首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Abstract– Hibonite‐bearing Ca,Al‐rich inclusions (CAIs) usually occur in CM and CH chondrites and possess petrographic and isotopic characteristics distinctive from other typical CAIs. Despite their highly refractory nature, most hibonite‐bearing CAIs have little or no 26Mg excess (the decay product of 26Al), but do show wide variations of Ca and Ti isotopic anomalies. A few spinel‐hibonite spherules preserve evidence of live 26Al with an inferred 26Al/27Al close to the canonical value. The bimodal distribution of 26Al abundances in hibonite‐bearing CAIs has inspired several interpretations regarding the origin of short‐lived nuclides and the evolution of the solar nebula. Herein we show that hibonite‐bearing CAIs from Ningqiang, an ungrouped carbonaceous chondrite, also provide evidence for a bimodal distribution of 26Al. Two hibonite aggregates and two hibonite‐pyroxene spherules show no 26Mg excesses, corresponding to inferred 26Al/27Al < 8 × 10?6. Two hibonite‐melilite spherules are indistinguishable from each other in terms of chemistry and mineralogy but have different Mg isotopic compositions. Hibonite and melilite in one of them display positive 26Mg excesses (up to 25‰) that are correlated with Al/Mg with an inferred 26Al/27Al of (5.5 ± 0.6) × 10?5. The other one contains normal Mg isotopes with an inferred 26Al/27Al < 3.4 × 10?6. Hibonite in a hibonite‐spinel fragment displays large 26Mg excesses (up to 38‰) that correlate with Al/Mg, with an inferred 26Al/27Al of (4.5 ± 0.8) × 10?5. Prolonged formation duration and thermal alteration of hibonite‐bearing CAIs seem to be inconsistent with petrological and isotopic observations of Ningqiang. Our results support the theory of formation of 26Al‐free/poor hibonite‐bearing CAIs prior to the injection of 26Al into the solar nebula from a nearby stellar source.  相似文献   

2.
Abstract— Rumuruti chondrites (R chondrites) constitute a well‐characterized chondrite group different from carbonaceous, ordinary, and enstatite chondrites. Many of these meteorites are breccias containing primitive type 3 fragments as well as fragments of higher petrologic type. Ca,Al‐rich inclusions (CAIs) occur within all lithologies. Here, we present the results of our search for and analysis of Al‐rich objects in Rumuruti chondrites. We studied 20 R chondrites and found 126 Ca,Al‐rich objects (101 CAIs, 19 Al‐rich chondrules, and 6 spinel‐rich fragments). Based on mineralogical characterization and analysis by SEM and electron microprobe, the inclusions can be grouped into six different types: (1) simple concentric spinel‐rich inclusions (42), (2) fassaite‐rich spherules, (3) complex spinel‐rich CAIs (53), (4) complex diopside‐rich inclusions, (5) Al‐rich chondrules, and (6) Al‐rich (spinel‐rich) fragments. The simple concentric and complex spinel‐rich CAIs have abundant spinel and, based on the presence or absence of different major phases (fassaite, hibonite, Na,Al‐(Cl)‐rich alteration products), can be subdivided into several subgroups. Although there are some similarities between CAIs from R chondrites and inclusions from other chondrite groups with respect to their mineral assemblages, abundance, and size, the overall assemblage of CAIs is distinct to the R‐chondrite group. Some Ca,Al‐rich inclusions appear to be primitive (e.g., low FeO‐contents in spinel, low abundances of Na,Al‐(Cl)‐rich alteration products; abundant perovskite), whereas others were highly altered by nebular and/or parent body processes (e.g., high concentrations of FeO and ZnO in spinel, ilmenite instead of perovskite, abundant Na,Al‐(Cl)‐rich alteration products). There is complete absence of grossite and melilite, which are common in CAIs from most other groups. CAIs from equilibrated R‐chondrite lithologies have abundant secondary Ab‐rich plagioclase (oligoclase) and differ from those in unequilibrated type 3 lithologies which have nepheline and sodalite instead.  相似文献   

3.
Abstract– Dark streaks and different types of inclusions in Libyan Desert Glass (LDG) collected from the LDG strewn field in Egypt were investigated. Rare transparent spherules enclosed in the glassy matrix are characterized by concentric cracks, irregular internal cracks, intense twinning, and considerable amounts of Ti and Al. Raman spectra show that the spherules are α‐cristobalite. Their occurrence together with lechatelierite indicates quick heating of the source rock to at least 1550 °C, followed by rapid quenching leading to crystallization of β‐cristobalite, which upon cooling inverted into α‐cristobalite. Brownish inclusions are irregularly shaped, elongated objects with smooth contacts to the surrounding glass. They contain small roundish to elliptical droplets, and a few larger angular grains, which compositionally and according to their Raman spectra most closely resemble low‐Ca, Al‐rich orthopyroxene. Composition and texture of the orthopyroxene suggest that the brownish inclusions formed by incomplete melting of an Al‐rich orthopyroxene bearing precursor, e.g., mafic phases present in desert surface sands or also of orthopyroxene‐bearing granulite dykes in the LDG target. Experimental data on Ca‐poor enstatite also support that the inclusions were heated to about 1550 °C. Analyses of dark streaks in LDG reveal high abundances of Al, Ti, Mn, Cr, Fe, and Ni and a pronounced correlation between the abundances of Cr, Mn, Fe, and Ni. As the Fe/Ni, Mn/Ni, and Cr/Ni ratios are all clearly nonchondritic, the source of this material is most likely terrestrial and the dark streaks studied here represent a different type of schlieren compared to those which contain a meteoritic component. These findings suggest LDG formation during a short high‐temperature event. Melting of Al‐rich orthopyroxene bearing target material seems to suggest an asteroid impact rather than a near‐surface airburst.  相似文献   

4.
Abstract— Incorporation of the MELTS silicate melt solution model into models of evaporation successfully reproduces the evaporation behavior of alkali‐free, FeO‐bearing (≥2 mol%) chondritic melts at temperatures between 1700 and 2000 °C. In conjunction with the Berman CMAS melt solution model for FeO‐poor melts, evaporation of alkali‐free melts can now be modeled over a very wide range of conditions. MELTS‐based evaporation models can also quite successfully reproduce the evaporation behavior of K when Al/(Na + K) > 1. However, reproduction of Na evaporation experiments is much poorer.  相似文献   

5.
Abstract— Mössbauer studies of the samples from the Cretaceous‐Tertiary (K‐T) boundary layer at Gubbio, Italy show that iron appears mainly in two phases, magnetically ordered hematite and a paramagnetic silicate phase. The average particle size of hematite is estimated to be in the range of 16 to 27 nm from transmission electron micrographs and lack of a Morin transition. The hyperfine magnetic field at the iron nucleus is observed to be somewhat less than that of bulk hematite, which may be explained by collective magnetic excitation. Stepwise heating up to 1000°C shows a decomposition pattern of the paramagnetic phase, which suggests it to be a tri‐octahedral layer silicate. The iron‐bearing phases found in the bulk sedimentary K‐T boundary material are different from those found in the spherules separated from this material indicating that the redox conditions changed rapidly after the impact, becoming more oxidizing during the period these bulk phases were formed.  相似文献   

6.
Abstract— At least 15% of the low‐FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x‐ray mapping plus quantitative analysis), ion microprobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water‐rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene‐ and olivine‐rich chondrules may indicate that fractionation of low‐ and high‐Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub‐parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements between altered glass and surrounding matrix and rim material. Calcium was mainly lost during this process, and other nonvolatile elements may have been mobile as well. Some unzoned, low‐FeO chondrules appear to have fully altered mesostasis.  相似文献   

7.
Micrometeorites that pass through the Earth's atmosphere undergo changes in their chemical compositions, thereby making it difficult to understand if they are sourced from the matrix, chondrules, or calcium–aluminum‐rich inclusions (CAIs). These components have the potential to provide evidence toward the understanding of the early solar nebular evolution. The variations in the major element and trace element compositions of 155 different type (scoriaceous, relict bearing, porphyritic, barred, cryptocrystalline, and glass) of S‐type cosmic spherules are investigated with the intent to decipher the parent sources using electron microprobe and laser ablation inductively coupled plasma‐mass spectrometry. The S‐type cosmic spherules appear to show a systematic depletion in volatile element contents, but have preserved their refractory trace elements. The trends in their chemical compositions suggest that the S‐type spherules comprise of components from similar parent bodies, that is, carbonaceous chondrites. Large fosteritic relict grains observed in this investigation appear to be related to the fragments of chondrules from carbonaceous chondrites. Furthermore, four spherules (two of these spherules enclose spinels and one comprised entirely of a Ca‐Al‐rich plagioclase) show enhanced trace element enrichment patterns that are drastically different from all the other 151 cosmic spherules. The information on the chemical composition and rare earth elements (REEs) on cosmic spherules suggest that the partially to fully melted ones can preserve evidences related to their parent bodies. The Ce, Eu, and Tm anomalies found in the cosmic spherules have similar behavior as that of chondrites. Distinct correlations observed between different REEs and types of cosmic spherules reflect the inherited properties of the precursors.  相似文献   

8.
Abstract— We report major element ratios determined for the S‐class asteroid 433 Eros using remote‐sensing x‐ray fluorescence spectroscopy with the near‐Earth asteroid rendezvous Shoemaker x‐ray spectrometer (XRS). Data analysis techniques and systematic errors are described in detail. Data acquired during five solar flares and during two extended “quiet Sun” periods are presented; these results sample a representative portion of the asteroid's surface. Although systematic uncertainties are potentially large, the most internally consistent and plausible interpretation of the data is that Eros has primitive Mg/Si, Al/Si, Ca/Si and Fe/Si ratios, closely similar to H or R chondrites. Global differentiation of the asteroid is ruled out. The S/Si ratio is much lower than that of chondrites, probably reflecting impact‐induced volatilization and/or photo‐ or ion‐induced sputtering of sulfur at the surface of the asteroid. An alternative explanation for the low S/Si ratio is that it reflects a limited degree of melting with loss of an FeS‐rich partial melt. Size‐sorting processes could lead to segregation of Fe‐Ni metal from silicates within the regolith of Eros; this could indicate that the Fe/Si ratios determined by the x‐ray spectrometer are not representative of the bulk Eros composition.  相似文献   

9.
Abstract— The CH carbonaceous chondrites contain a population of ferrous (Fe/(Fe + Mg) ? 0.1‐0.4) silicate spherules (chondrules), about 15–30 μm in apparent diameter, composed of cryptocrystalline olivinepyroxene normative material, ±SiO2‐rich glass, and rounded‐to‐euhedral Fe, Ni metal grains. The silicate portions of the spherules are highly depleted in refractory lithophile elements (CaO, Al2O3, and TiO2 <0.04 wt%) and enriched in FeO, MnO, Cr2O3, and Na2O relative to the dominant, volatile‐poor, magnesian chondrules from CH chondrites. The Fe/(Fe + Mg) ratio in the silicate portions of the spherules is positively correlated with Fe concentration in metal grains, which suggests that this correlation is not due to oxidation, reduction, or both of iron (FeOsil ? Femet) during melting of metal‐silicate solid precursors. Rather, we suggest that this is a condensation signature of the precursors formed under oxidizing conditions. Each metal grain is compositionally uniform, but there are significant intergrain compositional variations: about 8–18 wt% Ni, <0.09 wt% Cr, and a sub‐solar Co/Ni ratio. The precursor materials of these spherules were thus characterized by extreme elemental fractionations, which have not been observed in chondritic materials before. Particularly striking is the fractionation of Ni and Co in the rounded‐to‐euhedral metal grains, which has resulted in a Co/Ni ratio significantly below solar. The liquidus temperatures of the euhedral Fe, Ni metal grains are lower than those of the coexisting ferrous silicates, and we infer that the former crystallized in supercooled silicate melts. The metal grains are compositionally metastable; they are not decomposed into taenite and kamacite, which suggests fast postcrystallization cooling at temperatures below 970 K and lack of subsequent prolonged thermal metamorphism at temperatures above 400–500 K.  相似文献   

10.
We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5 Gyr of solar system history. Its chemistry and mineralogy were established within the first 10 Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7–2 Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100‐km), carbonaceous asteroid. It was delivered to near‐Earth space via a combination of Yarkovsky‐induced drift and interaction with giant‐planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1‐in‐2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS‐REx will return samples from the surface of this intriguing asteroid in September 2023.  相似文献   

11.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   

12.
Abstract– The asteroid belt is found today in a dramatically different state than that immediately following its formation. It is estimated that it has been depleted in total mass by a factor of at least 1000 since its formation, and that the asteroids’ orbits evolved from having near‐zero eccentricity and inclination to the complex distributions we find today. The asteroid belt also hosts a wide range of compositions, with the inner regions dominated by S‐type and other water‐poor asteroids and the outer regions dominated by C‐type and other primitive asteroids. We discuss a model of early inner solar system evolution whereby the gas‐driven migration of Jupiter and Saturn brings them inwards to 1.5 AU, truncating the disk of planetesimals in the terrestrial planet region, before migrating outwards toward their current locations. This model, informally titled “The Grand Tack,” examines the planetary dynamics of the solar system bodies during the final million years of the gaseous solar nebula lifetime—a few million years (Myr) after the formation of the first solids, but 20–80 Myr before the final accretion of Earth, and approximately 400–600 Myr before the Late Heavy Bombardment of the inner solar system. The Grand Tack attempts to solve some outstanding problems for terrestrial planet formation, by reproducing the size of Mars, but also has important implications for the asteroid population. The migration of Jupiter causes a very early depletion of the asteroid belt region, and this region is then repopulated from two distinct source regions, one inside the formation region of Jupiter and one between and beyond the giant planets. The scattered material reforms the asteroid belt, producing a population the appropriate mass, orbits, and with overlapping distributions of material from each parent source region.  相似文献   

13.
Abstract— The origin of hematite detected in Martian surface materials is commonly attributed to weathering processes or aqueous precipitation. Here, we present a new hematite formation mechanism that requires neither water nor weathering. Glass‐rich basalts with Martian meteorite‐like chemistry (high FeO, low Al2O3) oxidized at high (700 and 900 °C) temperatures in air and CO2, respectively, form thin (<1 μm) hematite coatings on their outermost surfaces. Hematite is manifested macroscopically by development of magnetism and a gray, metallic sheen on the glass surface and microscopically by Fe enrichment at the glass surface observed in element maps. Visible and near‐infrared, thermal infrared, and Raman spectroscopy confirm that the Fe enrichment at the oxidized glass surfaces corresponds to hematite mineralization. Hematite formation on basaltic glass is enabled by a mechanism that induces migration of Fe2+ to the surface of an oxidizing glass and subsequent oxidation to form hematite. A natural example of the hematite formation mechanism is provided by a Hawaiian basalt hosting a gray, metallic sheen that corresponds to a thin hematite coating. Hematite coating development on the Hawaiian basalt demonstrates that Martian meteorite‐like FeO contents are not required for hematite coating formation on basalt glass and that such coatings form during initial extrusion of the glassy basalt flows. If gray hematite originating as coatings on glassy basalt flows is an important source of Martian hematite, which is feasible given the predominance of igneous features on Mars, then the requirement of water as an agent of hematite formation is eliminated.  相似文献   

14.
Abstract— Terminal particles and mineral fragments from comet 81P/Wild 2 were studied in 16 aerogel tracks by transmission and secondary electron microscopy. In eight tracks clinopyroxenes with correlated Na2O and Cr2O3 contents as high as 6.0 wt% and 13.0 wt%, respectively, were found. Kosmochloric (Ko) clinopyroxenes were also observed in 4 chondritic interplanetary dust particles (IDPs). The Ko‐clinopyroxenes were often associated with FeO‐rich olivine ± Cr‐rich spinel ± aluminosilicate glass or albitic feldspar, assemblages referred to as Kool grains (Ko = kosmochloric Ca‐rich pyroxene, ol = olivine). Fine‐grained (submicron) Kool fragments have textures suggestive of crystallization from melts while coarse‐grained (>1 μm) Kool fragments are often glass‐free and may have formed by thermal metamorphism in the nebula. Average major and minor element distributions between clinopyroxenes and coexisting FeO‐rich olivines are consistent with these phases forming at or near equilibrium. In glass‐bearing fine‐grained Kool fragments, high concentrations of Na in the clinopyroxenes are inconsistent with existing experimentally determined partition coefficients at equilibrium. We speculate that the availability of Cr in the melt increased the clinopyroxene Na partition coefficient via a coupled substitution thereby enhancing this phase with the kosmochlor component. The high temperature minerals, fine‐grain sizes, bulk compositions and common occurrence in the SD tracks and IDPs support the idea that Kool grains could have been precursors to type II chondrules in ordinary chondrites. These grains, however, have not been observed in these meteorites suggesting that they were destroyed during chondrule formation and recycling or were not present in the nebula at the time and location where meteoritic chondrules formed.  相似文献   

15.
An assemblage with FeNi metal, troilite, Fe‐Mn‐Na phosphate, and Al‐free chromite was identified in the metal‐troilite eutectic nodules in the shock‐produced chondritic melt of the Yanzhuang H6 meteorite. Electron microprobe and Raman spectroscopic analyses show that a few phosphate globules have the composition of Na‐bearing graftonite (Fe,Mn,Na)3(PO4)2, whereas most others correspond to Mn‐bearing galileiite Na(Fe,Mn)4(PO4)3 and a possible new phosphate phase of Na2(Fe,Mn)17(PO4)12 composition. The Yanzhuang meteorite was shocked to a peak pressure of 50 GPa and a peak temperature of approximately 2000 °C. All minerals were melted after pressure release to form a chondritic melt due to very high postshock heat that brought the chondrite material above its liquidus. The volatile elements P and Na released from whitlockite and plagioclase along with elements Cr and Mn released from chromite are concentrated into the shock‐produced Fe‐Ni‐S‐O melt at high temperatures. During cooling, microcrystalline olivine and pyroxene first crystallized from the chondritic melt, metal‐troilite eutectic intergrowths, and silicate melt glass finally solidified at about 950–1000 °C. On the other hand, P, Mn, and Na in the Fe‐Ni‐S‐O melt combined with Fe and crystallized as Fe‐Mn‐Na phosphates within troilite, while Cr combined with Fe and crystallized as Al‐free chromite also within troilite.  相似文献   

16.
We model electromagnetic scattering from varying closely packed random aggregates of spheres imitating piles of rocks on the surface of an asteroid. We utilize the Multiple Sphere T‐Matrix Method software to study how different parameters affect the radar albedo and the circular‐polarization ratio, for example, the size distribution and electric permittivities of the spherical particles forming the aggregates, and to see if the computed radar albedos and circular‐polarization ratios can be linked to the observational data of asteroids detected using radar. The results of the simulations show the radar albedo and the circular‐polarization ratio as a function of size parameter for different silicate minerals, including anorthosite, peridotite olivine, and basalt. A direct vacuum‐rock surface interface will be considered as well as an approximation for a case in which the rocks are covered by a layer of powdered material, that is, fine regolith. The promising results show values on the range of observed values and imply that the highest circular‐polarization values (μc > 1) are measurable only for targets with surface material of high electric permittivity (ε′ > 4.0). However, the asteroid surface model requires further development before more robust conclusions can be made of the surface chemical and structural composition.  相似文献   

17.
Abstract— Among the samples returned from comet 81P/Wild 2 by the Stardust spacecraft is a suite of particles from one impact track (Track 25) that are Ca‐, Al‐rich and FeO‐free. We studied three particles from this track that range in size from 5.3 × 3.2 μ to 15 × 10 μ. Scanning and transmission electron microscopy show that they consist of very fine‐grained (typically from ?0.5 to ?2 μ) Al‐rich, Ti‐bearing and Ti‐free clinopyroxene, Mg‐Al spinel and anorthite, with trace amounts of fine perovskite, FeNi metal and osbornite (TiN) grains. In addition to these phases, the terminal particle, named “Inti”, also contains melilite. All of these phases, with the exception of osbornite, are common in refractory inclusions and are predicted to condense at high temperature from a gas of solar composition. Osbornite, though very rare, has also been found in meteoritic refractory inclusions, and could have formed in a region of the nebula where carbon became enriched relative to oxygen compared to solar composition. Compositions of Ti‐pyroxene in Inti are similar, but not identical, to those of fassaite from Allende inclusions. Electron energy loss spectroscopy shows that Ti‐rich pyroxene in Inti has Ti3+/Ti4+within the range of typical meteoritic fassaite, consistent with formation under reducing conditions comparable to those of a system of solar composition. Inti is 16O‐rich, with δ18O?δ17O?‐40%0, like unaltered phases in refractory inclusions and refractory IDPs. With grain sizes, mineralogy, mineral chemistry, and an oxygen isotopic composition like those of refractory inclusions, we conclude that Inti is a refractory inclusion that formed in the inner solar nebula. Identification of a particle that formed in the inner solar system among the comet samples demonstrates that there was transport of materials from the inner to the outer nebula, probably either in a bipolar outflow or by turbulence.  相似文献   

18.
Two new occurrences of porous, S‐bearing, amorphous silica are described within metal‐sulfide nodules (MSN) and as interchondrule patches in EH3 chondrites SAH 97072 and ALH 84170. This porous amorphous material, which was first reported from sulfide‐bearing chondrules, consists of sinewy SiO2‐rich areas containing S with minor Na or Ca as well as Fe, Mg, and Al. Some pores contain minerals including pyrite, pyrrhotite, and anhydrite. Most pores appear vacant or contain unidentified material that is unstable under analytical conditions. Niningerite, olivine, enstatite, albite, and kumdykolite occur enclosed within porous silica patches. Porous silica is commonly interfingered with cristobalite suggesting its amorphous structure resulted from high‐temperature quenching. We interpret the S‐bearing porous silica to be a product of silicate sulfidation, and the Na, Ca, Fe, Mg, and Al detectable within this material are chemical residues of sulfidized silicates and metal. The occurrence of porous silica in the cores of MSN, which are considered to be pre‐accretionary objects, suggests the sulfidizing conditions occurred prior to final parent‐body solidification. Ubiquitous S‐bearing porous silica among sulfide‐bearing chondrules, MSN, and in the interchondrule clastic matrix, suggests that similar sulfidizing conditions affected all the constituents of these EH3 chondrites.  相似文献   

19.
Abstract– The interior texture and chemical and noble gas composition of 99 cosmic spherules collected from the meteorite ice field around the Yamato Mountains in Antarctica were investigated. Their textures were used to classify the spherules into six different types reflecting the degree of heating: 13 were cryptocrystalline, 40 were barred olivine, 3 were porphyritic A, 24 were porphyritic B, 9 were porphyritic C, and 10 were partially melted spherules. While a correlation exists between the type of spherule and its noble gas content, there is no significant correlation between its chemical composition and noble gas content. Fifteen of the spherules still had detectable amounts of extraterrestrial He, and the majority of them had 3He/4He ratios that were close to that of solar wind (SW). The Ne isotopic composition of 28 of the spherules clustered between implantation‐fractionated SW and air. Extraterrestrial Ar, confirmed to be present because it had a 40Ar/36Ar ratio lower than that of terrestrial atmosphere, was found in 35 of the spherules. An enigmatic spherule, labeled M240410, had an extremely high concentration of cosmogenic nuclides. Assuming 4π exposure to galactic and solar cosmic rays as a micrometeoroid and no exposure on the parent body, the cosmic‐ray exposure (CRE) age of 393 Myr could be computed using cosmogenic 21Ne. Under these model assumptions, the inferred age suggests that the particle might have been an Edgeworth‐Kuiper Belt object. Alternatively, if exposure near the surface of its parent body was dominant, the CRE age of 382 Myr can be estimated from the cosmogenic 38Ar using the production rate of the 2π exposure geometry, and implies that the particle may have originated in the mature regolith of an asteroid.  相似文献   

20.
Abstract— We performed a systematic high‐precision secondary ion mass spectrometry 26Al‐26Mg isotopic study for 11 ferromagnesian chondrules from the highly unequilibrated ordinary chondrite Bishunpur (LL3.1). The chondrules are porphyritic and contain various amounts of olivine and pyroxene and interstitial plagioclase and/or glass. The chemical compositions of the chondrules vary from FeO‐poor to FeO‐rich. Eight chondrules show resolvable 26Mg excesses with a maximum δ26Mg of ?1% in two chondrules. The initial 26Al/27Al ratios inferred for these chondrules range between (2.28 ± 0.73) × 10?5 to (0.45 ± 0.21) × 10?5. Assuming a homogeneous distribution of Al isotopes in the early solar system, this range corresponds to ages relative to CAIs between 0.7 ± 0.2 Ma and 2.4+0.7?0.4 Ma. The inferred total span of the chondrule formation ages is at least 1 Ma, which is too long to form chondrules by the X‐wind. The initial 26Al/27Al ratios of the chondrules are found to correlate with the proportion of olivine to pyroxene suggesting that olivine‐rich chondrules formed earlier than pyroxene‐rich chondrules. Though we do not have a completely satisfactory explanation of this correlation we tentatively interpret it as a result of evaporative loss of Si from earlier generations of chondrules followed by addition of Si to the precursors of later generation chondrules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号