首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
Using magnetic data from the geostationary satellites of ATS 6 and SMS/GOES series, long-period geomagnetic pulsations, Psc 4 and Psc 5, associated with geomagnetic sudden commencements (SC's) were statistically analyzed. Local time and geomagnetic latitude dependence of the occurrence, and local time dependence of the period and the amplitude were examined for 218 SC's. For transverse Psc 5 pulsations which could be observed at all local times, the period was shorter and the amplitude was smaller near noon than in the morning and evening sides. Compressional Psc 5's, which were observed mainly from about 09.00 L.T. to midnight, had larger amplitude near noon. The period seemed to be longer near noon. As for Psc 4 pulsations the period tended to be shorter near noon. Psc 4's with the largest amplitude appeared near noon, but on the whole Psc 4's in the evening side had larger amplitude. The compressional Psc occurred more frequently near the geomagnetic equator (geomagnetic latitude φm≌ 5°N) than at higher latitude (φm≌ 9° ~ 12°N). We suggest that the transverse Psc 5 pulsations can be considered to be magnetic field-line resonant oscillations excited by impulsive waves, while the compressional Psc 5's may be oscillations localized near the geomagnetic equator.  相似文献   

2.
The odd zonal harmonics in the geopotential are the terms independent of longitude and antisymmetric about the Equator: they define the ‘pear-shape’ effect. The coeffecients J3, J5, J7,…of these harmonics have been evaluated by analysing the variations in eccentricity of 27 orbits covering wide range of inclinations. We use again most of the orbits from our previous (1969) evaluations, but we now have the advantage of 3 accurate orbits at inclinations between 60° and 66°, where the variations in eccentricity become very large, and 3 near-equatorial orbits, at inclinations between 3° and 15°, whereas previously there were none at inclinations lower than 28°. The new data lead to much more accurate and reliable values for the coeffecients. Our recommended set, which terminates at J17, is
109J3 = ?2531 ± 7109J11 = 159 ± 16J5 = ?246 ± 9J13 = ?131 ± 22J7 = ?326 ± 11J15 = ?26 ±24J9 = ?94 ± 12J17 = ?258 ± 19
. With this new set of values the pear-shape tendency of the Earth amounts to 44.7 m at the poles, instead of the previous 40 m, though the new geoid is within 1 m of the old at latitudes away from the poles.  相似文献   

3.
New photographic photometry at small tilt angles during the 1979 and 1981 apparitions is combined with earlier data to yield several physical parameters for Saturn's B ring in red and blue colors. Phase curves are obtained for a mean tilt angle B ? 6°. The value of the volume density D is 0.020±0.004 with no indication of dependence on either the color or the tilt angle for 6°<B<26°. This conclusion is not altered significantly if the individual ring particles have a phase function similar to the phase curves of bright solar system objects. For the geometric albedo of a single particle we derive 0.61±0.04 (red) and 0.41±0.03 (blue), which are superior to earlier estimates because of the additional data now available. These values and the derived amount of multiple scattering as a function of tilt angle constrain the particle phase function in the red to be moderately backscattering. Inferred values of the particle single-scattering albedo are 0.7≤ω0 (red) ≤0.92 and 0.5≤ω0 (blue) ≤0.7, depending on the choice of phase function. No indication was found that the particle photometric properties might depend on the vertical distance from the central plane. Our results show that the ground-based photometry is entirely consistent with the classical, many-particle-thick ring model.  相似文献   

4.
Daytime Pc 3–4 pulsation activities observed at globally coordinated low-latitude stations [SGC (L = 1.8,λ = 118.0°W), EWA(1.15,158.1°W), ONW(1.3,141.5°E)] are evidently controlled by the cone angle θXB of the IMF observed at ISEE 3. Moreover, the Pc 3–4 frequencies (?) at the low latitudes and high latitude (COL; L = 5.6 and λ = 147.9°W) on the ground and that of compressional waves at geosynchronous orbit (GOES 2; L = 6.67 and λ = 106.7°W) are also correlated with the IMFmagnitude(BIMF).The correlation of ? of the compressional Pc 3–4 waves at GOES 2 against BIMF is higher than those of the Pc 3–4 pulsations at the globally coordinated ground stations, i.e., γ = 0.70 at GOES 2, and (0.36,0.60,0.66,0.54) at (COL, SGC, EWA, ONW), respectively. The standard deviation (σn = ± Δ? mHz) of the observed frequencies from the form ? (mHz) = 6.0 × BIMF (nT) is larger at the ground stations than at GOES 2, i.e., Δ? = ± 6.6 mHz atGOES 2, and ±(13.9, 9.1, 10.7, 12.1) mHz at (COL, SGC, EWA, ONW), respectively. The correlations between the IMF magnitude BIMF and Pc 3–4 frequencies at the low latitudes are higher than that at the high latitude on the ground, which can be interpreted by a “filtering action” of the magnetosphere for daytime Pc 3–4 magnetic pulsations. The scatter plots of pulsation frequency ? against the IMF magnitude BIMF for the compressional Pc 3–4 waves at GOES 2 are restricted within the forms ? = 4.5 × BIMFand ? = 7.5 × BIMF. The frequency distribution is in excellent agreement with the speculation (scΩi = 0.3 ~ 0.5) of the spacecraft frame frequency of the magnetosonic right-hand waves excited by the anomalous ion cyclotron resonance with reflected ion beams with V6 = 650 ~ 1150 km s?1 in the solar wind frame observed by the ISEE satellite in the Earth's foreshock. These observational results suggest that the magnetosonic right-handed waves excited by the reflected ion beams in the Earth's foreshock are convected through the magnetosheath to the magnetopause, transmitted into the magnetosphere without significant changes in spectra, and then couple with various HM waves in the Pc 3–4 frequency range at various locations in the magnetosphere.  相似文献   

5.
The combination of a small inclination of the orbit (~4°) with the tilt angle (~11°) of the Earth's magnetic dipole axis enabled the S3-A satellite (Explorer 45) to make simultaneous observations of magnetospheric VLF-emissions and the associated enhancement of ring current electrons not only at the magnetic equator but also up to 15° geomagnetic latitudes. Microdensitometer scanning of the wideband data of these emissions reveals that the band of missing emission in the off-equatorial whistler mode emissions (chorus) appears at fHo2 and that the intensities of the off-equatorial emission above fHo2 are very weak in contrast to those of the near equatorial emissions, where fHo2 is the equatorial electron gyrofrequency corresponding to the local gyrofrequency fH at the satellite. Ray-tracing of whistler mode waves produced by the enhanced ring-current electrons at the geomagnetic equator just outside of the plasmapause has shown that some of these waves are reflected from high latitudes back to the Equator inside the source region. This process had been previously speculated to explain the formation of the bimodal intensity distribution with a gap at half the gyrofrequency (the two-band chorus) in the equatorial emission data. The intensities of those reflected waves, however, are shown to be insufficient to explain the observed emissions below fHo2 at the Equator. These results indicate that the superposition of two types of emissions produced by the same processes but from different locations is not the main mechanism for the formation of the two-band chorus and that the dominant sources of these choruses are located around ± 5° geomagnetic latitude.  相似文献   

6.
VLF-emissions with subharmonic cyclotron frequency from magnetospheric electrons have been detected by the S3-A satellite (Explorer 45) whose orbit is close to the magnetic equatorial plane where the wave-particle interaction is most efficient. These emissions are observed during the main phase of a geomagnetic storm in the nightside of the magnetosphere outside of the plasmasphere around L = 3–5. The emissions consist essentially of two frequency regimes, one below the equatorial electron gyro-frequency, ?H0, and the other above ?H0. The emissions below ?H0 are whistler mode and there is a sharp band of “missing emissions” along ?= ?H02. The emissions above ?H0 are electrostatic mode and the frequency ranges up to 3?H02. It is concluded that these emissions are generated by the enhanced relativity low energy (1–5 keV) ring current electrons, penetrating into the nightside magnetosphere during the main phase of a magneto storm. Although the high energy (50–350 keV) electrons showed remarkable changes of pitch angle distribution, their associations with VLF-emissions are not so significant as those of low energy electrons.  相似文献   

7.
The orbit of Cosmos 837 rocket (1976-62E) has been determined at 36 epochs between January and September 1978, using the RAE orbit refinement program PROP 6 with about 3000 observations. The inclination was 62.7° and the eccentricity 0.039. The orbital accuracy achieved was between 30m and 150m, both radial and crosstrack. The orbit was near 29:2 resonance in 1978 (exact resonance occurred on 14 May) and the values of orbital inclination obtained have been analysed to derive lumped 29th-order geopotential harmonic coefficients, namely:
109C0,229 = ? 10 ± 15
and
109S0,229 = ?76 ± 12
. These will be used in future, when enough results at different inclinations have accumulated, to determine individual coefficients of order 29. The values of lumped harmonics obtained from analysis of the values of eccentricity were not well defined, because of the high correlations between them and the errors in removing the very large perturbation (31 km) due to odd zonal harmonics.  相似文献   

8.
We use a four-layer model in a stability analysis of the ME type spiral sector transition in the interplanetary magnetic field. Our results show that (1) three kinds of large-scale waves may be excited in the region and for all three, there exists a low-frequency cut-off. (2) In all three, the rate of growth of instability increases with k; in Model A only, the rate of growth has a maximum and a minimum. (3) As the angle between k and the solar wind velocity vector Vq increases, the cut-off frequency increases, and the excitation of waves gets more and more difficult, until it becomes impossible when k is perpendicular to Vq. (4) when the angle between k and Vq is 75°, waves with a wavelength of 5 × 104 km and a phase velocity of 340 km/s may be excited; this agrees with the observations by Voyager 1 at the Earth's magnetopause. Hence we deduce that waves in the spiral sector transition region may be a source that triggers off the Kelvin-Helmholtz instability of the magnetopause.  相似文献   

9.
The orbit of TETR-3 (1971-83B), inclination: 33°, passed through resonance with 15th order geopotential terms in February 1972. The resonance caused the orbit inclination to increase by 0.015°. Analysis of 48 sets of mean Kepler elements for this satellite in 1971–1972 (across the resonance) has established the following strong constraint for high degree, 15th order gravitational terms (normalized):
109(C, S)15 = (28.3 ± 3.0, 7.4 ± 3.0) = 0.001(C, S)15,15?0.015(C, S)17,15+0.073(C, S)19,15?0.219(C, S)21,15+0.477(C, S)23,15?0.781(C, S)25,15+1.000(C, S)27,15?0.0963(C, S)29,15+0.622(C, S)31,15?0.119(C, S)33,15?0.290(C, S)35,15+0.403(C, S)37,15?0.223(C, S)39,15?0.058(C, S)41,15+…
This result combined with previous results on high inclination 15th order and other resonant orbits suggests that the coefficients of the gravity field beyond the 15th degree are smaller than Kaula's rule (10?5l2).  相似文献   

10.
The orbit of the satellite 1967-104B has been analysed as it passed through 29:2 resonance with the Earth's gravitational field between January 1977 and September 1978. From the changes in inclination and eccentricity the following lumped 29th-order geopotential harmonic coefficients were obtained: 109C?290.2 = 4.1 ± 0.8, 109S?290.2 = 10.3 ± 2.4, 109C?291.1 = ? 160 ± 19, 109S?291.1 = 79 ± 10, 109C?29?1.3 = 38 ± 14, 109S?29?1.3 = 19 ± 5. These values have been compared with existing comprehensive geopotential models: the best agreement is with the model of Rapp (1981).  相似文献   

11.
12.
The influence of aerodynamic drag and the geopotential on the motion of the satellite 1964-52B is considered. A model of the atmosphere is adopted that allows for oblateness, and in which the density behaviour approximates to the observed diurnal variation. A differential equation governing the variation of the eccentricity, e, combining the effects of air drag with those of the Earth's gravitational field is given. This is solved numerically using as initial conditions 310 computed orbits of 1964-52B.The observed values of eccentricity are modified by the removal of perturbations due to luni-solar attraction, solid Earth and ocean tides, solar radiation pressure and low-order long-periodic tesseral harmonic perturbations. The method of removal of these effects is given in some detail. The behaviour of the orbital eccentricity predicted by the numerical solution is compared with the modified observed eccentricity to obtain values of atmospheric parameters at heights between 310 and 430 km. The daytime maximum of air density is found to be at 14.5 hours local time. Analysis of the eccentricity near 15th order resonance with the geopotential yielded values of four lumped geopotential harmonics of order 15, namely: 109C1,015 = ?78.8 ± 7.0, 109S1,015 = ?69.4 ± 5.3, 109C?1,215 = ?41.6 ± 3.5109S?1,215 = ?26.1 ± 8.9, at inclination 98.68°.  相似文献   

13.
J.P. Ferris  J.Y. Morimoto 《Icarus》1981,48(1):118-126
Photolysis of NH3 in the presence of CH4 with a 185-nm light source results in the generation of hot hydrogen atoms that abstract hydrogen from the CH4 to produce CH3·. Subsequent reactions of CH3· and NH2· give hydrocarbons, CH3NH2, and HCN. The extent of reaction of CH4 was measured by the ratio of the moles of CH4 reacted per mole of NH3 decomposed (ΔCH4ΔNH3). This ratio increases with diminishing NH3 pressure at constant CH4 pressure but it remains constant if CH4NH3?3. The ΔCH4ΔNH3 ratio is independent of temperature in the range 156–298° K, suggesting that hot hydrogen atoms were responsible for the reaction of CH4. This postulate was confirmed by the observation that this reaction was quenched when H2 or SF6 was added to the reaction mixture.  相似文献   

14.
New characteristics of VLF chorus in the outer magnetosphere are reported. The study is based on more than 400 hours of broadband (0.3–12.5 kHz) data collected by the Stanford University/Stanford Research Institute VLF experiment on OGO 3 during 1966–1967. Bandlimited emissions constitute the dominant form of whistler-mode radiation in the region 4? L? 10. Magnetospheric chorus occurs mainly from 0300 to 1500 LT, at higher L at noon than at dawn, and moves to lower L during geomagnetic disturbance, in accord with ground observations of VLF chorus. Occurrence is moderate near the equator, lower near 15°, and maximum at high latitudes (far down the field lines). The centre frequency ? of the chorus band varies as L?3> and at low latitudes is closely related to the electron gyrofrequency on the dipole field line through the satellite. Based on the measured local gyrofrequency ?H, the normalized frequency distribution of chorus observed within 10° of the dipole equator shows two peaks, at ??H ? 0.53 and ??H ? 0.34. This bimodal distribution is a persistent statistical feature of near equatorial chorus, independent of L, LT and Kp. However there is considerable variability in individual events, with chorus often observed above, below, and between these statistical peaks; in particular, it is not unusual for single emissions to cross ??H = 0.50. When two bands are simultaneously present individual emission elements only rarely show one-to-one correlation between bands. For low Kp the median bandwidth of the upper band, gap and lower band are all ~16% of their centre frequencies, independent of L; for higher Kp the bandwidth of the lower band increases. Bandwidth also increases with latitude beyond ~10°. Starting frequencies of narrowband emissions range throughout the band. The majority of the emissions rise in frequency at a rate between 0.2 and 2.0 kHz/sec; this rate increases with Kp and decreases with L. Falling tones are rarely observed at dipole latitudes <2.5°. The observations are interpreted in terms of whistler-mode propagation theory and a gyroresonant feedback interaction model. An exact expression is derived for the critical frequency, ??H ? 0.5, at which the curvature of the refractive index surface vanishes at zero wave normal angle. Near this frequency rays with initial wave normal angles between 0° and ?20° are focused along the initial field line for thousands of km, enhancing the phase-bunching of incoming gyroresonant electrons. The upper peak in the bimodal normalized frequency distribution is attributed to this enhancement near the critical frequency, at latitudes of ~5°. Slightly below the critical frequency interference between modes with different ray velocities may contribute to the dip in the bimodal distribution. The lower peak may reflect a corresponding peak in the resonant electron distribution, or guiding in field-aligned density irregularities. The observations are consistent with gyroresonant generation of emissions near the equator, followed by spreading of the radiation over a range of L shells farther down the field lines.  相似文献   

15.
16.
Editorial     
The Galilean satellites Io, Europa, and Ganymede interact through several stable orbital resonances where λ1 ? 2λ2 + ω1 = 0, λ1 ? 2λ2 + ω2 = 180°, λ2 ? 2λ3 + ω2 = 0 and λ1 ? 3λ2 + 2λ3 = 180°, with λi being the mean longitude of the ith satellite and ωi the longitude of the pericenter. The last relation involving all three bodies is known as the Laplace relation. A theory of origin and subsequent evolution of these resonances outlined earlier (C. F. Yoder, 1979b, Nature279, 747–770) is described in detail. From an initially quasi-random distribution of the orbits the resonances are assembled through differential tidal expansion of the orbits. Io is driven out most rapidly and the first two resonance variables above are captured into libration about 0 and 180° respectively with unit probability. The orbits of Io and Europa expand together maintaining the 2:1 orbital commensurability and Europa's mean angular velocity approaches a value which is twice that of Ganymede. The third resonance variable and simultaneously the Laplace angle are captured into libration with probability ~0.9. The tidal dissipation in Io is vital for the rapid damping of the libration amplitudes and for the establishment of a quasi-stationary orbital configuration. Here the eccentricity of Io's orbit is determined by a balance between the effects of tidal dissipation in Io and that in Jupiter, and its measured value leads to the relation k1?1/Q1 ≈ 900kJ/QJ with the k's being Love numbers, the Q's dissipation factors, and f a factor to account for a molten core in Io. This relation and an upper bound on Q1 deduced from Io's observed thermal activity establishes the bounds 6 × 104 < QJ < 2 × 106, where the lower bound follows from the limited expansion of the satellite orbits. The damping time for the Laplace libration and therefore a minimum lifetime of the resonance is 1600 QJ years. Passage of the system through nearby three-body resonances excites free eccentricities. The remnant free eccentricity of Europa leads to the relation Q2/?2 ? 2 × 10?4 QJ for rigidity μ2 = 5 × 1011 dynes/cm2. Probable capture into any of several stable 3:1 two-body resonances implies that the ratio of the orbital mean motions of any adjacent pair of satellites was never this large.A generalized Hamiltonian theory of the resonances in which third-order terms in eccentricity are retained is developed to evaluate the hypothesis that the resonances were of primordial origin. The Laplace relation is unstable for values of Io's eccentricity e1 > 0.012 showing that the theory which retains only the linear terms in e1 is not valid for values of e1 larger than about twice the current value. Processes by which the resonances can be established at the time of satellite formation are undefined, but even if primordial formation is conjectured, the bounds established above for QJ cannot be relaxed. Electromagnetic torques on Io are also not sufficient to relax the bounds on QJ. Some ideas on processes for the dissipation of ideal energy in Jupiter yield values of QJ within the dynamical bounds, but no theory has produced a QJ small enough to be compatible with the measurements of heat flow from Io given the above relation between Q1 and QJ. Tentative observational bounds on the secular acceleration of Io's mean motion are also shown not to be consistent with such low values of QJ. Io's heat flow may therefore be episodic. QJ may actually be determined from improved analysis of 300 years of eclipse data.  相似文献   

17.
Results are given of the calculations of the group delay time propagating τ(ω, φ0) of hydromagnetic whistlers, using outer ionospheric models closely resembling actual conditions. The τ(ω, φ0) dependencies were compared with the experimental data of τexp(ω, φ0) obtained from sonagrams. The sonagrams were recorded in the frequency range ? ? (0.5?2.5) Hz at observation points located at geomagnetic latitudes φ0 = (53?66)° and in the vicinity of the geomagnetic poles. This investigation has led us to new and important conclusions.The wave packets (W.P.) forming hydromagnetic whistlers (H.W.) are mainly generated in the plasma regions at L = 3.5?4.0. This is not consistent with ideas already expressed in the literature that their generation region is L ? 3?10. The overwhelming majority of the τexp values differ considerably from the times at which wave packets would, in theory, propagate along the magnetic field lines corresponding to those of the geomagnetic latitudes φ0 of the observation points. The second important fact is that the W.P. frequency ω is less than ΩH everywhere along its propagation trajectory, including the apogee of the magnetic force line (ΩH is the proton gyrofrequency). Proton flux spectra E ? (30?120) keV, responsible for H.W. generation, were determined. Comparison of the Explorer-45 and OGO-3 measurements published in the literature, with our data, showed that the proton flux density energy responsible for the H.W. excitation Np(MV622) ? (5 × 10?3?10?1) Ha2 where Ha is the magnetic field force in the generation region of these W.P. The electron concentration is Na ? (102?103) cm?3. The values given in the literature are Na ? (10?10?103) cm?3. The e data considered also leads to the conclusion that the generating mechanism of the W.P. studied probably always co-exists with the mechanism of their amplification.  相似文献   

18.
A model is proposed in which a mixture of hot solar wind and cold atmospheric plasma flowing in the dayside equatorial boundary layer towards the dawn-dusk plane generates hydromagnetic waves near the frequency ω = ωBi¦1 ? T¦T¦ where ωBi is the ion gyrofrequency and T, T are the temperatures of the solar wind plasma, parallel and perpendicular respectively to the magnetic field B. The model accounts for the properties of IPRP events, i.e. intervals of geomagnetic pulsations of periods rising on average from about 2 s to about 7 s over an interval of about 5 min. The diagnostic potential of this phenomenon for study of the boundary layer is indicated.  相似文献   

19.
P. Drossart  T. Encrenaz 《Icarus》1982,52(3):483-491
The abundance of H2O is derived from the 1900- to 2100-cm?1 region of the Voyager 1 IRIS spectra. Scale variations of about a factor of 2 are seen in the water abundance between the North and South Equatorial Belts. Averaged over the full disk, the mixing ratio is H2OH2=(4.0±1.0) × 10?6, if H2O is uniformly mixed in the atmospheric region having temperatures of 230 to 270°K; this result implies a solar depletion by a factor of 100 in this region. In the belts, the best agreement is obtained for a H2O/H2 mixing ratio of 4.0 × 10?6 in the NEB and 7.2 × 10?6 in the SEB, assuming a constant mixing ratio.  相似文献   

20.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号