首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– We have examined Fe/Mn systematics of 34 type IIA chondrules in eight highly unequilibrated CO, CR, and ordinary chondrites using new data from this study and prior studies from our laboratory. Olivine grains from type IIA chondrules in CO chondrites and unequilibrated ordinary chondrites (UOC) have significantly different Fe/Mn ratios, with mean molar Fe/Mn = 99 and 44, respectively. Olivine analyses from both these chondrite groups show well‐defined trends in Mn versus Fe (afu) and molar Fe/Mn versus Fe/Mg diagrams. In general, type IIA chondrules in CR chondrites have properties intermediate between those in UOC and CO chondrites. In most UOC and CR type IIA chondrules, the Fe/Mn ratio of olivine decreases during crystallization, whereas in CO chondrites the Fe/Mn ratio does not appear to change. It is difficult to interpret the observed Fe/Mn trends in terms of differing moderately volatile element depletions inherited from precursor materials. Instead, we suggest that significant differences in the abundances of silicates and sulfides ± metals in the precursor material, as well as open‐system behavior during chondrule formation, were responsible for establishing the different Fe/Mn trends. Using Fe‐Mn‐Mg systematics, we are able to identify relict grains in type IIA chondrules, which could be derived from previous generations of chondrules, including chondrules from other chondrite groups, and possibly chondritic reservoirs that have not been sampled previously.  相似文献   

2.
Abstract— We used synchrotron X‐ray microtomography to image in 3‐dimensions (3D) eight whole chondrules in a ?1 cm3piece of the Renazzo (CR) chondrite at ?17 μm per volume element (voxel) edge. We report the first volumetric (3D) measurement of metal/silicate ratios in chondrules and quantify indices of chondrule sphericity. Volumetric metal abundances in whole chondrules range from 1 to 37 volume % in 8 measured chondrules and by inspection in tomography data. We show that metal abundances and metal grain locations in individual chondrules cannot be reliably obtained from single random 2D sections. Samples were physically cut to intersect representative chondrules multiple times and to verify 3D data. Detailed 2D chemical analysis combined with 3D data yield highly variable whole‐chondrule Mg/Si ratios with a supra‐chondritic mean value, yet the chemically diverse, independently formed chondrules are mutually complementary in preserving chondritic (solar) Fe/Si ratios in the aggregate CR chondrite. These results are consistent with localized chondrule formation and rapid accretion resulting in chondrule + matrix aggregates (meteorite parent bodies) that preserve the bulk chondritic composition of source regions.  相似文献   

3.
Abstract— In a search for evidence of evaporation during chondrule formation, the mesostases of 11 Bishunpur chondrules and melt inclusions in olivine phenocrysts in 7 of them have been analyzed for their alkali element abundances and K‐isotopic compositions. Except for six points, all areas of the chondrules that were analyzed had δ41K compositions that were normal within error (typically ±3%, 2s?). The six “anomalous” points are probably all artifacts. Experiments have shown that free evaporation of K leads to large 41K enrichments in the evaporation residues, consistent with Rayleigh fractionation. Under Rayleigh conditions, a 3% enrichment in δ41K is produced by ~12% loss of K. The range of L‐chondrite‐normalized K/Al ratios (a measure of the K‐elemental fractionation) in the areas analyzed vary by almost three orders of magnitude. If all chondrules started out with L‐chondrite‐like K abundances and the K loss occurred via Rayleigh fractionation, the most K‐depleted chondrules would have had compositions of up to δ41K ? 200%. Clearly, K fractionation did not occur by evaporation under Rayleigh conditions. Yet experiments and modeling indicate that K should have been lost during chondrule formation under currently accepted formation conditions (peak temperature, cooling rate, etc.). Invoking precursors with variable alkali abundances to produce the range of K/Al fractionation in chondrules does not explain the K‐isotopic data because any K that was present should still have experienced sufficient loss during melting for there to have been a measurable isotopic fractionation. If K loss and isotopic fractionation was inevitable during chondrule formation, the absence of K‐isotopic fractionation in Bishunpur chondrules requires that they exchanged K with an isotopically normal reservoir during or after formation. There is evidence for alkali exchange between chondrules and rim‐matrix in all unequilibrated ordinary chondrites. However, melt inclusions can have alkali abundances that are much lower than the mesostases of the host chondrules, which suggests that they at least remained closed since formation. If it is correct that some or all melt inclusions remained closed since formation, the absence of K‐isotopic fractionation in them requires that the K‐isotopic exchange took place during chondrule formation, which would probably require gas‐chondrule exchange. Potassium evaporated from fine‐grained dust and chondrules during chondrule formation may have produced sufficient K‐vapor pressure for gas‐chondrule isotopic exchange to be complete on the timescales of chondrule formation. Alternatively, our understanding of chondrule formation conditions based on synthesis experiments needs some reevaluation.  相似文献   

4.
Abstract– Unequilibrated ordinary chondrites (UOCs) of all groups (H, L, LL) contain unique chondrite clasts, which are characterized by a close‐fit texture of deformed and indented chondrules. These clasts, termed “cluster chondrites,” occur in 41% of the investigated samples with modal abundances between 5 and 90 vol% and size variations between <1 mm and 10 cm. They show the highest chondrule abundances compared with all chondrite classes (82–92 vol%) and only low amounts of fine‐grained interchondrule matrix and rims (3–9 vol%). The mean degree of chondrule deformation varies between 11% and 17%, compared to 5% in the clastic portions of their host breccias and to values of 3–5% found in UOC literature, respectively. The maximum deformation of individual chondrules is about 50%, a value which seemingly cannot be exceeded due to geometric limitations. Both viscous and brittle chondrule deformation is observed. A model for cluster chondrite formation is proposed where hot and deformable chondrules together with only small amounts of co‐accreting matrix formed a planetesimal or reached the surface of an already existing body within hours to a few days after chondrule formation. They deformed in a hot stage, possibly due to collisional compression by accreting material. Later, the resulting rocks were brecciated by impact processes. Thus, cluster chondrite clasts are interpreted as relicts of primary accretionary rocks of unknown original dimensions. If correct, this places a severe constraint on chondrule‐forming conditions. Cluster chondrites would document local chondrule formation, where chondrule‐forming heating events and the accretion of chondritic bodies were closely linked in time and space.  相似文献   

5.
Abstract— The matrices of all primitive chondrites contain presolar materials (circumstellar grains and interstellar organics) in roughly CI abundances, suggesting that all chondrites accreted matrix that is dominated by a CI‐like component. The matrix‐normalized abundances of the more volatile elements (condensation temperatures <750–800 K) in carbonaceous and ordinary chondrites are also at or slightly above CI levels. The modest excesses may be due to low levels of these elements in chondrules and associated metal. Subtraction of a CI‐like matrix component from a bulk ordinary chondrite composition closely matches the average composition of chondrules determined by instrumental neutron activation analysis (INAA) if some Fe‐metal is added to the chondrule composition. Measured matrix compositions are not CI‐like. Sampling bias and secondary redistribution of elements may have played a role, but the best explanation is that ?10–30% of refractory‐rich, volatile depleted material was added to matrix. If most of the more volatile elements are in a CI‐dominated matrix, the major and volatile element fractionations must be largely carried by chondrules. There is both direct and indirect evidence for evaporation during chondrule formation. Type IIA and type B chondrules could have formed from a mixture of CI material and material evaporated from type IA chondrules. The Mg‐Si‐Fe fractionations in the ordinary chondrites can be reproduced with the loss of type IA chondrule material and associated metal. The loss of evaporated material from the chondrules could explain the volatile element fractionations. Mechanisms for how these fractionations occurred are necessarily speculative, but two possibilities are briefly explored.  相似文献   

6.
Abstract– We investigate the hypothesis that many chondrules are frozen droplets of spray from impact plumes launched when thin‐shelled, largely molten planetesimals collided at low speed during accretion. This scenario, here dubbed “splashing,” stems from evidence that such planetesimals, intensely heated by 26Al, were abundant in the protoplanetary disk when chondrules were being formed approximately 2 Myr after calcium‐aluminum‐rich inclusions (CAIs), and that chondrites, far from sampling the earliest planetesimals, are made from material that accreted later, when 26Al could no longer induce melting. We show how “splashing” is reconcilable with many features of chondrules, including their ages, chemistry, peak temperatures, abundances, sizes, cooling rates, indented shapes, “relict” grains, igneous rims, and metal blebs, and is also reconcilable with features that challenge the conventional view that chondrules are flash‐melted dust‐clumps, particularly the high concentrations of Na and FeO in chondrules, but also including chondrule diversity, large phenocrysts, macrochondrules, scarcity of dust‐clumps, and heating. We speculate that type I (FeO‐poor) chondrules come from planetesimals that accreted early in the reduced, partially condensed, hot inner nebula, and that type II (FeO‐rich) chondrules come from planetesimals that accreted in a later, or more distal, cool nebular setting where incorporation of water‐ice with high Δ17O aided oxidation during heating. We propose that multiple collisions and repeated re‐accretion of chondrules and other debris within restricted annular zones gave each chondrite group its distinctive properties, and led to so‐called “complementarity” and metal depletion in chondrites. We suggest that differentiated meteorites are numerically rare compared with chondrites because their initially plentiful molten parent bodies were mostly destroyed during chondrule formation.  相似文献   

7.
Abstract— Cooling rates of chondrules provide important constraints on the formation process of chondrite components at high temperatures. Although many dynamic crystallization experiments have been performed to obtain the cooling rate of chondrules, these only provide a possible range of cooling rates, rather than providing actual measured values from natural chondrules. We have developed a new model to calculate chondrule cooling rates by using the Fe‐Mg chemical zoning profile of olivine, considering diffusional modification of zoning profiles as crystals grow by fractional crystallization from a chondrule melt. The model was successfully verified by reproducing the Fe‐Mg zoning profiles obtained in dynamic crystallization experiments on analogs for type II chondrules in Semarkona. We applied the model to calculating cooling rates for olivine grains of type II porphyritic olivine chondrules in the Semarkona (LL3.00) ordinary chondrite. Calculated cooling rates show a wide range from 0.7 °C/h to 2400 °C/h and are broadly consistent with those obtained by dynamic crystallization experiments (10–1000 °C/h). Variations in cooling rates in individual chondrules can be attributed to the fact that we modeled grains with different core Fa compositions that are more Fe‐rich either because of sectioning effects or because of delayed nucleation. Variations in cooling rates among chondrules suggest that each chondrule formed in different conditions, for example in regions with varying gas density, and assembled in the Semarkona parent body after chondrule formation.  相似文献   

8.
Cluster chondrites are characterized by close‐fit textures of deformed and indented chondrules, taken as evidence for hot chondrule accretion (Metzler 2012 ). We investigated seven cluster chondrite clasts from six brecciated LL3 chondrites and measured their bulk oxygen isotopic and chemical composition, including REE, Zr, and Hf. The same parameters were measured in situ on 93 chondrules and 4 interchondrule matrix areas. The CI‐normalized REE patterns of the clasts are flat, showing LL‐chondritic concentrations. The mean chemical compositions of chondrules in clasts and other LL chondrites are indistinguishable and we conclude that cluster chondrite chondrules are representative of the normal LL chondrule population. Type II chondrules are depleted in MgO, Al2O3 and refractory lithophiles (REE, Zr, Hf) by factors between 0.65 and 0.79 compared to type I chondrules. The chondrule REE patterns are basically flat with slight LREE < HREE fractionations. Many chondrules exhibit negative Eu anomalies while matrix shows a complementary pattern. Chondrules scatter along a correlation line with a slope of 0.63 in the oxygen 3‐isotope diagram, interpreted as the result of O‐isotope exchange between chondrule melts and 18O‐rich nebular components. In one clast, a distinct anticorrelation between chondrule size and δ18O is found, which may indicate a more intense oxygen isotope exchange by smaller chondrules. In some clasts the δ18O values of type I chondrules are correlated with concentrations of SiO2 and MnO and anticorrelated with MgO, possibly due to the admixture of a SiO2‐ and MnO‐rich component to chondrule melts during oxygen isotope exchange. Two chondrules with negative anomalies in Sm, Eu, and Yb were found and may relate their precursors to refractory material known from group III CAIs. Furthermore, three chondrules with strong LREE > HREE and Zr/Hf fractionations were detected, whose formation history remains to be explained.  相似文献   

9.
Abstract— We carried out a petrologic and instrumental neutron activation analysis (INAA) whole chondrite compositional study of Grosvenor Mountains (GRO) 95577. GRO 95577 has many petrological similarities to the CR chondrites. Although the INAA data show patterns indicative of terrestrial weathering, some of the elemental abundances are consistent with a relationship to CR chondrites. The oxygen isotopic composition of GRO 95577 plots close to the Renazzo CR chondrite on the three‐isotope diagram. However, GRO 95577 is remarkable in that the chondrules are completely hydrated, consisting almost entirely of phyllosilicates, magnetite, and sulfides. Although GRO 95577 is completely hydrated, the initial chondrule textures are perfectly preserved. The chondrules are in sharp contact with the matrix, their fine‐grained rims are clearly visible, and the boundaries of the dark inclusions can be easily discerned. Many chondrules in GRO 95577 have textures suggestive of type I chondrules, but the phenocrysts have undergone perfect pseudomorphic replacement by yellow to brownish serpentine‐rich phyllosilicate, with sharp original crystal outlines preserved. The chondrule mesostasis is a green aluminous chlorite‐rich material, most likely a hydration product of the feldspathic mesostasis commonly found in anhydrous type I chondrules. Some chondrules contain magnetite spheres, most likely formed by oxidation of metal. We propose that GRO 95577 be classified as a CR1 chondrite, making it the first known CR1 chondrite and expanding the range of alteration conditions on the CR parent body.  相似文献   

10.
For the first time, ordinary chondrite material—the most common type among the present-day fall meteorite—has been found in the unique Kaidun breccia. The discovered object is a large unequilibrated olivine-pyroxene porphyritic chondrule, with peripheral and central zones of different structures, suggesting different crystallization regimes. In chemical composition, the chondrule corresponds to unequilibrated ordinary chondrites of petrological type 3; it is enriched in lithophile elements and depleted in siderophiles, indicating formation by melting of the parent material, which preceded or was accompanied by metal-silicate fractionating. The chondrule material was subjected to aqueous alteration that formed smectite and calcite in the cavities and veins of its central part. The anomalous oxygen isotopic compositions of the chondrule are evidence of an oxygen reservoir different from known types of meteorites, including the ordinary-chondrite chondrules. Thus, the unique breccia Kaidun contains ordinary chondrite material along with carbonaceous and enstatite chondrite material, products of early nebular processes, and highly differentiated planetary-type material.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 2, 2005, pp. 169–176.Original Russian Text Copyright © 2005 by Ivanova, Kononkova, Ivanov.  相似文献   

11.
Abstract— In order to explore the origin of chondrules and the chondrites, the O isotopic compositions of nine olivine grains in seven chondrules from the primitive Semarkona LL3.0 chondrite have been determined by ion microprobe. The data plot in the same general region of the three-isotope plot as whole-chondrule samples from ordinary chondrites previously measured by other techniques. There are no significant differences between the O isotopic properties of olivine in the various chondrule groups in the present study, but there is a slight indication that the data plot at the 16O-rich end of the ordinary chondrite field. This might suggest that the mesostasis contains isotopically heavy O. The olivines in the present study have O isotopic compositions unlike the 16O-rich olivine grains from the Julesburg ordinary chondrite. Even though olivines in group A chondrules have several properties in common with them, the 16O-rich Julesburg olivines previously reported are not simply olivines from group A chondrules.  相似文献   

12.
Here, we report the mineralogy, petrography, C‐N‐O‐stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo‐like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano‐like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole‐rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre‐accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable.  相似文献   

13.
Abstract– Here, we show that several geochemical indicators point to number densities during chondrule formation that were far higher than can be accounted for by known nebula processes. The number densities implied by compound chondrules and nonspherical chondrules are shown to be significantly higher than estimated in previous studies. At the implied chondrule number densities, if a chondrule formation region survived a formation event it would have been gravitationally bound and would have collapsed quite rapidly to form an asteroidal‐sized body. The diversity of chondrule compositions and textures in a chondrite group could have formed in a single event in subvolumes of a formation region that were chemically isolated from one another because of slow diffusion in the gas. Within these subvolumes, equilibration between chondrules with different compositions would have been fairly rapid, although small isotopic mass fractionations in elements like Fe, Si, Mg, and O may persist. This could explain the existence of the small isotopic mass fractionations in these elements that have been observed in chondrules. However, the evidence for recycling of chondrules requires that there was more than one chondrule formation event prior to formation of a parent asteroid. Finally, we argue that OC and CO chondrule Mg‐Al systematics are both consistent with single ages or narrow ranges of ages, and that the CO, and possibly the OC, ages date parent body alteration. This would resolve the conundrum of needing to preserve in a turbulent nebula physically and chemically distinct CO and OC chondrule populations for 1–2 Myr.  相似文献   

14.
Abstract— Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X‐ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO‐rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr‐rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr‐rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re‐enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised.  相似文献   

15.
Abstract– Chondrule compositions suggest either ferroan precursors and evaporation, or magnesian precursors and condensation. Type I chondrule precursors include granoblastic olivine aggregates (planetary or nebular) and fine‐grained (dustball) precursors. In carbonaceous chondrites, type I chondrule precursors were S‐free, while type II chondrules have higher Fe/Mn than in ordinary chondrites. Many type II chondrules contain diverse forsteritic relicts, consistent with polymict dustball precursors. The relationship between finer and coarser grained type I chondrules in ordinary chondrites suggests more evaporation from more highly melted chondrules. Fe metal in type I, and Na and S in type II chondrules indicate high partial pressures in ambient gas, as they are rapidly evaporated at canonical conditions. The occurrence of metal, sulfide, or low‐Ca pyroxene on chondrule rims suggests (re)condensation. In Semarkona type II chondrules, Na‐rich olivine cores, Na‐poor melt inclusions, and Na‐rich mesostases suggest evaporation followed by recondensation. Type II chondrules have correlated FeO and MnO, consistent with condensation onto forsteritic precursors, but with different ratios in carbonaceous chondrites and ordinary chondrites, indicating different redox history. The high partial pressures of lithophile elements require large dense clouds, either clumps in the protoplanetary disk, impact plumes, or bow shocks around protoplanets. In ordinary chondrites, clusters of type I and type II chondrules indicate high number densities and their similar oxygen isotopic compositions suggest recycling together. In carbonaceous chondrites, the much less abundant type II chondrules were probably added late to batches of type I chondrules from different O isotopic reservoirs.  相似文献   

16.
Abstract— Petrographic and bulk compositional data suggest the existence of a new grouplet of carbonaceous chondrites consisting of Coolidge and Loongana 001. Coolidge is a carbonaceous chondrite find from Kansas, USA, previously considered a metamorphosed CV chondrite. Loongana 001 is a recent find from Western Australia. It has a high matrix/chondrule modal abundance ratio, 1–2 vol% refractory inclusions and high refractory lithophile abundance ratios (~1.35x CI), indicating that it is a carbonaceous chondrite. Coolidge and Loongana 001 have many compositional and petrographic similarities. They have refractory element abundances in the range of CV chondrites, significantly higher than those in the CR chondrites. They have similar volatile element abundance patterns showing low volatile element abundances relative to both CR and CV chondrites. Coolidge and Loongana 001 have similar chondrule dimensions and shapes, oxidation states and opaque mineral assemblages. They are also similar in petrologic type (3.8–4) and shock stage (S2). Although both Coolidge and Loongana 001 may be related to the CV clan, they are not CV chondrites, nor are they formed by metamorphism of a CV precursor. They are distinctly different in composition from CV chondrites and their chondrules are smaller and have a much lower abundance of coarse-grained chondrule rims. Coolidge and Loongana 001 constitute a distinct carbonaceous chondrite grouplet.  相似文献   

17.
CM meteorites are dominant members of carbonaceous chondrites (CCs), which evidently accreted in a region separated from the terrestrial planets. These chondrites are key in determining the accretion regions of solar system materials, since in Mg and Cr isotope space, they intersect between what are identified as inner and outer solar system reservoirs. In this model, the outer reservoir is represented by metal‐rich carbonaceous chondrites (MRCCs), including CR chondrites. An important question remains whether the barrier between MRCCs and CCs was a temporal or spatial one. CM chondrites and chondrules are used here to identify the nature of the barrier as well as the timescale of chondrite parent body accretion. We find based on high precision Mg and Cr isotope data of seven CM chondrites and 12 chondrules, that accretion in the CM chondrite reservoir was continuous lasting <3 Myr and showing late accretion of MRCC‐like material reflected by the anomalous CM chondrite Bells. We further argue that although MRCCs likely accreted later than CM chondrites, CR chondrules must have initially formed from a reservoir spatially separated from CM chondrules. Finally, we hypothesize on the nature of the spatial barrier separating these reservoirs.  相似文献   

18.
Abstract— We present a detailed petrographic and electron microprobe study of metal grains and related opaque minerals in the chondrule interiors and rims of the Bishunpur (LL3.1) ordinary chondrite. There are distinct differences between metal grains that are completely encased in chondrule interiors and those that have some portion of their surface exposed outside of the chondrule boundary, even though the two types of metal grains can be separated by only a few microns. Metal grains in chondrule interiors exhibit minor alteration in the form of oxidized P‐, Cr‐, and Si‐bearing minerals. Metal grains at chondrule boundaries and in chondrule rims are extensively altered into troilite and fayalite. The results of this study suggest that many metal grains in Bishunpur reacted with a type‐I chondrule melt and incorporated significant amounts of P, Cr, and Si. As the system cooled, some metal oxidation occurred in the chondrule interior, producing metal‐associated phosphate, chromite, and silica. Metal that migrated to chondrule boundaries experienced extensive corrosion as a result of exposure to the external atmosphere present during chondrule formation. It appears that chondrule‐derived metal and its corrosion products were incorporated into the fine‐grained rims that surround many type‐I chondrules, contributing to their Fe‐rich compositions. We propose that these fine‐grained rims formed by a combination of corrosion of metal expelled from the chondrule interior and accretion of fine‐grained mineral fragments and microchondrules.  相似文献   

19.
We performed in situ oxygen three‐isotope measurements of chondrule olivine, pyroxenes, and plagioclase from the newly described CVRed chondrite NWA 8613. Additionally, oxygen isotope ratios of plagioclase in chondrules from the Kaba CV3OxB chondrite were determined to enable comparisons of isotope ratios and degree of alteration of chondrules in both CV lithologies. NWA 8613 was affected by only mild thermal metamorphism. The majority of oxygen isotope ratios of olivine and pyroxenes plot along a slope‐1 line in the oxygen three‐isotope diagram, except for a type II and a remolten barred olivine chondrule. When isotopic relict olivine is excluded, olivine, and low‐ and high‐Ca pyroxenes are indistinguishable regarding Δ17O values. Conversely, plagioclase in chondrules from NWA 8613 and Kaba plot along mass‐dependent fractionation lines. Oxygen isotopic disequilibrium between phenocrysts and plagioclase was caused probably by exchange of plagioclase with 16O‐poor fluids on the CV parent body. Based on an existing oxygen isotope mass balance model, possible dust enrichment and ice enhancement factors were estimated. Type I chondrules from NWA 8613 possibly formed at moderately high dust enrichment factors (50× to 150× CI dust relative to solar abundances); estimates for water ice in the chondrule precursors range from 0.2× to 0.6× the nominal amount of ice in dust of CI composition. Findings agree with results from an earlier study on oxygen isotopes in chondrules of the Kaba CV chondrite, providing further evidence for a relatively dry and only moderately high dust‐enriched disk in the CV chondrule‐forming region.  相似文献   

20.
Abstract— We report the results of a mineralogical and O‐isotopic study of 362 chondrules disaggregated from the Bo Xian chondrite. The range of mineral compositions (Fa = 0.8–31.2%, mean = 23.5%, mode = 27–28%) are consistent with a reclassification of this meteorite from LL4 to LL3.9. Chondrule diameters range from 0.20 to 3.40 mm (mean = 0.74 mm) in the disaggregated population. A lower mean diameter (0.64 mm) calculated from thin‐section measurements partly reflects the high proportion of chondrule fragments. The chondrule size distribution, which is approximately log‐normal, is consistent with size‐sorting mechanisms. This sorting could be linked to the fragmentation of many chondrules on the parent body. However, in detail, the variation in diameter of different chondrule types and a hiatus in the size distribution at 0.6 mm indicate that there may have been complex controls perhaps partly being determined by the chondrule formation mechanism. Seven percent of the sectioned chondrules (102) contain chemically fractionated mineral assemblages: cristobalite‐bearing and Al‐rich. This significant degree of chemical heterogeneity probably resulted from both igneous and volatility controls. Oxygen‐isotopic compositions were determined on mineral separates and 16 of the sectioned chondrules. Three separate isotopic exchange events have been identified. The dominant one is a low‐temperature hydrous gas‐solid exchange event between 16O‐rich solid and 16O‐poor gas reservoirs that lay along a slope 1.0 line on three‐isotope plots. Partial equilibration with the gas by feldspar and cristobalite, which exchanged more rapidly than olivine or pyroxene, led to formation of a slope 0.77 mixing line for Bo Xian and other LL chondrites. Mineralogy is the dominant control on the extent of this exchange; no relationship between isotopic composition and chondrule texture or size was identified. The feldspar separate and cristobalite‐rich chondrules have the most 16O‐poor compositions. Subsequently, thermal metamorphism in the parent body led to partial isotopic equilibration between the different mineral phases. A third exchange event, predating the other two events, is probably shown by one of the Al‐rich chondrules. This has an 16O‐rich composition, lying below the terrestrial fractionation line. Another Al‐rich chondrule has a normal ordinary chondrite isotopic composition. It is not clear whether the isotopic fractionation recorded in some Al‐rich chondrules can be achieved by the dominant gas‐solid exchange. Instead, the precursor O to the mineral phases may have become 16O‐rich during an earlier phase of mass‐independent fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号