首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six C2M chondrites (Boriskino, Cold Bokkeveld, Erakot, Essebi, Haripura and Santa Cruz) and the C2R chondrite Al Rais were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Sn, Te, Tl, U, and Zn. Abundances (relative to Cl chondrites) show a systematic dependence on volatility, apparently reflecting volatile loss during formation of chondrules and other high-T components. Elements of nebular condensation temperature (Tc) > 1200 K are undepleted, those of Tc < 700 K are depleted by a constant factor (0.482 ± 0.049 for C2M's) and elements of intermediate volatility are depleted by intermediate factors. The abundances do not “tend to fall monotonically as a function of [Tc],” as previously claimed by Wai and Wasson (1977) for a more restricted temperature range. For meteorites that have suffered little aqueous alteration (Mighei, Murchison, Murray), the mean abundance of volatiles agrees with the matrix content, but for the more altered meteorites, matrix contents are 20–30% higher. Only a few meteorites deviate appreciably from the mean abundance pattern. Al Rais, a C2R chondrite with a significant metal content, is systematically lower in 12 volatiles, but is enriched in Ni and Pd. Haripura and Erakot are enriched in Bi and Tl, possibly from the late condensate, mysterite.  相似文献   

2.
Six C1 chondrite samples and a C2 xenolith from the Plainview H5 chondrite were analyzed by radiochemical neutron activation for the elements Ag, Au, Bi, Br, Cd, Ce, Cs, Eu, Ge, In, Ir, Lu, Nd, Ni, Os, Pd, Pt, Rb, Re, Sb, Se, Sn, Tb, Te, Tl, Yb, and Zn. The data were combined with 9 earlier analyses from this laboratory and examined for evidence of chemical fractionation in C1 chondrites.A number of elements (Br, Rb, Cs, Au, Re, Os, Ni, Pd, Sb, Bi, In, Te) show small but correlated variations. Those of the first 8 probably reflect hydrothermal alteration in the meteorite parent body, whereas those of Sb, Bi, In, and Te may at least in part involve nebular processes. Br and Au show systematic abundance differences from meteorite to meteorite, which suggests hydrothermal transport on a kilometer scale. The remaining elements vary from sample to sample, suggesting transport on a centimeter scale.There is no conclusive evidence for nebular fractionation affecting C1 's. Though C1 chondrites have lower ZrHf and IrRe ratios than do other chondrite classes, these ratios vary in other classes, suggesting that those classes rather than C1's are fractionated. Three fractionation-prone REE—Ce, Eu, and Yb have essentially the same relative abundances in C1's and all other chondrite classes, and hence apparently are not fractionated in C1's. We did not confirm the large Tb and Yb variations in C1's reported by other workers.We present revised mean C1 abundances for 35 elements, based on the new data and a critical selection of literature data. Changes are generally less than 10%, except for Br, Rb, Ag, Sb, Te, Au, and the REE.The Plainview C2 xenolith has normal trace element abundances, except for 3 elements falling appreciably above the C2 range: Rb, Cs, and Bi. Hydrothermal alteration may be the reason for all 3, though nebular fractionation remains a possibility for Bi.  相似文献   

3.
We have attempted to clarify the nature of “mysterite”, a material that had been postulated to explain the overabundance of Tl, Bi and Ag in certain chondrites. Four dark clasts and a vein sample from the H6 chondrite Supuhee were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Rb, Re, Sb, Se, Te, Tl and Zn. One of the clasts is enriched in all volatile elements, while the other 4 samples are enriched only in the siderophile volatiles Ag, Bi and Tl. The enrichments range up to 100 times typical H6 chondrite abundances. The proportions of Ag, Bi, Tl suggest the presence of at least two, Tl-rich and Tl-poor, varieties of mysterite (TlBi = 7.2 and <0.1). The former seems to dominate in Supuhee and Krymka, and the latter in Mezö-Madaras. Apparently mysterite is a late condensate from the solar nebula that collected volatiles left behind by earlier generations of chondrites. It was incorporated in Supuhee and perhaps in other chondrites (mainly of low petrologic types) during brecciation events.  相似文献   

4.
Three of the most highly metamorphosed meteorites of their respective classes, Shaw (LL7), Karoonda (C5), and Coolidge (C4), were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Comparison with data by Lipschutz and coworkers on artificially heated primitive meteorites shows that the natural metamorphism of meteorites cannot have taken place in a system open to volatiles. Shaw, metamorphosed at 1300°C for >106 yr, is less depleted in In, Bi, Ag, Te, Zn, and Tl than Krymka heated at 1000°C for 1 week. Karoonda, metamorphosed at 600°C for many millennia, is less depleted in Bi and Tl than Allende heated at 600°C for 1 week.Data on primordial noble gases also show that the volatile-element patterns of ordinary and carbonaceous chondrites were established by nebular condensation, and changed little if at all during metamorphism. For enstatite chondrites, the evidence is still incomplete, but seems to favor a nebular origin of the volatile pattern.The general constancy of Tl/Rb, Tl/Cs and Tl/U ratios in terrestrial and lunar rocks suggests that loss of volatile metals such as Tl is rare during normal magmatism or metamorphism. Only impact melts show such loss with any frequency.  相似文献   

5.
We have analyzed 10 H-chondrites for 20 trace elements, using RNAA. The meteorites included 4 of petrologic type 4 and 2 each of types 3, 5 and 6.The data show that H-chondrites are not isochemical. H3's are depleted by some 10% not only in Fe (Dodd, 1976), but also in the siderophiles Os, Re, Ir, Ni, Pd, Au, and Ge. Moreover, the abundance pattern of siderophiles varies systematically with petrologic type. As similar fractionations of REE have been observed by Nakamura (1974), it appears that both the proportions and compositions of the main nebular condensates varied slightly during accretion of the H-chondrites. Thus the higher petrologic types are independent nebular products, not metamorphosed descendants of lower petrologic types.Abundances of highly volatile elements (Cs, Br, Bi, Tl, In, Cd, Ar36) correlate with petrologic type, declining by ≤ 10?3 from Type 3 to Type 6. The trends differ from those for artificially heated Type 3's (Ikramuddinet al., 1977b; Herzoget al., 1979), but agree passably with theoretical curves for nebular condensation. Apparently the low volatile contents of higher petrologic types are a primary feature, not the result of metamorphic loss.The mineralogy of chondrites suggests that they accreted between 405 K (absence of Fe3O4) and 560 K (presence of FeS), and the abundances of Tl, Bi, and In further restrict this interval to 420–500 K. Accretion at 1070 ± 100 K, as proposed by Hutchisonet al. (1979, 1980), leads to some extraordinary problems. Volatiles must be injected into the parent body after cooling, which requires permeation of the body by 1011 times its volume of nebular gas. This process must also achieve a uniform distribution of the less volatile elements (Rb, Cu, Ag, Zn, Ga, Ge, Sn, Sb, Se, F), without freezeout in the colder outer layers.Factor analysis of our data shows 3 groupings: siderophiles (Os, Re, Ir, Ni, Pd, Au, and Ge), volatiles (Ag, Br, In, Cd, Bi, and Tl) and alkalis (Rb and Cs). The remaining 5 elements (U, Zn, Te, Se, and Sb) remain unassociated.  相似文献   

6.
Seventeen trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, U, Zn) were analyzed by radiochemical neutron activation and 13 other elements (Ce, Co, Cr, Eu, Fe, Hf, La, Lu, Na, Sc, Sm, Tb, Yb) by instrumental neutron activation in a total of 12 rocks from the layered anorthositic complex at Fiskenaesset, West Greenland and in the plagioclase-rich unbrecciated eucrite, Serra de Magé.Garnet anorthosite 84428, which has an unusually sodic plagioclase, is spectacularly enriched in Cs, K, Rb. Tl and, to a lesser degree, Te. This appears to be the result of later metasomatism and not a reflection of fractionation trends within the anorthositic complex. For the remaining Fiskenaesset rocks, a factor analysis yields 5 principal factors for linear data for 22 elements and 6 factors for data transformed (log, 3√, √) to give approximately normal distributions. Linear correlations are controlled by high values, whereas the logarithmic transform increases the influence of the lowest values. Enrichment of several elements in chromitite 132022 underlies linear Factor 1. Six of these elements Co, Cr, Fe, Ir, Ni, Zn and possibly Re are probably hosted by chromite. In other zones of the intrusion, different fractionation trends may be more important, since in the transformed analysis these elements divide between Factor 1 (Co, Zn, Ni, Fe) and Factor 4 (Ir, Cr and also Au). Linear Factor 2 reflects the strong mutual correlation between Tl, Rb and An, the anorthite content of plagioclase. Transformed Factor 3 emphasizes the anticorrelation of Na and Sm with An. The positive correlations of Cs, U and Ge (linear Factor 3; transformed Factor 2) are largely due to their concentration in later crystallizates, but enrichment in lower zone gabbros of high An content perhaps indicates concentration in minor or accessory cumulate minerals. Flat chondrite-normalized rare earth element patterns in several anorthosites (except for a small positive Eu anomaly) suggests that the Fiskenaesset magma was relatively unfractionated.Factor 4 (linear) and Factor 5 (transformed) reflects the geochemical coherence of Se and Te. The sympathetic enrichment of Sb and Cd in 3 rocks, resulting in Factor 5 (linear) and Factor 6 (transformed) may be due to the lack of a suitable Zn sulfide host for Cd.In 3 rocks of true anorthosite composition, 8 volatile elements show rather constant abundance when normalized to Cl chondrites (mean 4.2 ± 0.4% Cl), possibly suggesting that volatile-rich material was accreted late in the Earth's formation, perhaps after core segregation. These anorthosites are higher than lunar anorthosite 15415 by a factor of 58 ± 9 in volatile elements. Siderophile and chalcophile elements are much more variable in Cl-normalized abundances in both lunar and terrestrial anorthosites, but surprisingly give somewhat similar Earth/Moon abundance ratios.Volatile elements in terrestrial oceanic basalts and lunar mare basalts are not as uniformly abundant as in anorthosites. but nevertheless yield a similar Earth/Moon ratio of 44 ± 8.Volatile elements in Serra de Magé are more abundant than in lunar anorthosites, but lower than in terrestrial equivalents, averaging (3.6 ± 0.8) × 10?3C1.  相似文献   

7.
Carbonaceous vein separates from Kenna and Haverö, as well as bulk Kenna, were analyzed by RNAA for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Pd, Os, Rb, Re, Sb, Se, Te, Tl. U, and Zn. The data are reviewed together with four earlier Chicago analyses of bulk ureilites. Linear regressions confirm the presence of two metal components, with the following Cl-normalized ratios: Ir/Ni = 14.6, ≤ 1; Ge/Ni = 5.4, 2.4; Au/Ni = 2.3, 0.9. The high-Ir component is enriched in vein separates and hence belongs to veins; the lowIr component belongs to the ultramafic rock. Vein material is enriched in all elements analyzed by us except Zn, and accounts for most of the C, noble gases, and presumably siderophiles in the meteorite. Most of the properties of ureilites apparently can be explained by the cumulate model of Berkley et al. (1980), with certain modifications. Comparison of ureilites with three other ultramafic rocks from different planets (Earth's mantle, lunar dunite, and Chassigny) suggests that the ureilite parent body had a primitive chondritic composition, similar to C3V chondrites but richer in metal and carbon. It melted, causing depletion of incompatibles to a mean abundance of ~0.02 × Cl and incomplete segregation of metal, FeS, and C. Fractional crystallization or melting of metal in the presence of S and C apparently can explain the fractionations of Ir, Re, Ni, Au, and perhaps Ge, obviating the need for extraneous sources of vein metal or unusual parent-body compositions. Noble gases from the parent material may have been retrapped in carbon during magmatism, provided the system was closed.  相似文献   

8.
The 16 trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl and Zn) were measured by radiochemical neutron activation analysis in six samples of 14321, 184: microbreccia-2 (15), microbreccia-3 (14A, 16A and 19A), basaltic clast (1A), and light matrix material (9A). The 14321 microbreccias typically contain a siderophile-rich ancient meteoritic component, poor in volatiles, which is characterized by low IrAu and ReAu ratios (0.25-0.38 and 0.34-0.50, respectively, normalized to Cl). This component also occurs in Apollo 12 KREEP glasses, norite fractions of Apollo 14 1–2 mm soils, Apennine Front breccias, and Cayley Formation material, and may represent ejecta from the Imbrian basin.The basaltic clast 14321, 184-1A closely resembles 14053 in trace element content, and both are 5–10 times higher than mare basalts in volatile trace elements (Br, Cd, Tl). The light matrix material contains 9.2 ± 0.5 per cent of microbreccias, judging from its siderophile content.  相似文献   

9.
We have compared RNAA analyses of 18 trace elements in 25 low-Ti lunar and 10 terrestrial oceanic basalts. According to Ringwood and Kesson, the abundance ratio in basalts for most of these elements approximates the ratio in the two planets.Volatiles (Ag, Bi, Br, Cd, In, Sb, Sn, Tl, Zn) are depleted in lunar basalts by a nearly constant factor of 0.026 ± 0.013, relative to terrestrial basalts. Given the differences in volatility among these elements, this constancy is not consistent with models that derive the Moon's volatiles from partial recondensation of the Earth's mantle or from partial degassing of a captured body. It is consistent with models that derive planetary volatiles from a thin veneer (or a residuum) of C-chondrite material; apparently the Moon received only 2.6% of the Earth's endowment of such material per unit mass.Chalcogens (Se and Te) have virtually constant and identical abundances in lunar and terrestrial basalts, probably reflecting saturation with Fe(S, Se, Te) in the source regions.Siderophiles show diverse trends. Ni is relatively abundant in lunar basalts (4 × 10?3 × Cl-chondrites), whereas Ir, Re, Ge, Au are depleted to 10?4?10?5× Cl. Except for Ir, these elements are consistently enriched in terrestrial basalts: Ni 3 × , Re 370 ×, Ge 330 × , Au 9 × . This difference apparently reflects the presence of nickel-iron phase in the lunar mantle, which sequesters these metals. On Earth, where such metal is absent, these elements partition into the crust to a greater degree. Though no lunar mantle rock is known, an analogue is provided by the siderophile-rich dunite 72417 (~0.1% metal) and the complementary, siderophile-poor troctolite 76535. The implied metal-siderophile distribution coefficients range from 104 to 106, and are consistent with available laboratory data.The evidence does not support the alternative explanation advanced by Ringwood—that Re was volatilized during the Moon's formation, and is an incompatible element (like La or W4+) in igneous processes. Re is much more depleted than elements of far greater volatility: (Re/U)Cl~- 4 × 10?6 vs (T1/U)Cl = 1.3 × 10?4, and Re does not correlate with La or other incompatibles.Heavy alkalis (K, Rb, Cs) show increasing depletion with atomic number. Cs/Rb ratios in lunar basalts, eucrites, and shergottites are 0.44, 0.36, and 0.65 × Cl, whereas the value for the bulk Earth is 0.15–0.26. These ratios fall within the range observed in LL and E6 chondrites. supporting the suggestion that the alkali depletion in planets, as in chondrites, was caused by localized remelting of nebular dust (= chondrule formation). Indeed, the small fractionation of K, Rb and Cs, despite their great differences in volatility, suggests that the planets, like the chondrites, formed from a mixture of depleted and undepleted material, not from a single, partially devolatilized material.  相似文献   

10.
We have analyzed by RNAA 3 EH and 3 EL chondrites for 20 trace elements. Interelement correlations were examined visually and by factor analysis, to assess the effects of nebular fractionation and metamorphism.Refractory siderophiles (Ir, Os, Re) correlate with “normal siderophiles” (Ni, Pd, Au, Sb, and Ge) in EL's but not EH's; presumably these two element groups originally condensed on separate phases (CAI and metal), but then concentrated in metal during metamorphism. Sb and Ge are more depleted than the other three elements of the “normal” group, presumably by volatilization during chondrule formation.Volatiles are consistently more depleted in EL's than EH's, by factors >10× for the more volatile elements. Some of the stronger correlations are found for In-Tl, Tl-Bi, and Zn-Cd-In. These correlations are about equally consistent with predicted condensation curves for the solar nebula (especially for host phases with negative heats of solution, or for P = 0.1?1 atm) and with volatilization curves for artificially heated Abee, as determined by M E. Lipschutz and coworkers at Purdue. No decisive test between these alternatives is available at present, but the close correlation of Zn, Cd, In may eventually provide a crucial test.Factor analysis shows that 3 factors account for 93% of the variance; they seem to reflect volatile (F1), siderophile (F2), and chalcophile (F3) behavior. The element groupings agree largely with those recognized visually; they are listed with the inferred host phases. F1 (minor sulfide, probably ZnS): Zn, Cd, In, Br; F2 (CAI, later metal): Ir, Os. Re; F1, F2 (metal): Ni, Pd, Au, Ge, Sb; F3, F1 (FeS): Se, Te, Bi, Tl. These correlations differ to some extent from those obtained by Shaw (1974) in an earlier factor analysis, presumably because the new data are more homogeneous and extensive, especially for siderophiles. The new correlations also show that the cosmochemical behavior of some volatiles in E-chondrites differs from that predicted for ordinary chondrites, so that condensation curves for the latter are not strictly applicable.  相似文献   

11.
A total of 33 elements (Ag, Al, Au, Bi, Br, Cd, Ce, Co, Cr, Cs. Eu, Fe, Ge, Hf, Ir, Lu, Na, Ni, Os, Pd, Rb, Re, Sb, Se, Se, Si, Sm, Tb, Te, Tl, U, Yb and Zn) were analyzed by radiochemical and instrumental neutron activation in four eucrites: Juvinas (brecciated), Ibitira (vesicular, unbrecciated) and Moore County and Serra de Magé (cumulate, un brecciated).When arranged in order of volatility. Cl—normalized abundance patterns allow nebular and planetary effects to be distinguished. The stepped lithophile pattern reveals the dominance of nebular processes; in Ibitira, refractory elements (Hf, Lu, Tb, Ce, Sm, Yb, U, Eu) are (13.1 ± 0.7) × Cl chondrites; volatile elements (Rb. Cs, Br, Bi) are (6.0 + 1.5) × 10?2 Cl. The depletion of Tl seems inherent to the eucrite parent body and is mirrored in the chalcophile elements by the marked deficit of Te relative to Se; apparently volatiles were accreted as a fractionated C3-like component. Consistent but subtle Cl-normalized abundance differences between eucrites (Serra de Magé < Moore County < Juvinas < Ibitira) result from crystal/liquid differentiation; Ibitira approximates the composition of an undifferentiated eucrite magma. The siderophile pattern retains little sign of nebular processes, but reflects planetary metal-silicate partition.The bulk composition of the eucrite parent body closely resembles that of H-chondrites, except for two features: moderately volatile elements (e.g. Na, K. Rb) are very much lower, apparently due to the accretion of more chondrule-like material; the metallic Fe-Ni content is only ~13%, even though total iron is very similar.  相似文献   

12.
R-mode factor analysis on 11 specimens of 9 enstatite chondrites, analysed for Ga, Se, Te, Zn, Cd, Bi, Tl, In, Sb, As, Co, showed three factors (rotated) to account for 92 per cent of the elemental variations (variance).Factor 1 dominates the first 8 elements listed, all volatile and mostly chalcophile: factors 2 and 3 express Sb and As variations, respectively, probably dependent on siderophile and less volatile behaviour; factors 1 and 2 contribute to Co.Factor-scores for individual meteorites indicate compositional differences (for these elements) between the E4 as against E5 and E6 stones (which are indistinguishable).Factor analysis of a second suite of 10 specimens analysed for Zn, Cd, Bi, Tl, In, Ag, Rb, Cs showed one factor to account for 93 per cent of the elemental variance. This expresses the association of Ag, Rb, Cs with the volatile-chalcophile factor.  相似文献   

13.
Five carbonaceous chondrites (Renazzo C2V, Allende C3V, Omans C3O, Warrenton C3O, and Orgueil Cl) were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs. Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Te, Tl, U and Zn. These data, together with earlier measurements on seven additional C3 s, are interpreted in the light of pétrographie studies by MCSWEEN (1977a, b) and revised condensation temperatures (WAI and Wasson, 1977). Elements condensing between ~ 700 and 420 K (Se, Zn, S, Te, Br, In, Bi, Tl) are systematically more depleted than those condensing between 1000 and 900 K (Ge, Ag, Rb), by factors of 1.3 to 2, and the depletion correlates inversely with matrix content and directly with degree of metamorphism. The most plausible explanation appears to be a gas-dust fractionation during condensation, by settling of dust to the median plane of the nebula. In this model, gas/dust ratios relative to the cosmic ratio ranged from 0.7 at 1000 K to 0.5 at 700 K for those C3O s that accreted first (Ornans, Warrenton) and from 1.3 to 0.6 for the last (Kainsaz). There appears to have been no further gas/dust fractionation below 700 K.Abundances of Sb, Au and Cd follow earlier trends. Depletion of Sb and Au correlates with abundance of Fe-poor olivine and seems to reflect greater volatilization upon more prolonged or intense heating during chondrule formation. The 50–100-fold depletion of Cd in C3Os compared to C3Vs suggests condensation in a region where enough Fe was present to buffer the H2S pressure.  相似文献   

14.
Precise determination of REE and Ba abundances in three carbonaceous (Orgueil Cl, Murchison C2 and Allende C3) and seven olivine-bronzite chondrites were carried out by mass spectrometric isotope dilution technique. Replicate analyses of standard rock and the three carbonaceous chondrites demonstrated the high quality of the analyses (accuracies for REE are ±1–2 per cent). Certain carbonaceous chondrite specimens showed small positive irregularities in Yb abundance. The Yb ‘anomaly’ (approximately + 5 per cent relative to the average of 10 ordinary chondrites) in Orgueil may relate to high temperature components. The REE pattern of Guareña (H6) exhibits comparatively extensive fractionation (about factor 2) with a negative anomaly for Eu (17 ± 1 percent) compared to the average H chondrite. This could be interpreted in terms of extensive thermal metamorphism leading to melting.Apart from absolute abundance differences, there appears to be small but recognizable fractionation among the average relative REE abundances of Cl, E, H and L chondrites. However, individual chondrites within these groups showed more or less fractionated REE patterns relative to each other. The distinction between H and L chondrites was well demonstrated in Eu-Sm correlation curves and absolute abundance differences of REE and major elements.Si-normalized atomic ratios of the REE abundances in different kinds of chondrites to those in Orgueil (Cl) chondrite were 0.58 (E), 0.75 (H), 0.81 (L), 1.07 (C2) and 1.32 (C3).  相似文献   

15.
Four ureilites (Dyalpur, Goalpara, Haverö, and Novo Urei) were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, and U. An attempt has been made to resolve the data into contributions from the parent ultramafic rock and the injected, carbon- and gas-rich vein material. Interelement correlations, supported by analyses of separated vein material (WANKE et al, 1972), suggest that the vein material is enriched about 10-fold in refractory Ir and Re over moderately volatile Ni and Au, and is low in volatiles except Ge, C, and noble gases. It appears to be a refractory-rich nebular condensate that precipitated carbon by surface catalytic reactions at ˜500K and trapped noble gases but few other volatiles. The closest known analogue is a Cr- and C-rich fraction from the Allende meteorite, highly enriched in heavy noble gases and noble metals. By analogy with Allende, the gas-bearing phase in ureilites may have been an Fe, Cr-sulfide.

The ultramafic rock contains siderophiles and chalcophiles (Ni, Au, Ge, S, Se) at ˜0.05 of Cl chondrite level, and highly volatile elements (Rb, Cs, Bi, Tl, Br, Te, In, Cd) at ˜0.01 Cl level. It probably represents the residue from partial melting of a C3V-like chondrite body, under conditions where phase separation was incomplete so that some liquid was retained. The vein material was injected into this rock at some later time.  相似文献   


16.
Seven carbonaceous chondrites (Allan Hills A77307, Adelaide, Al Rais, Coolidge, Grosnaja, Karoonda and Renazzo) with uncertain classifications were analyzed by instrumental and radiochemical neutron activation analysis for 29 elements: Na, Mg, Al, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Ge, As, Se, Br, Ru, Cd, Sb, La, Sm, Eu, Yb, Lu, Os, Ir and Au. Five of these chondrites (A77307, Adelaide, Al Rais, Karoonda and Renazzo) are unique ‘grouplets’, not closely related to other groups or to each other. Only Coolidge (CV4) and Grosnaja (CV3-an) are members of previously established groups. A77307 and Adelaide have refractory lithophile abundances similar to those in the CM-CO clan; A77307 probably is a member of that clan, but Adelaide, which shows CV-like petrographic characteristics, cannot as yet be assigned to a clan. Al Rais and Renazzo have similar refractory lithophile abundances (essentially at CI levels) and probably belong to the same clan, i.e., formed in the same region of the nebula. There are insufficient data to determine whether they formed at the same general region as the CI chondrites, but separates having O-isotope compositions near the terrestrial fractionation line indicate that this is plausible. Karoonda has refractory lithophile abundances ~ 1.21 × CI and appears to belong to a new clan distinct from CM-CO (1.11 × CI) and CV (1.34×).  相似文献   

17.
To evaluate biogeochemical characteristics, eco-environmental risks and sources of trace elements (TEs: As, Hg, Se, Sb, Te, Sn, Bi and Ge), their total concentrations and chemical speciation in surface sediments collected from the Changjiang Estuary were determined. Total concentrations for As, Hg, Se, Sb, Te, Sn, Bi and Ge were 4.57–30.20, 0.01–0.40, 0.04–0.38, 0.36–1.48, 0.02–0.10, 0.48–6.58, 0.13–0.64 and 0.83–2.43 μg/g, respectively, with higher values at the estuary. This distribution pattern was attributed to the riverine input and high clay and total organic carbon contents. The sequential extraction suggested that TEs mainly occurred in residual fractions. The risk assessment code suggested that As, Hg and Sn were at low risk, whereas Bi, Se, Sb, Te and Ge were at medium risk. The geoaccumulation index (I geo) and principal component analysis indicated that Se and Sn mainly came from the natural input (crustal and biological inputs), whereas As, Sb, Hg, Bi and Te came from both of the crustal and anthropogenic inputs via atmosphere and rivers. In addition, Ge possibly came from the natural (crustal and biological inputs) and anthropogenic inputs.  相似文献   

18.
Twenty-three samples from the Ries crater, representing a wide range of shock metamorphism, were analyzed for seven siderophile elements (Au, Ge, Ir, Ni, Os, Pd, Re) and five volatile elements (Ag, Cd, Sb, Se, Zn). Taking Ir as an example, we found siderophile enrichments over the indigenous level of 0.015 ppb Ir occur in only eight samples. The excess is very modest; even the most enriched samples (a weakly shocked biotite gneiss and a metal-impregnated amphibolite) have Ir, Os corresponding to ~4 × 10?4 C1 chondrite abundances. Of five flädle glasses analyzed only one shows excess Ir. Suevite matrix and vesicular glass have slight enrichment, but homogenous glass from the same rock does not. In flädle glasses, Ni and Se are strongly correlated and apparently reside in Ir, Os-poor Sulfides [pyrrhotite, chalcopyrite, pentlandite(?)]of terrestrial, probably sedimentary, origin. The Ir, Os and Ni enrichments of the metal-bearing amphibolite are compatible with chondritic ratios, but these are ill-defined because of uncertainty in Ni. In the other samples enriched in siderophiles Ir(Os), Ni and Se are mutually correlated; NiIr and NiOs ~ 11 × C1 and are much higher than any chondritic ratios; SeNi ~ 2 × C1 and suggests a sulfide phase, rather than metal may be the host of the correlated elements. Lacking a plausible local source, this material is apparently meteoritic in origin. The unusual elemental ratios, coupled with the very low enrichments, tend to exclude chondrites and most irons as likely projectile material. Of the achondrites, aubrites seem slightly preferable. Ratios of excess siderophiles in Ries materiel match tolerably those of an aubrite (possibly atypical) occurring as an inclusion in the Bencubbin meteorite, Australia. The Hungaria group of Mars-crossing asteroids may be a source of aubritic projectiles.  相似文献   

19.
We determined ten trace elements by neutron activation analysis in Tieschitz (H3) chondrite powder heated in a low-pressure environment (initially ~ 10?5 atm H2) for 1 week at 100°C increments from 400–1000°C. Of these, Co seems unaffected by heating, 20% of Ga is lost only at 1000°C and losses of other elements progress with temperature to extremes of 25% for Se, 75% for Cs and 90–97% for Ag, Bi, In, Te, Tl and Zn. Treating elemental mobilization as kinetically-controlled by diffusion from spherical grains of uniform size, Ag, Cs, In and Se are lost from a single site by a single process while Bi, Te, Tl and Zn are lost from two sites or from one site by different processes at high and low temperatures. Magnitudes of apparent activation energies for loss of the first four elements at all temperatures and the last four at low temperatures are consistent with volume diffusion; at high temperatures Bi, Te, Tl and Zn are lost by a low-energy process, like desorption.We compared trace element abundances, patterns of statistically-significant correlations, factor analysis and two-element correlations between Tieschitz and heated Krymka (L3) and, except for factor analysis, “as-received” H3–6 chondrites. Trends for heated ordinary chondrites are similar though small differences occur; those for Tieschitz and H3–6 chondrites differ markedly indicating that H3–6 chondrites—unlike E3–6 chondrites—probably escaped substantial open-system metamorphism. Sharp contrasts in pictures for E-, L- and H-group chondrites indicate substantial differences in genetic histories.  相似文献   

20.
Luna 20 soil is remarkably similar to Apollo 16 soil, in its content of 17 mainly volatile or siderophile elements: Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Like other highland soils, it seems to contain an ancient meteoritic component of fractionated, volatile-poor composition. The bulk soil has a high TlCs ratio (9.4 × 10?2), similar to that in Apollo 16 soils (5.4 × 10?2), but higher than that in samples from other sites (1.1 × 10?2). It is severely contaminated with Ag, Cd, Re, and Sb, judging from a comparison with a 1.7 mg soil breccia sample from the coarse fraction of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号