首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
Abstract– John Wood ( Fig. 1 ) was trained in Geology at Virginia Tech and M.I.T. To fulfill a minor subject requirement at M.I.T., he studied astronomy at Harvard, taking courses with Fred Whipple and others. Disappointed at how little was known in the 1950s about the origin of the earth, he seized an opportunity to study a set of thin sections of stony meteorites, on the understanding that these might shed light on the topic. This study became his Ph.D. thesis. He recognized that chondrites form a metamorphic sequence, and that idea proved surprisingly hard to sell. After brief service in the Army and a year at Cambridge University, John served for 3 years as a research associate with Ed Anders at the University of Chicago. He then returned to the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, where he spent the remainder of his career. At Chicago, he investigated the formation of the Widmanstätten structure, and found that the process informs us of the cooling rates of iron meteorites. Back in Cambridge, he collaborated with W. R. Van Schmus on a chondrite classification that incorporates metamorphic grade, and published on metal grains in chondrites, before becoming absorbed by preparations for the return of lunar samples by the Apollo astronauts. His group’s work on Apollo samples helped to establish the character of the lunar crust, and the need for a magma ocean to form it. Wood served as President of the Meteoritical Society in 1971–72 and received the Leonard Medal in 1978.
Figure 1 Open in figure viewer PowerPoint John Wood.  相似文献   

2.
Abstract– Donald D. Bogard (Don, Fig. 1 ) became interested in meteorites after seeing the Fayetteville meteorite in an undergraduate astronomy class at the University of Arkansas. During his graduate studies with Paul Kuroda at Arkansas, Don helped discover the Xe decay products of 244Pu. After a postdoctoral period at Caltech, where he learned much from Jerry Wasserburg, Peter Eberhardt, Don Burnett, and Sam Epstein, Don became one of a number of young Ph.D. scientists hired by NASA’s Manned Spacecraft Center to set up the Lunar Receiving Laboratory (LRL) and to perform a preliminary examination of Apollo samples. In collaboration with Oliver Schaeffer (SUNY), Joseph Zähringer (Max Planck, Heidelberg), and Raymond Davis (Brookhaven National Laboratory), he built a gas analysis laboratory at JSC, and the noble gas portion of this laboratory remained operational until he retired in 2010. At NASA, Don worked on the lunar regolith, performed pioneering work on cosmic ray produced noble gas isotopes and Ar‐Ar dating, the latter for important insights into the thermal and shock history of meteorites and lunar samples. During this work, he discovered that the trapped gases in SNC meteorites were very similar to those of the Martian atmosphere and thus established their Martian origin. Among Don’s many administrative accomplishments are helping to establish the Antarctic meteorite and cosmic dust processing programs at JSC and serving as a NASA‐HQ discipline scientist, where he advanced peer review and helped create new programs. Don is a recipient of NASA’s Scientific Achievement and Exceptional Service Medals and the Meteoritical Society’s Leonard Medal.
Figure 1 Open in figure viewer PowerPoint Donald Bogard.  相似文献   

3.
Abstract– In this interview, Joseph Goldstein ( Fig. 1 ) recounts how he became interested in meteorites during his graduate studies working with Robert Ogilvie at MIT. By matching the Ni profiles observed across taenite fields in the Widmanstätten structure of iron meteorites with profiles he computed numerically he was able to determine cooling rates as the meteorites cooled through 650–400 °C. Upon graduating, he worked with a team of meteorite researchers led by Lou Walter at Goddard Space Flight Center where for 4 years he attempted to understand metallographic structures by reproducing them in the laboratory. Preferring an academic environment, Joe accepted a faculty position in the rapidly expanding metallurgy department at Lehigh University where he was responsible for their new electron microprobe. He soon became involved in studying the metal from lunar soils and identifying the metallic component from its characteristic iron and nickel compositions. Over the next two decades he refined these studies of Ni diffusion in iron meteorites, particularly the effect of phosphorus in the process, which resulted in superior Fe‐Ni‐P phase diagrams and improved cooling rates for the iron meteorites. After a period as vice president for research at Lehigh, in 1993 he moved to the University of Massachusetts to serve as dean of engineering, but during these administrative appointments Joe produced a steady stream of scientific results. Joe has served as Councilor, Treasurer, Vice President, and President of the Meteoritical Society. He received the Leonard Medal in 2005, the Sorby Award in 1999, and the Dumcumb Award for in 2008.
Figure 1 Open in figure viewer PowerPoint Joseph Goldstein.  相似文献   

4.
Abstract— Black ordinary chondrite meteorites sample the spectral effects of shock on ordinary chondrite material in the space environment. Since shock is an important regolith process, these meteorites may provide insight into the spectral properties of the regoliths on ordinary chondrite parent bodies. To determine how common black chondrites are in the meteorite collection and, by analogy, the frequency of shock-alteration in ordinary chondrites, several of the world's major meteorite collections were examined to identify black chondrites. Over 80% of all catalogued ordinary chondrites were examined and, using an optical definition, 61 black chondrites were identified. Black chondrites account for approximately 13.7% of ordinary chondrite falls. If the optically altered gas-rich ordinary chondrites are included, the proportion of falls that exhibit some form of altered spectral properties increases to 16.7%. This suggests that optical alteration of asteroidal material in the space environment is a relatively common process.  相似文献   

5.
Meteoritical Bulletin 104 contains 2279 meteorites including 12 falls (Annama, Cartersville, Creston, Diepenveen, Famenin, Izarzar, Nkayi, Porangaba, San Juan de Ocotán, Trâpe?ng Rôno?s, Xinglongquan, ?d’ár nad Sázavou), with 1847 ordinary chondrites, 138 carbonaceous chondrites, 128 HED achondrites, 38 lunar meteorites, 24 ureilites, 22 Martian meteorites, 19 iron meteorites, 17 primitive achondrites, 14 enstatite chondrites, 10 mesosiderites, 9 Rumuruti chondrites, 5 pallasites, 4 ungrouped achondrites, 2 enstatite achondrites, 1 ungrouped chondrite, and 1 Kakangari chondrite, and with 996 from Antarctica, 790 from Africa, 337 from Asia, 111 from South America, 30 from North America, 11 from Oceania, and 4 from Europe. Note: 1 meteorite from Russia was counted as European.  相似文献   

6.
Abstract– In this interview, Grenville Turner ( Fig. 1 ) recounts how he became interested in meteorites during postdoctoral research with John Reynolds at the University of California, Berkeley, after completing a DPhil with Ken Mayne at the University of Oxford. At Berkeley, he worked on xenon isotopes with fellow students Bob Pepin and Craig Merrihue, but Reynolds’ insistence that they analyze all the inert gases in their samples meant that they also made important contributions to Ne isotope studies and potassium‐argon dating leading to the Ar‐Ar technique. In 1964, Grenville obtained a teaching position at the University of Sheffield where he developed his own laboratory for inert gas isotope measurements. After the return of samples from the Moon by the Apollo program, he became involved in determining the chronology of volcanism and major impacts on the Moon. In 1988, Grenville and his team moved to the University of Manchester as part of a national reorganization of earth science departments. During the post Apollo years, Grenville’s interest turned to the development of new instrumentation (resonance ionization mass spectrometry and the ion microprobe), and to problems in terrestrial isotope geochemistry, particularly the source of inert gases in fluid inclusions. He received the Leonard Medal of the Meteoritical Society in 1999, and he has also received awards from the Royal Society, the European Association of Geochemistry, and the Royal Astronomical Society.
Figure 1 Open in figure viewer PowerPoint Grenville Turner.  相似文献   

7.
Cover          下载免费PDF全文
Cut surface of the Vicência (S1)(3.2) LL chondrite fall of September 21, 2013, showing abundant and beautifully developed chondrules and what appear to be chondrule, mineral and rock fragments, embedded into a grey to black, fine‐grained matrix. Klaus Keil et al. discuss the meteorite in detail in their paper on pp. 1089—1111. (Image courtesy of K. Keil)  相似文献   

8.
Abstract– In this interview, Dale Cruikshank ( Fig. 1 ) explains how as an undergraduate at Iowa State University he was a summer student at Yerkes Observatory where he assisted Gerard Kuiper in work on his Photographic Lunar Atlas. Upon completing his degree, Dale went to graduate school at the University of Arizona with Kuiper where he worked on the IR spectroscopy of the lunar surface. After an eventful 1968 trip to Moscow via Prague, during which the Soviets invaded Czechoslovakia, Dale assumed a postdoc position with Vasili Moroz at the Sternberg Astronomical Institute and more observational IR astronomy. Upon returning to the United States and after a year at Arizona, Dale assumed a position at the University of Hawai’i that he held for 17 years. During this period Dale worked with others on thermal infrared determinations of the albedos of small bodies beyond the asteroid Main Belt, leading to the recognition that low‐albedo material is prevalent in the outer solar system that made the first report of complex organic solids on a planetary body (Saturn’s satellite Iapetus). After moving to Ames Research Center, where he works currently, he continued this work and became involved in many outer solar system missions. Dale has served the community through his involvement in developing national policies for science‐driven planetary exploration, being chair of the DPS 1990–1991 and secretary/treasurer for 1982–1985. He served as president of Commission 16 (Physics of Planets) of the IAU (2001–2003). He received the Kuiper prize in 2006.
Figure 1 Open in figure viewer PowerPoint Dale P. Cruikshank.  相似文献   

9.
Abstract— Mössbauer spectroscopy is a very useful tool for identifying ferric iron weathering products in meteorites because of the capability to quantify the relative amounts of ferric iron in them. Mössbauer measurements were made of 33 Antarctic H chondrites (predominately H5) and two paired Antarctic CR chondrites. The primary goals of this study are to determine if Mössbauer spectroscopy can be used to determine which phases are weathering in Antarctic meteorites and if the relative amounts of ferric iron correlate with terrestrial age. Determining which minerals are weathering in ordinary chondrites appears very difficult due to variations in composition for different ordinary chondrites of the same meteorite class and possible problems in preparing homogeneous samples. The analysis of the two paired CR chondrites appears to indicate that metallic iron is predominately weathering to produce ferric iron for this class of meteorite. No correlation is seen between the relative amounts of ferric iron and terrestrial age for ordinary chondrites. One Antarctic H5 chondrite (ALHA77294) with a short 14C age of 135 ± 200 years from the dating of interior carbonate weathering products does have a relatively low amount of ferric iron, which is consistent with this meteorite being exposed on the surface for a relatively short time.  相似文献   

10.
Abstract— The Brunflo fossil meteorite was found in the 1950s in mid‐Ordovician marine limestone in the Gärde quarry in Jämtland. It originates from strata that are about 5 million years younger than similar limestone that more recently has yielded >50 fossil meteorites in the Thorsberg quarry at Kinnekulle, 600 km to the south. Based primarily on the low TiO2 content (about 1.8 wt%) of its relict chromite the Brunflo meteorite had been tentatively classified as an H chondrite. The meteorite hence appears to be an anomaly in relation to the Kinnekulle meteorites, in which chromite composition, chondrule mean diameter and oxygen isotopic composition all indicate an L‐chondritic origin, reflecting an enhanced flux of meteorites to Earth following the disruption of the L chondrite parent body 470 Ma. New chondrule‐size measurements for the Brunflo meteorite indicate that it too is an L chondrite, related to the same parent‐body breakup. Chromite maximum diameters and well‐defined chondrule structures further show that Brunflo belongs to the L4 or L5 type. Chromites in recently fallen L4 chondrites commonly have low TiO2 contents similar to the Brunflo chromites, adding support for Brunflo being an L4 chondrite. The limestone in the Gärde quarry is relatively rich (about 0.45 grain kg−1) in sediment‐dispersed extraterrestrial chromite grains (>63 μm) with chemical composition similar to those in L chondrites and the limestone (1–3 grains kg−1) at Kinnekulle, suggesting that the enhanced flux of L chondrites prevailed, although somewhat diminished, at the time when the Brunflo meteorite fell.  相似文献   

11.
In this interview, John Wasson (Fig.  1 ) describes his childhood and undergraduate years in Arkansas and his desire to pursue nuclear chemistry as a graduate student at MIT. Upon graduation, John spent time in Munich (Technische Hochschule), the Air Force Labs in Cambridge, MA, and a sabbatical at the University of Bern where he developed his interests in meteorites. Upon obtaining his faculty position at UCLA, John established a neutron activation laboratory and began a long series of projects on the bulk compositions of iron meteorites and chondrites. He developed the chemical classification scheme for iron meteorites, gathered a huge set of iron meteorite compositional data with resultant insights into their formation, and documented the refractory and moderately volatile element trends that characterize the chondrites and chondrules. He also spent several years studying field relations and compositions of layered tektites from Southeast Asia, proposing an origin by radiant heating from a mega‐Tunguska explosion. Recently, John has explored oxygen isotope patterns in meteorites and their constituents believing the oxygen isotope results to be some of the most important discoveries in cosmochemistry. John also describes the role of postdoctoral colleagues and their important work, his efforts in the reorganization and modernization of the Meteoritical Society, his contributions in reshaping the journal Meteoritics, and how, with UCLA colleagues, he organized two meetings of the society. John Wasson earned the Leonard Medal of the Meteoritical Society in 1992 and the J. Lawrence Smith Medal of the National Academy in 2003.
Figure 1 Open in figure viewer PowerPoint John T. Wasson.
  • DS
  • John, thank you for letting me document your oral history. Let us start with my normal opening question, how did you get interested in meteorites?
  • JW
  • My Ph.D. research was in nuclear chemistry at MIT. Until late in my studies I thought I could be a nuclear chemist using the classical scientific method. That is, you gather data on a topic that seems interesting, you look for patterns in the data, and you write an interpretative paper that explains the data. I had learned, though, by going to Gordon Conferences, that this was not the way nuclear chemistry was being done. Nuclear chemists measured gamma ray energies as accurately as they could, they tried to fit these into energy levels diagrams, and then the nuclear physicists took over and interpreted the data. The nuclear physicists looked for the patterns in the energy‐level diagrams and made the models. That was not what I had in mind. But while I was at MIT, I heard lectures by Harold Urey, Hans Suess, and James Arnold. These were people whose backgrounds were not that different from mine and all three extolled the virtues of working on meteorites, and how you could learn neat things about how the solar system worked. That's a strength of MIT, exposure to neat ideas, and I credit the institution for doing this. So that was it. I was hooked.
  • DS
  • You have talked to us about how you became interested in meteorites, let's go back and talk about your precollege years.
  •   相似文献   

    12.
    Abstract— The Burnwell, Kentucky, meteorite fell as a single stone on 1990 September 4. The Burnwell meteorite has lower Fa in olivine (15.8 mol%), Fs in orthopyroxene (13.4 mol%), Co in kamacite (0.36 wt%), FeO from bulk chemical analysis (9.43 wt%), and Δ17O (0.51 ± 0.02%), and higher Fe, Ni, Co metal (19.75 wt% from bulk wet chemical analysis) than observed in H chondrites. The Burnwell meteorite plots on extensions of H-L-LL chondrite trends for each of these properties towards more reducing compositions than in H chondrites. Extensions of this trend have been previously suggested in the case of other low-FeO chondrites or silicate inclusions in the HE iron Netschaëvo, but interpretation of the evidence in these meteorites is complicated by terrestrial weathering, chemical disequilibrium or reduction. In contrast, the Burn-well meteorite is an equilibrated fall that exhibits no evidence for reduction. As such, it provides the first definitive evidence for extension of the H-L-LL ordinary chondrite trend beyond typical H values towards more reducing compositions.  相似文献   

    13.
    Abstract— The Rumuruti meteorite shower fell in Rumuruti, Kenya, on 1934 January 28 at 10:43 p.m. Rumuruti is an olivine-rich chondritic breccia with light-dark structure. Based on the coexistence of highly recrystallized fragments and unequilibrated components, Rumuruti is classified as a type 3–6 chondrite breccia. The most abundant phase of Rumuruti is olivine (mostly Fa~39) with about 70 vol%. Feldspar (~14 vol%; mainly plagioclase), Ca-pyroxene (5 vol%), pyrrhotite (4.4 vol%), and pentlandite (3.6 vol%) are major constituents. All other phases have abundances below 1 vol%, including low-Ca pyroxene, chrome spinels, phosphates (chlorapatite and whitlockite), chalcopyrite, ilmenite, tridymite, Ni-rich and Ge-containing metals, kamacite, and various particles enriched in noble metals like Pt, Ir, arid Au. The chemical composition of Rumuruti is chondritic. The depletion in refractory elements (Sc, REE, etc.) and the comparatively high Mn, Na, and K contents are characteristic of ordinary chondrites and distinguish Rumuruti from carbonaceous chondrites. However, S, Se, and Zn contents in Rumuruti are significantly above the level expected for ordinary chondrites. The oxygen isotope composition of Rumuruti is high in δ17O (5.52 ‰) and δ18O (5.07 ‰). Previously, a small number of chondritic meteorites with strong similarities to Rumuruti were described. They were called Carlisle Lakes-type chondrites and they comprise: Carlisle Lakes, ALH85151, Y-75302, Y-793575, Y-82002, Acfer 217, PCA91002, and PCA91241, as well as clasts in the Weatherford chondrite. All these meteorites are finds from hot and cold deserts having experienced various degrees of weathering. With Rumuruti, the first meteorite fall has been recognized that preserves the primary mineralogical and chemical characteristics of a new group of meteorites. Comparing all chondrites, the characteristic features can be summarized as follows: (a) basically chondritic chemistry with ordinary chondrite element patterns of refractory and moderately volatile lithophiles but higher abundances of S, Se, and Zn; (b) high degree of oxidation (37–41 mol% Fa in olivine, only traces of Fe, Ni-metals, occurrence of chalcopyrite); (c) exceptionally high Δ17O values of about 2.7 for bulk samples; (d) high modal abundance of olivine (~70 vol%); (e) Ti-Fe3+?rich chromite (~5.5 wt% TiO2); (f) occurrence of various noble metal-rich particles; (g) abundant chondritic breccias consisting of equilibrated clasts and unequilibrated lithologies. With Rumuruti, nine meteorite samples exist that are chemically and mineralogically very similar. These meteorites are attributed to at least eight different fall events. It is proposed in this paper to call this group R chondrites (rumurutiites) after the first and only fall among these meteorites. These meteorites have a close relationship to ordinary chondrites. However, they are more oxidized than any of the existing groups of ordinary chondrites. Small, but significant differences in chemical composition and in oxygen isotopes between R chondrites and ordinary chondrites exclude formation of R chondrites from ordinary chondrites by oxidation. This implies a separate, independent R chondrite parent body.  相似文献   

    14.
    D.W. Sears 《Icarus》1980,44(1):190-206
    The observations of G. F. Komovsky [Meteoritika21 (1961), 64–69] and A. Liener and J. Geiss (in Thermoluminescence of Geological Materials, Academic Press, New York, 1968), that the thermoluminescence (TL) sensitivity of meteorites correlates with their KAr age, have been confirmed using a suite of 22 ordinary chondrites. In order to interpret this observation, meteorite samples have been exposed to doses of α, β and γ radiation comparable with those experienced over the lifetime of the meteorites and given a dose of protons comparable to the total dose received from cosmic rays. There was no increase in TL sensitivity after these treatments, suggesting that, contrary to the ideas of earlier workers, the TL mechanism does not involve radiation damage. The TL sensitivity of meteorites is therefore time independent. On the other hand, samples of meteorite annealed in a furnace at temperatures between 450 and 1250°C for 1 hr suffered up to an order-of-magnitude decrease in TL sensitivity. Similarly, samples of meteorite artificially shocked to pressures of the order of 400 kbar suffered a comparable decrease in TL sensitivity. It is concluded that the correlation between TL sensitivity and K-Ar age is entirely a result of the low K-Ar age meteorites being shocked or reheated. Data on the thermal and mechanical histories of these meteorites, based on 40Ar?39Ar, metallographic, and X-ray diffraction studies, seem to be consistent with this finding.  相似文献   

    15.
    In the five years from June, 1967, to June, 1972, a total of 99 meteorites were found in Roosevelt County, New Mexico and in adjoining Curry County. Of this number, 74 were found by one man. The finds include two achondrites, one pallasite, one carbonaceous chondrite, and 95 chondrites. They appear to represent more than 50 separate meteorite falls. The finding of a large number of meteorites in a small area provides data for an estimate of the probable quantity and average size of the meteorite specimens reaching the earth. The problems involved in allocating a total of 17 available local place names among more than 50 meteorite falls are discussed.  相似文献   

    16.
    Abstract— In this review, we summarize the data published up to December 2001 on the porosity and density of stony meteorites. These data were taken from 925 samples of 454 different meteorites by a variety of techniques. Most meteorites have densities on the order of 3 to 4 g/cm3, with lower densities only for some volatile‐rich carbonaceous meteorites and higher densities for stony irons. For the vast majority of stones, porosity data alone cannot distinguish between different meteorite compositions. Average porosities for most meteorite classes are around 10%, though individual samples can range as high as 30% porosity. Unbrecciated basaltic achondrites appear to be systematically less porous unless vesicles are present. The measured density of ordinary chondrites is strongly controlled by the amount of terrestrial weathering the sample has undergone with porosities steadily dropping with exposure to the terrestrial environment. A theoretical grain density based on composition can model “pre‐weathered” porosities. The average model porosity for H and LL chondrites is 10%, while L chondrite model porosities average only 6%, a statistically significant difference.  相似文献   

    17.
    Tibooburra, a new meteorite find from western New South Wales, belongs to the Vigarano subgroup of the carbonaceous chondrites and, on the basis of its opaque mineralogy, appears to be oxidised. Petrological evidence suggests that, like the Allende meteorite, Tibooburra is a CV3 chondrite which has experienced greater metamorphic effects than other CV3 meteorites. Tibooburra has a bulk composition intermediate between the CO and less altered CV chondrites. This transitional nature is exhibited by several elements and is convincingly displayed by the multivariate techniques of cluster analysis and principal component analysis. Tibooburra thus resembles several other CV chondrites, such as Coolidge and Karoonda, which have been strongly metamorphosed. This group of meteorites is believed to have accreted early in the history of the Vigarano parent body and, as a result, contain greater quantities of high temperature Ca-Al-rich inclusions but less low temperature matrix and volatile phases than other CV chondrites. Furthermore, in these meteorites both the matrix and magnesium silicate phases appear to be more iron rich than those in later accreted meteorites. Subsequently, these deeper seated meteorites have undergone more pronounced thermal metamorphism than those located in shallower portions of the parent body.  相似文献   

    18.
    Abstract— Keil and Wilson (1993) proposed that, during partial melting of some asteroidal meteorite parent bodies, explosive pyroclastic volcanism accelerated S-rich Fe, Ni-FeS cotectic partial melts into space. These authors argued that this process was responsible for the S-depletion of many of the magmas from which the magmatic iron meteorites formed. This process only requires the presence of a few hundred to thousand ppm of volatiles in asteroids < ~100 km in radius. If the precursor materials of these magmatic iron meteorite groups were similar in composition to unequilibrated ordinary chondrites, then the volatile contents of the latter may be a measure of the potential effectiveness of the process. Analysis of volatile contents of seven unequilibrated ordinary chondrite falls by dynamic high-temperature mass spectrometry revealed that thousands of ppm of indigeneous volatiles, mostly CO, Cl, Na and S, are released at temperatures near the Fe, Ni-FeS cotectic melting temperature of ~980 °C. If these volatiles are largely retained in the asteroidal parent bodies until onset of partial melting, S depletion of the residual melt might have been achieved by ejection of S-rich partial Fe, Ni-FeS melts by pyroclastic volcanism.  相似文献   

    19.
    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives important representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original Solar System formation locations for different meteorite classes. To forge possible links between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-μm and 2-μm Geometric Band Centers and their Band Area Ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in four classes: H, L, LL and HED. For each NEO spectrum, we assign a set of probabilities for it being related to each of these four meteorite classes. Our NEO-meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. While the ν6 resonance dominates the delivery for all four meteorite classes, an excess (significant at the 2.1-sigma level) source region signature is found for the H chondrites through the 3:1 mean motion resonance. This results suggest an H chondrite source with a higher than average delivery preference through the 3:1 resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites.  相似文献   

    20.
    Shock‐induced features are abundantly observed in meteorites. Especially, shock veins, including high‐pressure minerals, characterize many kinds of heavily shocked meteorite. On the other hand, no high‐pressure phases have been yet reported from enstatite chondrites. We studied a heavily shocked EH3 chondrite, Asuka 10164, containing a vein, which comprises fragments of fine‐grained silicate and opaque minerals, and chondrules. In this vein, we found a silica polymorph, coesite. This is the first discovery of a high‐pressure phase in enstatite chondrites. Other high‐pressure polymorphs were not observed in the vein. The assemblages and chemical compositions of minerals, and the occurrence of coesite indicate that the vein was subjected to the high‐pressure and temperature condition at about 3–10 GPa and 1000 °C. The host also experienced heating for a short time under lower temperature conditions, from ~700 to ~1000 °C, based on the opaque minerals typical of EH chondrites and textural features. Although the pressure condition of the vein in this chondrite is much lower than those in the other meteorites, our results suggest that all major meteorite groups contain high‐pressure polymorphs. Heavy shock events commonly took place in the solar system.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号