work we were able to link Green's function method (solution-B) back to image well theory (solution-A). We then derived an equation defining when the convergence rate between solution-A and solution-B is the same, which we termed the switch time. Utilizing the more rapidly convergent solution at the appropriate time, we obtained rapid convergence at all times. We have also shown that one may simplify each of the three infinite series for the three-dimensional solution to 11 terms and still maintain a maximum relative error of less than 10−14.  相似文献   

3.
A new numerical method is presented for propagating elastic waves in heterogeneous earth media, based on spectral approximations of the wavefield combined with domain decomposition techniques. The flexibility of finite element techniques in dealing with irregular geologic structures is preserved, together with the high accuracy of spectral methods. High computational efficiency can be achieved especially in 3D calculations, where the commonly used finite-difference approaches are limited both in the frequency range and in handling strongly irregular geometries. The treatment of the seismic source, introduced via a moment tensor distribution, is thoroughly discussed together with the aspects associated with its numerical implementation. The numerical results of the present method are successfully compared with analytical and numerical solutions, both in 2D and 3D.  相似文献   

4.
A predictor‐multicorrector implementation of a Time Discontinuous Galerkin method for non‐linear dynamic analysis is described. This implementation is intended to limit the high computational expense typically required by implicit Time Discontinuous Galerkin methods, without degrading their accuracy and stability properties. The algorithm is analysed with reference to conservative Duffing oscillators for which closed‐form solutions are available. Therefore, insight into the accuracy and stability properties of the predictor‐multicorrector algorithm for different approximations of non‐linear internal forces is gained, showing that the properties of the underlying scheme can be substantially retained. Finally, the results of representative numerical simulations relevant to Duffing oscillators and to a stiff spring pendulum discretized with finite elements illustrate the performance of the numerical scheme and confirm the analytical estimates. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
卢杰  李予国 《地球物理学报》2019,62(8):3189-3198
本文基于对应原理将似稳态条件下频率域电磁场扩散方程转换成虚拟波动域电磁场波动方程,采用高阶时域有限差分进行求解,引入复频移完全匹配层吸收边界条件,降低了内存需求,提高了计算效率,并在虚拟波动域用伪δ函数离散电偶极源,实现了虚拟波动域任意取向电偶极源三维海洋可控源电磁场高阶时域有限差分正演算法.通过与拟解析解和频率域三维可控源电磁场数值模拟结果的对比,验证了本文算法的正确性和高效性,且探讨了网格参数和边界条件对不同频率电磁场模拟结果的影响.  相似文献   

6.
In this work the numerical integration of 1D shallow water equations (SWE) over movable bed is performed using a well-balanced central weighted essentially non-oscillatory (CWENO) scheme, fourth-order accurate in space and in time. Time accuracy is obtained following a Runge–Kutta (RK) procedure, coupled with its natural continuous extension (NCE). Spatial accuracy is obtained using WENO reconstructions of conservative variables and of flux and bed derivatives. An original treatment for bed slope source term, which maintains the established order of accuracy and satisfies the property of exactly preserving the quiescent flow (C-property), is introduced in the scheme. This treatment consists of two procedures. The former involves the evaluation of the point-values of the flux derivative, considered as a whole with the bed slope source term. The latter involves the spatial integration of the source term, analytically manipulated to take advantage from the expected regularity of the free surface elevation. The high accuracy of the scheme allows to obtain good results using coarse grids, with consequent gain in terms of computational effort. The well-balancing of the scheme allows to reproduce small perturbations of the free surface and of the bottom otherwise of the same order of magnitude of the numerical errors induced by the non-balancing. The accuracy, the well-balancing and the good resolution of the model in reproducing free surface flow over movable bed are tested over analytical solutions and over numerical results available in literature.  相似文献   

7.
The Fourier finite‐difference propagator and the generalized‐screen propagator are two general high‐order forms of one‐way dual‐domain methods. We compare these two propagators mainly on phase accuracy, computational efficiency and 3D extension. A comparison of phase accuracy shows that the high‐order generalized‐screen propagator is preferable to the Fourier finite‐difference propagator for heterogeneous media with a weak velocity contrast and wide dip angle. With increasing velocity contrast, the accuracy improvement gained by the high‐order generalized‐screen propagator declines rapidly. The Fourier finite‐difference propagator is more robust and flexible to lateral velocity variations than the generalized‐screen propagator. The 2D Fourier finite‐difference propagator is superior to the 2D generalized‐screen propagator when the velocity contrast is stronger than 23%. Despite the two‐way splitting error, the 3D Fourier finite‐difference propagator is more accurate than the second‐order generalized‐screen propagator when the velocity contrast is stronger than 20% and is more accurate than the fourth‐order generalized‐screen propagator when the velocity contrast is stronger than 40%. Numerical experiments on the SEG/EAGE salt model demonstrate that the Fourier finite‐difference propagator behaves better than the generalized‐screen propagator when imaging steep salt boundary and faults beneath the salt body. Under the same hardware and software conditions, the computational cost of the Fourier finite‐difference propagator in our implementation is greater than that of the second‐order generalized‐screen propagator but smaller than that of the third‐order generalized‐screen propagator. Compared with the Fourier finite‐difference propagator, the generalized‐screen propagator requires fewer grid points per wavelength and has more potential to improve running speed in the presence of a much faster Fourier transform. These analyses are applicable for both forward modelling and depth migration.  相似文献   

8.
In present‐day land and marine controlled‐source electromagnetic (CSEM) surveys, electromagnetic fields are commonly generated using wires that are hundreds of metres long. Nevertheless, simulations of CSEM data often approximate these sources as point dipoles. Although this is justified for sufficiently large source‐receiver distances, many real surveys include frequencies and distances at which the dipole approximation is inaccurate. For 1D layered media, electromagnetic (EM) fields for point dipole sources can be computed using well‐known quasi‐analytical solutions and fields for sources of finite length can be synthesized by superposing point dipole fields. However, the calculation of numerous point dipole fields is computationally expensive, requiring a large number of numerical integral evaluations. We combine a more efficient representation of finite‐length sources in terms of components related to the wire and its end points with very general expressions for EM fields in 1D layered media. We thus obtain a formulation that requires fewer numerical integrations than the superposition of dipole fields, permits source and receiver placement at any depth within the layer stack and can also easily be integrated into 3D modelling algorithms. Complex source geometries, such as wires bent due to surface obstructions, can be simulated by segmenting the wire and computing the responses for each segment separately. We first describe our finite‐length wire expressions and then present 1D and 3D examples of EM fields due to finite‐length sources for typical land and marine survey geometries and discuss differences to point dipole fields.  相似文献   

9.
High-speed train seismology has come into being recently. This new kind of seismology uses a high-speed train as a repeatable moving seismic source. Therefore, Green's function for a moving source is needed to make theoretical studies of the high-speed train seismology. Green's function for three-dimensional elastic wave equation with a moving point source on the free surface is derived. It involves a line integral of the Green's function for a fixed point source with different positions and corresponding time delays. We give a rigorous mathematical proof of this Green's function. According to the principle of linear superposition, we have also obtained the Green's function for a group of moving sources which can be regarded as a model of a traveling high-speed train. Based on a temporal convolution, an analytical formula for other moving sources is also given. In terms of a moving Gaussian source, we deal with the issue of numerical calculations of the analytical formula. Applications to modelling of a traveling high-speed train are presented. We have considered both the land case and the bridge case for a traveling high-speed train. The theoretical seismograms show different waveform features for these two cases.  相似文献   

10.
We propose new implicit staggered‐grid finite‐difference schemes with optimal coefficients based on the sampling approximation method to improve the numerical solution accuracy for seismic modelling. We first derive the optimized implicit staggered‐grid finite‐difference coefficients of arbitrary even‐order accuracy for the first‐order spatial derivatives using the plane‐wave theory and the direct sampling approximation method. Then, the implicit staggered‐grid finite‐difference coefficients based on sampling approximation, which can widen the range of wavenumber with great accuracy, are used to solve the first‐order spatial derivatives. By comparing the numerical dispersion of the implicit staggered‐grid finite‐difference schemes based on sampling approximation, Taylor series expansion, and least squares, we find that the optimal implicit staggered‐grid finite‐difference scheme based on sampling approximation achieves greater precision than that based on Taylor series expansion over a wider range of wavenumbers, although it has similar accuracy to that based on least squares. Finally, we apply the implicit staggered‐grid finite difference based on sampling approximation to numerical modelling. The modelling results demonstrate that the new optimal method can efficiently suppress numerical dispersion and lead to greater accuracy compared with the implicit staggered‐grid finite difference based on Taylor series expansion. In addition, the results also indicate the computational cost of the implicit staggered‐grid finite difference based on sampling approximation is almost the same as the implicit staggered‐grid finite difference based on Taylor series expansion.  相似文献   

11.
Two primary concerns in performing watershed overland flow routing are the numerical instability and computational efficiency. The stability of executing an explicit scheme has to be maintained by observing the Courant–Friedrich–Lewy criterion, which is adopted to confirm that the numerical marching speed is larger than the wave celerity. Moreover, there is another criterion of time step devised in previous studies to avoid back‐and‐forth refluxing between adjacent grids. The situation of refluxing usually occurs on flat regions. In light of this, the selection of a small time increment to honor both restrictions simultaneously is believed to decrease the computational efficiency in performing overland flow routing. This study aims at creating a robust algorithm to relax both restrictions. The proposed algorithm was first implemented on a one‐dimensional overland plane to evaluate the accuracy of the numerical result by comparing it with an analytical solution. Then, the algorithm was further applied to a watershed for 2D runoff simulations. The results show that the proposed integrated algorithm can provide an accurate runoff simulation and achieve satisfactory performance in terms of computational speed.  相似文献   

12.
三维直流电阻率有限元-无限元耦合数值模拟   总被引:5,自引:4,他引:1       下载免费PDF全文
为解决传统有限元截断边界所引起的问题,本文提出了一种新的三维直流电阻率有限元-无限元耦合数值模拟方法.首先推导了无限元三维单元映射函数,然后提出了一种全新的最优的无限元形函数并与多种其他形函数进行了对比,随后将其与非结构化四面体有限元相结合,取代了传统的混合边界条件,使得电位在无限域内连续并在无限远处衰减为零,最终形成的左端矩阵稀疏对称并与场源位置无关.数值计算表明,该方法可以在近似测区大小的计算范围内得到与混合边界条件相当的计算精度,优于相同计算范围下齐次边界条件的解,有利于减少计算节点数;由于左端矩阵不随场源位置改变,有利于加速反演计算.  相似文献   

13.
The previous finite‐difference numerical schemes designed for direct application to second‐order elastic wave equations in terms of displacement components are strongly dependent on Poisson's ratio. This fact makes theses schemes useless for modelling in offshore regions or even in onshore regions where there is a high Poisson's ratio material. As is well known, the use of staggered‐grid formulations solves this drawback. The most common staggered‐grid algorithms apply central‐difference operators to the first‐order velocity–stress wave equations. They have been one of the most successfully applied numerical algorithms for seismic modelling, although these schemes require more computational memory than those mentioned based on second‐order wave equations. The goal of the present paper is to develop a general theory that enables one to formulate equivalent staggered‐grid schemes for direct application to hyperbolic second‐order wave equations. All the theory necessary to formulate these schemes is presented in detail, including issues regarding source application, providing a general method to construct staggered‐grid formulations to a wide range of cases. Afterwards, the equivalent staggered‐grid theory is applied to anisotropic elastic wave equations in terms of only velocity components (or similar displacements) for two important cases: general anisotropic media and vertical transverse isotropy media using, respectively, the rotated and the standard staggered‐grid configurations. For sake of simplicity, we present the schemes in terms of velocities in the second‐ and fourth‐order spatial approximations, with second‐order approximation in time for 2D media. However, the theory developed is general and can be applied to any set of second‐order equations (in terms of only displacement, velocity, or even stress components), using any staggered‐grid configuration with any spatial approximation order in 2D or 3D cases. Some of these equivalent staggered‐grid schemes require less computer memory than the corresponding standard staggered‐grid formulation, although the programming is more evolved. As will be shown in theory and practice, with numerical examples, the equivalent staggered‐grid schemes produce results equivalent to corresponding standard staggered‐grid schemes with computational advantages. Finally, it is important to emphasize that the equivalent staggered‐grid theory is general and can be applied to other modelling contexts, e.g., in electrodynamical and poroelastic wave propagation problems in a systematic and simple way.  相似文献   

14.
The Galerkin finite element method coupled with the Crank-Nicolson time advance procedure is often used as a numerical analog for unsaturated soil-moisture transport problems. The Crank-Nicolson procedure leads to numerical mass balance problems which results in instability. A new temporal and spatial integration procedure is proposed that exactly satisfies mass balance for the approximating function used. This is accomplished by fitting polynomials continuously throughout the time and space domain and integrating the governing differential equations. To reduce computational effort, the resulting higher order polynomials are reduced to quadratic and linear piece-wise continuous polynomial approximation functions analogous to the finite element approach. Results indicate a substantial improvement in accuracy over the combined Galerkin and Crank-Nicolson methods when comparing to simplified problems where analytical solutions are available.  相似文献   

15.
基于平均导数优化方法的VTI介质频率空间域正演   总被引:2,自引:2,他引:0       下载免费PDF全文
本文提出了一种新的基于平均导数优化方法(average-derivative optimal method,简称ADM)的二维VTI介质qP波波动方程频率空间域二阶9点格式,这种新算法将二维VTI介质qP波波动方程中中心空间导数项的差分近似表示为正交方向上3个网格点的加权平均形式.通过最小二乘优化方法求取空间导数项和加速度项的加权优化系数从而使数值频散达到极小化,每个波长所需要的网格点数在1%的误差范围内仅为3.57个网格点数,而VTI介质常规9点差分格式在相同的误差范围内则需要约12个网格点数,新方法的计算精度明显提高.复杂BP2007 2D VTI海洋标准模型数值模拟结果也验证了本文VTI介质9点ADM算法的有效性和准确性.  相似文献   

16.
A finite volume MUSCL scheme for the numerical integration of 2D shallow water equations is presented. In the framework of the SLIC scheme, the proposed weighted surface-depth gradient method (WSDGM) computes intercell water depths through a weighted average of DGM and SGM reconstructions, in which the weight function depends on the local Froude number. This combination makes the scheme capable of performing a robust tracking of wet/dry fronts and, together with an unsplit centered discretization of the bed slope source term, of maintaining the static condition on non-flat topographies (C-property). A correction of the numerical fluxes in the computational cells with water depth smaller than a fixed tolerance enables a drastic reduction of the mass error in the presence of wetting and drying fronts. The effectiveness and robustness of the proposed scheme are assessed by comparing numerical results with analytical and reference solutions of a set of test cases. Moreover, to show the capability of the numerical model on field-scale applications, the results of a dam-break scenario are presented.  相似文献   

17.
In this paper, we propose a nearly‐analytic central difference method, which is an improved version of the central difference method. The new method is fourth‐order accurate with respect to both space and time but uses only three grid points in spatial directions. The stability criteria and numerical dispersion for the new scheme are analysed in detail. We also apply the nearly‐analytic central difference method to 1D and 2D cases to compute synthetic seismograms. For comparison, the fourth‐order Lax‐Wendroff correction scheme and the fourth‐order staggered‐grid finite‐difference method are used to model acoustic wavefields. Numerical results indicate that the nearly‐analytic central difference method can be used to solve large‐scale problems because it effectively suppresses numerical dispersion caused by discretizing the scalar wave equation when too coarse grids are used. Meanwhile, numerical results show that the minimum sampling rate of the nearly‐analytic central difference method is about 2.5 points per minimal wavelength for eliminating numerical dispersion, resulting that the nearly‐analytic central difference method can save greatly both computational costs and storage space as contrasted to other high‐order finite‐difference methods such as the fourth‐order Lax‐Wendroff correction scheme and the fourth‐order staggered‐grid finite‐difference method.  相似文献   

18.
An exact, closed‐form analytical solution is derived for one‐dimensional (1D), coupled, steady‐state advection‐dispersion equations with sequential first‐order degradation of three dissolved species in groundwater. Dimensionless and mathematical analyses are used to examine the sensitivity of longitudinal dispersivity in the parent and daughter analytical solutions. The results indicate that the relative error decreases to less than 15% for the 1D advection‐dominated and advection‐dispersion analytical solutions of the parent and daughter when the Damköhler number of the parent decreases to less than 1 (slow degradation rate) and the Peclet number increases to greater than 6 (advection‐dominated). To estimate first‐order daughter product rate constants in advection‐dominated zones, 1D, two‐dimensional (2D), and three‐dimensional (3D) steady‐state analytical solutions with zero longitudinal dispersivity are also derived for three first‐order sequentially degrading compounds. The closed form of these exact analytical solutions has the advantage of having (1) no numerical integration or evaluation of complex‐valued error function arguments, (2) computational efficiency compared to problems with long times to reach steady state, and (3) minimal effort for incorporation into spreadsheets. These multispecies analytical solutions indicate that BIOCHLOR produces accurate results for 1D steady‐state, applications with longitudinal dispersion. Although BIOCHLOR is inaccurate in multidimensional applications with longitudinal dispersion, these multidimensional multispecies analytical solutions indicate that BIOCHLOR produces accurate steady‐state results when the longitudinal dispersion is zero. As an application, the 1D advection‐dominated analytical solution is applied to estimate field‐scale rate constants of 0.81, 0.74, and 0.69/year for trichloroethene, cis‐1,2‐dichloroethene, and vinyl chloride, respectively, at the Harris Palm Bay, FL, CERCLA site.  相似文献   

19.
When modelling the propagation of 3D non‐axisymmetric elastic and viscoelastic waves in cylindrical coordinates using the finite‐difference time‐domain method, a mathematical singularity occurs due to the presence of terms in the elastic and viscoelastic wave equations. For many years, this issue has been impeding the accurate numerical solution near the axis. In this work, we propose a simple but effective method for the treatment of this numerical singularity problem. By rotating the Cartesian coordinate system around the z‐axis in cylindrical coordinates, the numerical singularity problems in both 2D and 3D cylindrical coordinates can be removed. This algorithm has three advantages over the conventional treatment techniques: (i) the excitation source can be directly loaded at , (ii) the central difference scheme with second‐order accuracy is maintained, and (iii) the stability condition at the axis is consistent with the finite‐difference time‐domain in Cartesian coordinates. This method is verified by several 3D numerical examples. Results show that the rotating the Cartesian coordinate method is accurate and stable at the singularity axis. The improved finite‐difference time‐domain algorithm is also applied to sonic logging simulations in non‐axisymmetric formations and sources.  相似文献   

20.
A numerical method has been developed for the dynamic analysis of a tall building structure with viscous dampers. Viscous dampers are installed between the top of an inverted V‐shaped brace and the upper beam on each storey to reduce vibrations during strong disturbances like earthquakes. Analytically, it is modelled as a multi‐degree‐of freedom (MDOF) system with the Maxwell models. First, the computational method is formulated in the time domain by introducing a finite element of the Maxwell model into the equation of motion in the discrete‐time system, which is based on the direct numerical integration. Next, analyses for numerical stability and accuracy of the proposed method are discussed. The results show its numerical stability. Finally, the proposed method is applied to the numerical analysis of a realistic building structure to demonstrate its practical validity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号