首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryoturbated facies are found at the boundary between soil horizons and Cretaceous chalk. Several types of secondary calcite appear in soil horizons: orange coloured and rounded (partially dissolved) nodules, deeply coloured angular aggregates, transparent isolated rhombs and polycrystalline nodules, needles. The carbon and oxygen isotope compositions of these calcites are correlated: δ13C = 4.9δ18OPDB + 15.9End members of this correlation are the orange rounded nodules (δ13C ? + 8%., δ18O ? ?1.5‰) and the transparent angular polycrystalline nodules (δ13C ? ?13; δ18O ? ?6).Partially dissolved nodules have formed under periglacial climatic conditions. Crystallisation would have occurred under the following (equilibrium) environmental conditions: δ18OSMOW (soil solution) ?7, δ13C (gaseousCO2) ? ?5.2, t ? ?2°C. Soil solution was enriched in 18O by evaporation and atmospheric CO2 was enriched in 13C as compared to present day. Transparent polycrystalline nodules are compatible with present day environmental conditions: δ18O (soil solution) ranging from ?9 to ?4 and δ13C (soil CO2) ranging from ?24.5 to ?23. These nodules crystallize between May and October at soil temperatures ranging from 10 to 25°C, from evaporated soil solutions. Angular coloured aggregates may form under present day winter conditions for temperatures between 0 and 10°C. However they may also result from present accretion of fragments of periglacial nodules.All recent secondary calcite results from CO2 degassing and evaporation of soil solutions. Degassing is controlled by the gradient of CO2 partial pressure within the soil profile. During winter this gradient is low and the resulting calcite precipitation is not significant. During summer a large difference in pCO2 appears between the root zone and deep soil horizons. The degassing accounts for an increase of about 2‰ in δ13C of the total dissolved inorganic carbon and of the related solid carbonate. Evaporation is the main driving force for secondary calcite precipitation.  相似文献   

2.
The oxygen isotopic compositions of over 100 Archean clastic metasedimentary, felsic metavolcanic and gneissic rocks from selected areas within the Superior Province have been determined. δ18O values of low grade, immature clastic metasediments range from 8.0 to 13.3%. and hence are somewhat depleted in 18O relative to other clastic metasediments. The lower 18O content is attributed to the large proportion of unaltered rock fragments in the Archean metasediments. Felsic metavolcanics have a similar range of δ18O values (7.3 to 13.0%..δ18O values for the middle amphibolite facies Pakwash paragneiss (8.8–11.7%.) are higher than those determined for the amphibolite to granulite facies Twilight paragneiss (7.3–9.2%.). Archean orthogneisses such as the Clay Lake gneiss (7.0–9.0%.), the Cedar Lake gneiss (7.4–8.7%.) and the Footprint gneiss (5.9-8.8%.) have δ18O values similar to those of the Twilight paragneiss. Therefore, at least at metamorphic grades higher than middle amphibolite facies, Archean metasedimentary gneisses may have δ18O values that are indistinguishable from those of Archean orthogneisses, and hence are no longer isotopically recognizable as metasedimentary rocks.  相似文献   

3.
Stable isotope geochemistry of deep sea cherts   总被引:1,自引:0,他引:1  
Seventy four samples of DSDP recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. δ18O of chert ranges between 27 and 39%. relative to SMOW, δ18O of porcellanite—between 30 and 42%.. The consistent enrichment of opal-CT in porcellanites in 18O with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases.δ18O of deep sea cherts generally decrease with increasing age, indicating an overall cpoling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas and Savin, 1975) indicates the possibility of δ18O in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of δ18O values, increasing diagenesis being reflected in a lowering of δ18O. Drusy quartz has the lowest δ18O values.On-land exposed cherts are consistently depleted in 18O in comparison to their deep sea time equivalent cherts.Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt %. δD of this water ranges between ?78 and ?95%. and is not a function of δ18O of the cherts (or the temperature of their formation).  相似文献   

4.
The volcano-sedimentary sequence at the Raul mine, central Peru, consists of andesitic volcanics, graywackes, and siltstones, and has been metamorphosed to the upper greenschist-lower amphibolite facies at temperatures of 400–500°C. Isotopic data (O and H) have been collected from: (a) quartz and magnetite from stratiform ores, (b) amphiboles from amphibolite units that host stratiform ores, (c) calcite from late veins, (d) detrital quartz from graywackes, and (e) whole rocks.Interunit differences in quartz and magnetite δ18O values suggest that these minerals have resisted isotopic exchange during metamorphism, and that quartz-magnetite isotopic temperatures (380–414°C) represent primary formational temperatures. Calculated δ18O values of water in equilibrium with quartz and magnetite range from 9.1 to 12.6%..Amphibole δ18O and δD values show no interunit differences and suggest that the amphiboles have exchanged isotopes with a large metamorphic fluid reservoir. Calculated δ18OH2O and δDH2O values range from 8 to 12%. and ?3 to +42%., respectively.δ18OH2O values calculated from δ18O calcite and fluid inclusion filling temperatures range from 7.5 to 10%.. Water extracted from fluid inclusions in calcite has a δD value of ?20%..δ18O values of metamorphosed graywackes and volcanic sediments are not atypical, but andesitic lavas are 18O-rich (8–10%.) compared to normal andesites.Waters involved in ore deposition, metamorphism, and late vein formation at Raul are all thought to have a common source, principally seawater. The δ18OH2O and δDH2O values could be produced by evaporation of seawater, shale ultrafiltration, and isotopic exchange with host rocks during deep circulation through the volcano-sedimentary pile.A model is proposed whereby coastal ocean water is restricted from the open sea by volcanic island arcs, and subsequently undergoes evaporation. Circulation of this water is initiated by heat associated with seafloor volcanism. 18O-enrichment in andesites may be produced by isotopic exchange with high 18O waters at elevated temperatures and sufficiently high water/rock ratios.  相似文献   

5.
Dual isotopic analysis of nitrate (15N/14N and 18O/16O) is increasingly used to investigate the environmental impacts of human-induced elevated atmospheric nitrate deposition. In forested ecosystems, the nitrate found in surface water and groundwater can originate from two sources: (1) atmospheric deposition, and (2) nitrate produced from nitrification in forest soils (microbial nitrate). Application of the dual nitrate isotope technique for determining the relative importance of nitrate sources in forested catchments requires knowledge of the isotopic composition of microbial nitrate. We excluded precipitation inputs to three zero-tension lysimeters installed below the F-horizon (Oe) at the Turkey Lakes Watershed (TLW) in order to measure the isotopic composition of microbial nitrate produced in situ. To our knowledge, this is the first in situ study of the isotopic composition of microbial nitrate in forest soils. Over a 2-week period, nitrate produced by nitrification was periodically flushed to the lysimeters by watering the area with a nitrogen-free solution. Nitrate produced in the forest floor had δ18O values ranging from +3.1‰ to +10.1‰ with a mean of +5.2‰. These values were only slightly higher than from the expected value of +1.0‰ calculated for chemolithoautotrophic nitrification, which depends on the δ18O of available O2 and H2O. In addition to nitrate, we also collected soil gas to determine if soil respiration and O2 diffusion affected soil gas δ18O-O2, which is typically assumed to be identical to atmospheric O2 (+23.5‰) when calculating microbial nitrate δ18O values. No significant difference in δ18O-O2 from atmospheric O2 was found in forest soils to a depth of 55 cm, and therefore 18O-enrichment of soil gas O2 could not explain the modest enrichment of nitrate 18O. Evaporative 18O-enrichment of soil water available to nitrifiers in the forest floor is a plausible mechanism for slightly elevated nitrate δ18O values. However, the observed nitrate δ18O values could also be explained by a minor contribution of nitrate from heterotrophic nitrifiers. The δ15N of nitrate produced ranged from −10.4 to −7.3‰ and, as expected, was depleted in 15N relative to soil organic nitrogen. Microbial nitrate produced in the forest floor was also significantly depleted in 15N relative to microbial nitrate exported in groundwater and headwater streams at the TLW. We hypothesize that 15N-depleted forest floor nitrate is not detected in groundwaters largely because of: (1) the immobilization of forest floor nitrate in the mineral soil and (2) the mixing of the remaining forest floor nitrate with nitrate generated in the mineral soil, which is expected to have higher δ15N values. This study demonstrates that current methods of calculating a priori the δ18O of microbial nitrate provide a reasonable value for nitrate produced by nitrification at the TLW.  相似文献   

6.
Six authigenic feldspars and three detrital feldspars in limestones and dolostones of Eocene to Preeambrian ages were analyzed for their O18O16 content. The difference in δO18 between the authigenic feldspars (δO18range = + 18.2 to + 24.7%.) and carbonate host rocks, both limestones and dolostones, was found to be ?0.5 to ?1.4%. Detrital feldspars (δO18 = + 11.2, + 22.5 and + 17.0%.) exhibit Δfeldsparcarbonate values of ?12.0, ?2.4 and ?1.6‰, respectively, and appear to have undergone increased isotopic exchange as a function of decreased grain size under solid-state conditions.  相似文献   

7.
The Kiglapait layered intrusion is the first major intrusion found to have all whole rock and calculated liquid δ18O values close to a normal uncontaminated gabbroic value of 6.0. The intrusion experienced no detectable oxygen isotope exchange with its surrounding rocks and cooling of the magma was conductive. The δ18O values of average whole rocks vary smoothly from 6.0 at the base of the Lower Zone to 6.3 at the top of the Upper Zone. The calculated liquid δ18O values lie practically superimposed on the whole rock trend. The whole-rock data and the modelled δ18O of the magma and cumulates rigorously demonstrate that the effect of incoming cumulus phases such as magnetite and augite on the δ18O of the liquid and rocks during fractional crystallization is negligible. The cancelling effects of complementary modal variations among the mafic mineral phases and feldspar, keep the δ18O of the whole rocks constant to within ±0.1 %.. The minor change in δ18O that does occur with fractionation is consistent with the enrichment of residual liquids in feldspar component and the increasing fractionation factor δ Liquid-Fsp with falling temperature.The δ18O values of the country rocks bracket the estimated δ18O of the Kiglapait magma. Modelling with oxygen isotopes indicates that contamination of the intrusion, indicated by published radiogenic Sr and Nd isotopic data, was minor. The most probable contaminant had δ18O?7.7 and the contamination most likely occurred at >99% solidified. Subsolidus oxygen isotope exchange with an external source appears to have been very minor.  相似文献   

8.
Radiocarbon and 230Th-234U dates of calcic horizons from calciorthid soil profiles in the Mojave Desert were used to calculate the rate of deposition of pedogenic CaCO3. A major period of CaCO3 deposition appears to have occurred about 20000 yBP forming calcic horizons below 100-cm depth during a climatic regime with greater effective rainfall than in the present. The overall rate of deposition has been 1.0 to 3.5 g CaCO3/m2/yr during soil formation. This rate is consistent with present-day rates, assuming that the atmospheric deposition of Ca limits the process. Stable isotope ratios in calcic horizons indicate that CaCO3 precipitated from a soil environment with CO2 of ? 15.5%. 13C12C (vs. PDB) and H2O of + 2.0%. 18O16O (vs. SMOW). These values suggest that CaCO3 precipitates when seasonal drought simultaneously lowers soil pore pCO2 and enriches soil water 18O by evaporation. The role of soil calcic horizons in the global geochemical cycle of carbon is discussed.  相似文献   

9.
Stable SO4 isotopes (δ34S-SO4 and δ18O-SO4), and more occasionally δ15N-NO3 were studied in groundwater from seven hard-rock aquifer catchments. The sites are located in Brittany (France) and all are characterized by intensive agricultural activity. The purpose of the study was to investigate the potential use of these isotopes for highlighting the fate of both SO4 and NO3 in the different aquifer compartments. Nitrate-contaminated groundwater occurs in the regolith; δ34S fingerprints the origin of SO4, such as atmospheric deposition and fertilizers, and δ18O-SO4 provides evidence of the cycling of S within soil. The correlation between the δ18O-SO4 of sulfates and the δ15N-NO3 of nitrates suggests that S and N were both cycled in soil before being leached to groundwater. Autotrophic and heterotrophic denitrification was noted in fissured aquifers and in wetlands, respectively, the two processes being distinguished on the basis of stable SO4 isotopes. During autotrophic denitrification, both δ34S-SO4 and δ18O-SO4 decrease due to the oxidation of pyrite and the incorporation of O from the NO3 molecule in the newly formed SO4. Within wetlands, fractionation occurs of O isotopes on SO4 in favour of lighter isotopes, probably through reductive assimilation processes. Fractionation of S isotopes is negligible as the redox conditions are not sufficiently reductive for dissimilatory reduction. δ34S-SO4 and δ18O-SO4 data fingerprint the presence of a NO3-free brackish groundwater in the deepest parts of the aquifer. Through mixing with present-day denitrified groundwater, this brackish groundwater can contribute to significantly increase the salinity of pumped water from the fissured aquifer.  相似文献   

10.
《Applied Geochemistry》1997,12(2):163-174
Oxygen isotopic compositions of weathering goethite pseudomorphs after pyrite in the lateritic profile of Yaou, French Guiana, were measured by laser fluorination. The laterite at Yaou is composed of a 25 m thick saprolite overlain by a 3 m thick latosol. Petrographic observations indicate that the pseudomorphic replacement of pyrite by goethite occurs at or near the weathering front and is complete. The goethite pseudomorphs are essentially devoid of Al and are progressively dissolved and partially replaced by a microcrystalline plasma of kaolinite and goethite in the upper horizons (latosol) of the profile.The laser technique used in this study permitted the determination of the δ18O value of individual grains of goethite and the investigation of grain-to-grain variation within a single sample (horizon) as well as vertical variation with depth. In the latosol, the goethite δ18O values range from 0.8 to 3.2%‰ and exhibit significant grain-to-grain and vertical variation. This most likely reflects undetected intragrain contamination with microcrystalline kaolinite. In the saprolite, the goethite δ18O values are consistent, ranging from 1.0 to 1.8%‰ between 3 and 18 m depth, and from 2.5 to 3.3‰ between 23 m depth and the weathering front at 28 m. Oxygen isotope compositions of present groundwater, “soil water” and rainfall at Yaou were also measured, and compared with calculated isotopic compositions for goethite-forming waters. Goethite pseudomorphs in the lower part of the saprolite are in isotopic equilibrium with present groundwater, indicating that they may be forming today or that they formed in the recent past under climatic conditions similar to present conditions. In contrast, goethite pseudomorphs found higher in the profile are not in isotopic equilibrium with present water but with a water depleted in18O by ≈ 1.50% relative to present groundwater. It is suggested that these low-δ18O pseudomorphs are probably older and formed under different paleoclimatic conditions, at a time when climatic regimes were possibly more monsoonal than today. This is in agreement with models of climatic evolution derived from pedological considerations.The results of this study suggest that goethite pseudomorphs in ancient saprolites may preserve their original O isotopic composition acquired at the weathering front, and may, therefore, be used as indicators of changes in weathering-climatic conditions during the evolution of a profile.  相似文献   

11.
The isotopic composition of ancient wood may be a useful archive of some climatic or geochemical conditions of the past, but presently there are many uncertainties that constrain such interpretations. We sampled naturally growing, predominantly native trees in forested regions of North America and the Caribbean to evaluate the strength of the relationships among cellulose δ18O (δ18Ocel), relative humidity (RH), precipitation δ18O (δ18Oppt), and mean annual temperature (MAT) at the continental scale, and the general range of variability in δ18Ocel associated with site hydrologic conditions and species differences. We found up to 4‰ differences among different species growing at the same site, that conifer cellulose at a site is more enriched than angiosperm cellulose by 1.5‰ (p < 0.001), and that differences in landscape position, reflecting differing access to the water table, produced differences of <1‰ in δ18Ocel. At the continental scale, δ18Ocel was strongly influenced by modeled δ18Oppt (R2 = 0.80, p < 0.001). Average summer minimum RH (RHmin) combined with δ18Oppt explained more of the variability (R2 = 0.93, p < 0.001) in δ18Ocel across North American and Caribbean forests. MAT and δ18Ocel were also strongly correlated across North America (R = 0.91 and 0.95, p < 0.001, for angiosperms and conifers, respectively). The difference between δ18Oppt and δ18Ocel is not constant (varying from 35-44‰) and is inversely correlated with δ18Oppt. The relationships among δ18Oppt, RHmin, δ18Ocel, and MAT established for North America and the Caribbean applied reasonably well when δ18Ocel was used to estimate MAT and δ18Oppt in Asia, Europe, and South America, but there were important exceptions. The most accurate predictions of MAT and δ18Oppt from δ18Ocel require RHmin. Predictions of δ18Oppt and MAT made from δ18Ocel alone produced errors of up to 8‰ and 16 °C, respectively.  相似文献   

12.
《Applied Geochemistry》1995,10(2):161-173
The isotope compositions of sulfate in bulk precipitation near Munich (Germany) and of seepage water and soil sulfate in five acid forest soils representative of southern Germany were determined in order to ascertain the sources and dynamics of sulfur. While the δ34 S-values of inorganic sulfate in soil solution and solid phases were found to be nearly identical to those of precipitation sulfate, a depletion of several per mil was observed for the δ18 O-values of sulfate within the uppermost 30 cm of the investigated soils. Mineralization of carbon-bonded sulfur to SO42− in the forest floor and humic mineral soil horizons is the only known process which can explain the observed shifts in δ18Osulfate. The fact that this18O-depleted sulfate recharges the groundwater under forests must be considered, when sulfur and oxygen isotope data of sulfate are used for interpretations of the past geochemistry of groundwater systems.Since the δ34S-values of precipitation sulfate were barely altered during percolation through the soils, sulfate mobilities were inferred from a lysimeter experiment with undisturbed soil cores from the same sites, using the stable isotope composition of the irrigation sulfate as a tracer. Fifteen cores of each of the five forest soils, were repeatedly irrigated over 20 months with34S- and18O-enriched sulfate in three different treatments (35, 63, and 131 kg S ha−1 respectively). Despite the fact that the mean residence time of the seepage water was of the order of only a few months, the throughput of irrigation sulfate did not exceed 34% for all soils and irrigation treatments during the experiment. The low recovery of irrigation sulfate in the seepage water implies mean residence times for sulfur in the uppermost 60 cm of the forest soils of the order of decades, much longer than previously suggested.  相似文献   

13.
14.
Fluid inclusions found trapped in speleothems (cave deposited travertine) are interpreted as samples of seepage water from which enclosing calcium carbonate was deposited. The inclusions are assumed to have preserved their D/H ratios since the time of deposition. Initial 18O/16O ratios can be inferred from δD because rain- and snow-derived seepage waters fall on the meteoric water line (δD = 8δ18O + 10). Estimates of temperature of deposition of the carbonate can be calculated from inclusion D/H ratios and δ18O of enclosing calcite in Pleistocene speleothems. For most speleothems investigated (0–200,000 yr old) δ18O of calcite appears to have decreased with increasing temperature of deposition indicating that the dominant cause of climate-dependent change in δ18O of calcite was the change in Kcw, the isotope fractionation equilibrium constant, with temperature; δ18O of meteoric precipitation generally increased with increasing temperature, but not sufficiently to compensate for the decrease in Kcw.  相似文献   

15.
Stable isotope data of precipitation (δ18Op and deuterium excess), drip water (δ18Od), and modern calcite precipitates (δ18Oc and δ13Cc) from Yongxing Cave, central China, are presented, with monthly sampling intervals from June 2013 to September 2016. Moderate correlations between the monthly variation of δ18Op values (from ??11.5 to ??0.7‰) and precipitation amount (r = ??0.59, n?=?34, p?<?0.01) and deuterium excess (r?=?0.39, n?=?31, p?<?0.01) imply a combined effect of changes in precipitation amount and atmospheric circulation. At five drip sites, the δ18Od values have a much smaller variability (from ??9.1 to ??7.5‰), without seasonal signals, probably a consequence of the mixing in the karst reservoir with a deep aquifer. The mean δ18Od value (??8.4‰) for all drip waters is significantly more negative than the mean δ18Op value (??6.9‰) weighted by precipitation amount, but close to the wet season (May to September) mean value (??8.3‰), suggesting that a threshold of precipitation amount must be exceeded to provide recharge. Calculation based on the equilibrium fractionation factor indicates that the δ18Oc values are not in isotopic equilibrium with their corresponding drip waters, with a range of disequilibrium effects from 0.4 to 1.4‰. The δ18Oc and δ13Cc values generally increase progressively away from the locus of precipitation on glass plates. The disequilibrium effects in the cave are likely caused by progressive calcite precipitation and CO2 degassing related to a high gradient of CO2 concentration between drip waters and cave air. Our study provides an important reference to interpret δ18Oc records from the monsoon region of China.  相似文献   

16.
A method has been developed for extraction of hydroxyl oxygen from hydroxyl-bearing silicate minerals for oxygen isotopic analysis.The δO18 of oxygen of the OH groups is significantly different from that in the rest of the mineral structure. The isotopic fractionation between the two types of sites has the potential to be a sensitive geothermometer.Several δO18 values were obtained for oxygen of the OH attached to different silicate structures as well as for two muscovite samples with quantitatively estimated different temperatures of formation.The 1000 ln α (mineral-OH) values ranged from 5.2%. for muscovite to about 12.6%. for kaolinite and chlorite.  相似文献   

17.
During ocean-floor hydrothermal metamorphism of a 225 m thick allochthonous Jurassic sequence of ophiolitic pillow lavas and underlying material in E. Liguria, Italy, the rocks were hydrated, enriched in 18O and oxidised. H2O+ contents increased from ~0.3 to 3.8 wt.%, δ18O values increased from ~ +6‰ to values as high as +13.2‰, and (Fe2O3FeO1) increased from 0.18 to ratios as high as 1.0. Both δ18O values and oxidation ratios decrease in the original direction of increasing depth. Pillow margins are consistently more enriched in 18O and are more oxidised than cores.These observations are qualitatively interpreted in terms of a non-isothermal, heterogeneous reaction model of interaction of basalt with oxygen-bearing sea water during flow through the packed bed of pillows. Fluid flow approximated undirectional downward motion, and occurred in the recharge part of a cycle of single pass convection. Mass transfer through the pile was by flow (infiltration metasomatism), whereas intra-pillow mass transfer was diffusional. Oxygen isotope exchange and oxidation did not occur under conditions of perfect incremental equilibrium. An integrated bulk volumetric water/rock ratio of ~2 × 103:1 is estimated from the oxidation profile.  相似文献   

18.
We investigated the oxygen isotope composition (δ18O) of shell striae from juvenile Comptopallium radula (Mollusca; Pectinidae) specimens collected live in New Caledonia. Bottom-water temperature and salinity were monitored in-situ throughout the study period. External shell striae form with a 2-day periodicity in this scallop, making it possible to estimate the date of precipitation for each calcite sample collected along a growth transect. The oxygen isotope composition of shell calcite (δ18Oshell calcite) measured at almost weekly resolution on calcite accreted between August 2002 and July 2003 accurately tracks bottom-water temperatures. A new empirical paleotemperature equation for this scallop species relates temperature and δ18Oshell calcite:
t(°C)=20.00(±0.61)-3.66(±0.39)×(δ18Oshell calcite VPDB18Owater VSMOW)  相似文献   

19.
A 7.6-m core recovered from Lough Inchiquin, western Ireland provides evidence for rapid and long-term climate change from the Late Glacial period to the Mid-Holocene. We determined percentage of carbonate, total organic matter, mineralogy, and δ18Ocalcite values to provide the first high-resolution record of climate variability for this period in Ireland. Following deglaciation, rapid climate amelioration preceded large increases in GISP2 δ18Oice values by ∼2300 yr. The Oldest Dryas (15,100 to 14,500 cal yr B.P.) Late Glacial event is documented in this record as a decrease in δ18Ocalcite values. Brief warming at ∼12,700 cal yr B.P. was followed by characteristic Younger Dryas cold and dry climate conditions. A rapid increase in δ18Ocalcite values at ∼10,500 cal yr B.P. marked the onset of Boreal warming in western Ireland. The 8200 cal yr B.P. event is represented by a brief cooling in our record. Prior to general warming, a larger and previously undescribed climate anomaly between 7300 and 6700 cal yr B.P. is characterized by low δ18Ocalcite values with high-frequency variability.  相似文献   

20.
The chemistry and budgets of atmospheric gases are constrained by their bulk stable isotope compositions (e.g., δ13C values), which are based on mixing ratios of isotopologues containing one rare isotope (e.g., 16O13C16O). Atmospheric gases also have isotopologues containing two or more rare isotopes (e.g., 18O13C16O). These species have unique physical and chemical properties and could help constrain origins of atmospheric gases and expand the scope of stable isotope geochemistry generally. We present the first measurements of the abundance of 18O13C16O from natural and synthetic sources, discuss the factors influencing its natural distribution and, as an example of its applied use, demonstrate how its abundance constrains the sources of CO2 in the Los Angeles basin. The concentration of 18O13C16O in air can be explained as a combination of ca. 1 enrichment (relative to the abundance expected if C and O isotopes are randomly distributed among all possible isotopologues) due to enhanced thermodynamic stability of this isotopologue during isotopic exchange with leaf and surface waters, ca. 0.1 depletion due to diffusion through leaf stomata, and subtle (ca. 0.05) dilution by 18O13C16O-poor anthropogenic CO2. Some air samples are slightly (ca. 0.05) lower in 18O13C16O than can be explained by these factors alone. Our results suggest that 18O13C16O abundances should vary by up to ca. 0.2 with latitude and season, and might have measurable sensitivities to stomatal conductances of land plants. We suggest the greatest use of Δ47 measurements will be to “leverage” interpretation of the δ18O of atmospheric CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号