首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
A.J. Dessler 《Icarus》1980,44(2):291-295
Theoretical arguments have been presented to the effect that both plasma and energy are supplied to the Jovian magnetosphere primarily from internal sources. If we assume that Io is the source of plasma for the Jovian magnetosphere and that outward flow of plasma from the torus is the means of drawing from the kinetic energy of rotation of Jupiter to drive magnetospheric phenomena, we can obtain a new, independent estimate of the rate of mass injection from Io into the Io plasma torus. We explicitly assume the solar wind supplies neither plasma nor energy to the Jovian magnetosphere in significant amounts. The power expended by the Jovian magnetosphere is supplied by torus plasma falling outward through the corotational-centrifugal-potential field. A lower limit to the rate of mass injection into the torus, which on the average must equal the rate of mass loss from the torus, is therefore derivable if we adopt a value for the power expended to drive the various magnetospheric phenomena. This method yields an injection rate of at least 103 kg/sec, a value in agreement with the results obtained by two other independent methods of estimating mass injection rate. If this injection rate from Io and extraction of energy from Jupiter's kinetic energy of rotation has been maintained over geologic time, then approximately 0.1% of Io's mass (principally in the form of sulfur and oxygen) has been lost to the Jovian magnetosphere, and Jupiter's spin rate has been reduced by less than 0.1%.  相似文献   

2.
The Ulysses flyby of Jupiter has permitted the detection of a variety of quasiperiodic magnetospheric phenomena. In this paper, Unified Radio and Plasma Wave Experiment (URAP) observations of quasiperiodic radio bursts are presented. There appear to be two preferred periods of short-term variability in the Jovian magnetosphere, as indicated by two classes of bursts, one with 40 min periodicity, the other with 15 min periodicity. The URAP radio direction determination capability provides clear evidence that the 40 min bursts originate near the southern Jovian magnetic pole, whereas the source location of the 15 min bursts remains uncertain. These bursts may be the signatures of quasiperiodic electron acceleration in the Jovian magnetosphere; however, only the 40 min bursts occur in association with observed electron bursts of similar periodicity. Both classes of bursts show some evidence of solar wind control. In particular, the onset of enhanced 40 min burst activity is well correlated with the arrival of high-velocity solar wind streams at Jupiter, thereby providing a remote monitor of solar wind conditions at Jupiter.  相似文献   

3.
The effect of parallel electrostatic field on the amplification of whistler mode waves in an anisotropic bi-Maxwellian weakly ionized plasma for Jovian magnetospheric conditions has been carried out. The growth rate for different Jovian magnetospheric plasma parameters forL = 5.6R j has been computed with the help of general dispersion relation for the whistler mode electromagnetic wave of a drifted bi-Maxwellian distribution function. It is observed that the growth or damping of whistler mode waves in Jovian magnetosphere is possible when the wave vector is parallel or antiparallel to the static magnetic field and the effect of this field is more pronounced at low frequency wave spectrum.  相似文献   

4.
The radio azimuths for many kilometric type III bursts that originate near or behind the limb of the Sun are observed to drift far to the east or far to the west of the spacecraft-Sun line. It is shown that the behavior of the observed burst parameters for these events corresponds to the response of a spinning dipole antenna to halo-like sources of radiation around the Sun. Our results provide evidence for a previous suggestion that behind-the-limb type III events should appear as halo-like sources of radiation to an observer on the opposite side of the Sun, due to scattering of the radiation from the primary source back around the Sun.  相似文献   

5.
During its inbound journey into Jupiter's magnetosphere, Ulysses had several encounters with the Jovian plasma sheet near the magnetic equator, which were related with intensity maxima in the energetic particles. We show for the first time anisotropies in three dimensions of three ion species (protons, helium and oxygen) in the energy range 0.24 < E < 0.77 [MeV/nucleon]. The data, obtained with the Energetic Particle Composition Experiment (EPAC) onboard Ulysses have been analysed by using spherical harmonics in three dimensions. We show that the first-order anisotropies of ions in or near the plasma sheet are strongest in a plane parallel to the ecliptic plane and more or less azimuthal with respect to the rotation of Jupiter. We show that the first-order anisotropy amplitude is larger for helium and oxygen ions than for protons in nearly the same energy per nucleon range. We find flow velocities for helium ions which are not consistent with corotation, but are larger by a factor of 2 in and near the Jovian plasma sheet on the dayside magnetosphere. In contrast for protons we observe nearly corotation. Far from the plasma sheet, at high magnetic latitudes, the flow velocities are less than corotation for protons, as well as for helium and oxygen. The azimuthal particle anisotropies are explained by intensity gradients perpendicular to the centre of the plasma sheet, by E × B particle drifts, and by nonadiabatic orbits of the particles near the Jovian plasma sheet. All of the three phenomena act in the same azimuthal direction, perpendicular to the mainly radial magnetic field direction. Each of them can be estimated, but their individual effects cannot be distinguished from each other. In addition, we find a radial component of the anisotropy which apparently is stronger for protons than for heavier ions. This radial anisotropy component is interpreted as a result of the radial outward displacement of ions in an azimuthally swept back magnetic field.  相似文献   

6.
We present results from an investigation of the plasma sheet encounter signatures observed in the Jovian magnetosphere by the Energetic Particles Detector (EPD) and Magnetometer (MAG) onboard the Galileo spacecraft. Maxima in ion flux were used to identify over 500 spacecraft encounters with the plasma sheet between radial distances from Jupiter from 20 to 140RJ during the first 25 orbits (4 years of data). Typical signatures of plasma sheet encounters show a characteristic periodicity of either 5 or 10 hours that is attributed to an oscillation in the relative distance between the spacecraft and the plasma sheet that arises from the combination of planetary rotation and offset magnetic and rotational axes. However, the energetic particle and field data also display much variability, including instances of intense fluxes having little to no periodicity that persist for several Jovian rotation periods. Abrupt changes in the mean distance between the plasma sheet and the spacecraft are suggested to account for some of the transitions between typical flux periodicities associated with plasma sheet encounters. Additional changes in the plasma sheet thickness and/or amplitude of the plasma sheet displacement from the location of the spacecraft are required to explain the cases where the periodicity breaks down but fluxes remain high. These changes in plasma sheet characteristics do not display an obvious periodicity; however, the observations suggest that dawn/dusk asymmetries in both the structure of the plasma sheet and the frequency of anomalous plasma sheet encounters are present. Evidence of a thin, well-ordered plasma sheet is found out to 110RJ in the dawn and midnight local time sectors, while the dusk magnetosphere is characterized by a thicker, more disordered plasma sheet and has a potentially more pronounced response to an impulsive trigger. Temporal variations associated with changing solar wind conditions are suggested to account for the anomalous plasma sheet encounters there.  相似文献   

7.
A rotation-dominated magnetosphere is unstable to magnetic flux-tube interchange motions if and only if the plasma content of a unit magnetic flux tube is a decreasing function of distance from the spin axis. For a spin-aligned dipole field the marginally stable distribution is approximately ρr9/2 = constant, where ρ is the plasma mass density at the radial distance r in the equatorial plane. Plasma filling the Jovian magnetosphere from internal sources would initially violate this stability criterion so that interchange motions would act to establish the marginally stable distribution.  相似文献   

8.
P. Zarka   《Planetary and Space Science》2004,52(15):1455-1467
Jupiter emits intense decameter (DAM) radio waves, detectable from the ground in the range 10–40 MHz. They are produced by energetic electron precipitations in its auroral regions (auroral-DAM), as well as near the magnetic footprints of the Galilean satellite Io (Io-DAM). Radio imaging of these decameter emissions with arcsecond angular resolution and millisecond time resolution should provide:
(1) an improved mapping of the surface planetary magnetic field, via imaging of instantaneous cyclotron sources of highest frequency;

(2) measurements of the beaming angle of the radiation relative to the local magnetic field, as a function of frequency;

(3) detailed information on the Io–Jupiter electrodynamic interaction, in particular the lead angle between the Io flux tube and the radio emitting field line;

(4) direct information on the origin of the sporadic drifting decameter S-bursts, thought to be electron bunches propagating along magnetic field lines, and possibly revealing electric potential drops along these field lines;

(5) direct observation of DAM emission possibly related to the Ganymede–Jupiter, Europa–Jupiter and/or Callisto–Jupiter interactions, and their energetics;

(6) information on the magnetospheric dynamics, via correlation of radio images with ultraviolet and infrared images of the aurora as well as of the Galilean satellite footprints, and study of their temporal variations;

(7) an improved mapping of the Jovian plasma environment (especially the Io torus) via the propagation effects that it induces on the radio waves propagating through it (Faraday rotation, diffraction fringes, etc.);

(8) possibly on the long-term a better accuracy on the determination of Jupiter's rotation period.

Fast imaging should be permitted by the very high intensity of Jovian decameter bursts. LOFAR's capability to measure the full polarization of the incoming waves will be exploited. The main limitation will come from the maximum angular resolution reachable. We discuss several approaches for bringing it close to the value of 1 at 30–40 MHz, as required for the above studies.

Keywords: Jupiter; Magnetosphere; Radio emission; Radio astronomy; LOFAR; Solar system; Planetology  相似文献   


9.
Ulysses had a “distant encounter” with Jupiter in February 2004. The spacecraft passed from north to south, and it observed Jovian radio waves from high to low latitudes (from +80° to +10°) for few months during its encounter. In this study, we present a statistical investigation of the occurrence characteristics of Jovian quasi-periodic bursts, using spectral data from the unified radio and plasma wave experiment (URAP) onboard Ulysses. The latitudinal distribution of quasi-periodic bursts is derived for the first time. The analysis suggested that the bursts can be roughly categorized into two types: one having periods shorter than 30 min and one with periods longer than 30 min, which is consistent with the results of the previous analysis of data from Ulysses’ first Jovian flyby [MacDowall, R.J., Kaiser, M.L., Desch, M.D., Farrell, W.M., Hess, R.A., Stone, R.G., 1993. Quasi-periodic Jovian radio bursts: observations from the Ulysses radio and plasma wave. Experiment. Planet. Space Sci. 41, 1059-1072]. It is also suggested that the groups of quasi-periodic bursts showed a dependence on the Jovian longitude of the sub-solar point, which means that these burst groups are triggered during a particular rotational phase of the planet. Maps of the occurrence probability of these quasi-periodic bursts also showed a unique CML/MLAT dependence. We performed a 3D ray tracing analysis of the quasi-periodic burst emission to learn more about the source distribution. The results suggest that the longitudinal distribution of the occurrence probability depends on the rotational phase. The source region of quasi-periodic bursts seems to be located at an altitude between 0.4 and 1.4 Rj above the polar cap region (L>30).  相似文献   

10.
《Planetary and Space Science》1999,47(3-4):521-527
It is widely recognized that Io, the innermost of the Galilean satellites, releases matter into the rapidly-rotating Jovian magnetosphere at rates that may be as high as a ton per second. Following ionization, this iogenic, heavy-ion plasma dominates the dynamics of the Jovian magnetosphere. On average this plasma must be lost at a rate that balances its generation but we do not know whether this process is steady or intermittent. Measurements by the Galileo magnetometer suggest that this process is unsteady. By estimating the magnetic and particle stresses from these observations, we further can derive a mass density profile that is consistent with earlier measurements of the current sheet density and that is consistent with estimates of the radial transport of mass in the middle Jovian magnetosphere.  相似文献   

11.
A model for the source of microwave bursts from the Crab pulsar in the form of a current sheet with a transversemagnetic field has been investigated. The emission generation mechanism is based on the excitation of plasma waves at the double plasma resonance frequencies in a nonrelativistic nonequilibrium plasma followed by their scattering into electromagnetic waves that escape from the current sheet into the neutron star magnetosphere. The basic parameters of the source explaining the observed characteristics of quasi-harmonic bursts in the interpulses of radio emission from this pulsar have been established.  相似文献   

12.
We use the specific scintillations of jovian decametric radio sources (modulation lanes), which are produced by plasma inhomogeneities in the vicinity of that planet, to probe the inner magnetosphere of Jupiter. The positions and frequency drift of 1762 lanes have been measured on the DAM spectra from archives. A special 3D algorithm is used for space localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. As a result, the main regions of the lane formation are found: the Io plasma torus; the magnetic shell of the Gossamer Ring at Thebe and Amalthea orbits; and the region above the magnetic anomaly in the northern magnetosphere. It is shown that modulation lanes reveal the depleted magnetic tubes in practically unvisited, innermost regions of the jovian magnetosphere. The local and probably temporal plasma enhancement is found at the magnetic shell of Thebe satellite. Hence, the modulation lanes are a valuable instrument for remote sensing of those parts of jovian magnetosphere, which are not studied yet in situ.  相似文献   

13.
Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKp. The dynamic cross-correlation between JDW and ΣKp indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period.  相似文献   

14.
Mel'nik  V.N. 《Solar physics》2003,212(1):111-119
It was found recently that fast electrons travel through the plasma of the solar corona in the form of beam-plasma structure (BPS), which consists of electrons and Langmuir waves. In this paper the influence of scattering BPS Langmuir waves off plasma ions (l+i=l+i) on BPS velocity is studied. We show that the maximum BPS velocity equals 0.35c, which is close to the velocity of Type III bursts sources.  相似文献   

15.
A general expression for the tensor of the dielectrical susceptibility in an anisotropic plasma with particle drifts is derived, and the dispersion equation is found for waves propagating in arbitrary direction with respect to the mean magnetic field. The dispersion equation is solved for the case of electromagnetic ion‐cyclotron waves. It is found that in the plasma of the auroral magnetosphere strong plasma instability may occur so that the value of the growth rate of the waves is of the order of the wave frequency. Besides, the plasma instability is excited at less values of the wave number if the magnetospheric altitude becomes larger.  相似文献   

16.
Ulysses plasma electron observations of bidirectional and enhanced unidirectional electron heat fluxes within 4500 RJ (0.8 a.u. or 3 months on either side of closest approach) of Jupiter are presented as evidence for the magnetic connection of the spacecraft to the Jovian bow shock. These bursts of suprathermal electrons (> 30 eV) are observed when the interplanetary magnetic field points roughly parallel or antiparallel to the Jupiter-spacecraft line. Ninety-eight possible connection events were found over the 6 month period centered on the closest approach to Jupiter. The frequency of occurrence peaked with proximity to the bow shock, with most events occurring post-encounter. These are the first observations of backstreaming suprathermal electrons made in the vicinity of the Jovian bow shock.  相似文献   

17.
It is proposed that radiation belts similar to the ones in the planetary magnetosphere can exist for a pulsar with a relatively long period and a strong magnetic field. In the belts located in the closed field line region near the light cylinder relativistic pairs are trapped and maintained at a density substantially higher than the local Goldreich–Julian corotation density. The trapped plasma can be supplied and replenished by either direct injection of relativistic pairs from acceleration of externally supplied particles in a dormant outer gap or in situ ionization of the accreted neutral material in the trapping region. The radiation belts can be disrupted by waves that are excited in the region as the result of plasma instabilities or emitted from the surface due to starquakes or stellar oscillations. The disruption can cause an intermittent particle precipitation towards the star producing radio bursts. It is suggested that such bursts may be seen as rotating radio transients.  相似文献   

18.
The Io flux tube (IFT), along which Io interacts with the Jovian magnetosphere, is the place of plasma acceleration processes resulting in auroral like emissions, in UV, IR and Radio emissions in the decameter range. At Earth, the study of the acceleration processes is mainly made by in situ measurements. Acceleration processes at Jupiter were first deduced from the observation of a particular kind of decameter radio emissions from the IFT: the short (S-)bursts. These radio bursts present a negative drift in the time-frequency domain, which is related to the motion of the energetic electrons which produce them. The measure of their drift thus permits the kinetic energy of the electrons to be obtained, as well as its variations along the IFT which have been interpreted as electric potential jumps. Using an enhanced S-burst detection and drift measurement method, more than 1 h of quasi-continuous decametric emissions recorded at the Kharkov UTR-2 radiotelescope have been analyzed. We observe the evolution of the electron kinetic energy with the longitude of Io with a resolution of , and detect the presence of acceleration structures with characteristics being consistent with electric potential jumps of few hundred volts, and moving along the IFT in the upward direction (toward Io) at the local sound velocity.  相似文献   

19.
The magnetosphere of Jupiter has been the subject of extensive research in recent years due to its detectable radio emissions. Observations in the decimetric radio band have been particular helpful in ascertaining the general shape of the Jovian magnetic field, which is currently believed to be a dipole with minor perturbations. Although there is no direct evidence for thermal plasma in the magnetosphere of Jupiter, theoretical considerations about the physical processes that must occur in the ionosphere and magnetosphere surrounding Jupiter have lead to estimates of the thermal plasma distribution. These models of the Jovian magnetic field and thermal plasma distribution, specify the characteristic plasma and cyclotron frequencies in the magnetosplasma and thereby provide a basis for estimating thelocal electromagnetic and hydromagnetic noise around Jupiter. Spatial analogs of the well-known Clemmow-Mullaly-Allis (CMA) diagrams have been constructed to identify the loci of electron and ion resonances and cutoffs for the different field and plasma models. Regions of reflection, mode coupling, and probable amplification are readily identified. The corresponding radio noise properties may be estimated qualitatively on the basis of these various electromagnetic and hydromagnetic wave mode regions. Frequency bands and regions of intense natural noise may be estimated. On the basis of the models considered, the radio noise properties around Jupiter are quite different from those encountered in the magnetosphere around the Earth. Wave particle interactions are largely confined to the immediate vicinity of the zenographic equatorial plane and guided propagation from one hemisphere to the other apparently does not occur, except for hydromagnetic modes of propagation. The characteristics of these local signals are indicative of the physical processes occurring in the Jovian magnetosphere. Thus, as a remote sensing tool, their observation will be a vital asset in the exploration of Jupiter.  相似文献   

20.
The outer regions (r > 2.3 Rj; Rj = radius of Jupiter) of the magnetosphere of Jupiter will systematically accumulate plasma. If sufficient plasma accumulates, the field lines must open to allow the plasma to escape. Available energy sources appear able to supply plasma at a high enough rate to keep the field lines constantly open beyond about 60 RJ. We suggest that the solar wind interaction with Jupiter may be essentially different from that with the Earth, with the Jovian magnetosphere opening up to form a planetary wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号