首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the WKBJ-method the absorption-dispersion relation and the amplitude functions are derived for Love seam-waves that propagate in a horizontally inhomogeneous three-layered medium. To describe the anelastic friction the constant Q-model is applied. The inhomogeneity that appears in either the elastic moduli or quality factors is assumed to remain weak in the coal as well as in the adjacent layers, which are assumed to have different material properties (asymmetric channel). Using numerical solutions of the dispersion relation, it is shown that the weak horizontal inhomogeneities can be optimally detected using channel-wave constituents of a frequency near to the Airy frequency while inhomogeneities of the adjacent rock can only be detected at frequencies close to, but higher than, the cut-off frequency.  相似文献   

2.
A worldwide study of short-period teleseismic body wave spectra shows that the high frequency falloff rates of spectra are correlated with the tectonic type of the source and receiver regions and with source depth. The data indicate, in a consistent manner, that the main cause for such variations is the lateral variation of Q in the upper mantle as well as change of Q with depth. Using the internal consistency checks provided by redundancies in the data set other effects such as crustal, site dependent distortion of the spectra, source effects and instrument non-linearity can be ruled out as significant factors influencing the t1 estimates obtained. The results indicate high attenuation in the upper mantle under tectonic regions and new oceans. Long-period regional attenuation studies indicate similar variations in mantle Q among the types of regions mentioned but yield significantly lower Q estimates in all areas. The short- and long-period attenuation results can be reconciled only by assuming a frequency dependent Q that increases with frequency along all types of paths, such that the relative differences in Q along various types of paths retain the same sign over the short- and long-period bands.  相似文献   

3.
—The feasibility of modeling elastic properties of a fluid-saturated sand-clay mixture rock is analyzed by assuming that the rock is composed of macroscopic regions of sand and clay. The elastic properties of such a composite rock are computed using two alternative schemes.¶The first scheme, which we call the composite Gassmann (CG) scheme, uses Gassmann equations to compute elastic moduli of the saturated sand and clay from their respective dry moduli. The effective elastic moduli of the fluid-saturated composite rock are then computed by applying one of the mixing laws commonly used to estimate elastic properties of composite materials.¶In the second scheme which we call the Berryman-Milton scheme, the elastic moduli of the dry composite rock matrix are computed from the moduli of dry sand and clay matrices using the same composite mixing law used in the first scheme. Next, the saturated composite rock moduli are computed using the equations of Brown and Korringa, which, together with the expressions for the coefficients derived by Berryman and Milton, provide an extension of Gassmann equations to rocks with a heterogeneous solid matrix.¶For both schemes, the moduli of the dry homogeneous sand and clay matrices are assumed to obey the Krief’s velocity-porosity relationship. As a mixing law we use the self-consistent coherent potential approximation proposed by Berryman.¶The calculated dependence of compressional and shear velocities on porosity and clay content for a given set of parameters using the two schemes depends on the distribution of total porosity between the sand and clay regions. If the distribution of total porosity between sand and clay is relatively uniform, the predictions of the two schemes in the porosity range up to 0.3 are very similar to each other. For higher porosities and medium-to-large clay content the elastic moduli predicted by CG scheme are significantly higher than those predicted by the BM scheme.¶This difference is explained by the fact that the BM model predicts the fully relaxed moduli, wherein the fluid can move freely between sand and clay regions. In contrast, the CG scheme predicts the no-flow or unrelaxed moduli. Our analysis reveals that due to the extremely low permeability of clays, at seismic and higher frequencies the fluid has no time to move between sand and clay regions. Thus, the CG scheme is more appropriate for clay-rich rocks.  相似文献   

4.
We have measured the velocities and attenuations of compressional and shear waves in 29 water-saturated samples of sandstones and shales at a confining pressure of 60 MPa and at frequencies of about 0.85 MHz. The measurements were made using a pulse echo method in which the samples (diameter 5 cm, length 1.5 cm to 2.5 cm) were placed between perspex buffer rods inside a high-pressure cell. The velocity of each seismic wave was determined from the traveltime difference of equivalent phase points (corrected for diffraction effects) of the signals reflected from the top and from the base of each sample. Attenuation was determined in a similar way by comparison of the diffraction corrected amplitudes of the signals. The attenuation data are presented as ‘quality factors’: Qp and Qs for compressional and shear waves respectively. The results show that Qs is strongly correlated with Vs, that Qp is weakly correlated with Vp, and that Qp is strongly correlated with Qs. Qp is strongly dependent on the volume percentage of the assemblage of intra-pore minerals, whether they are clays or carbonates. It is concluded that the attenuation mechanism is due to the local fluid flow arising from the differential dilation of the solid rock frame and the intra-pore mineral assemblage, which is a result of their very different elastic moduli.  相似文献   

5.
Fluorides are considered as models for the physical properties of oxides on the basis of Goldschmidt's crystal chemical arguments. The well-established bulk modulus (K)-volume (V) relationship KV = constant is sddddhown to hold for fluorides and oxides belonging to the four isostructural series. The bulk moduli of equivolume oxides and fluorides are scaled as 4S2, where S = ZO/2ZF is the ratio of the effective unit charges and is approximately 77% for all of the crystal structures. The fluorides have distinctly lower melting and Debye temperatures which offers the possibility of using these compounds as models for the high-temperature elastic behaviour of their oxide analogues.  相似文献   

6.
Analysis of quality factors for Rayleigh channel waves   总被引:3,自引:1,他引:2  
To facilitate investigation of the effect of imperfect elastic dissipation on thepropagation of Rayleigh-type channel waves and use of their quality factors in investigationsof the properties of coal seams, a simple method for calculating the quality factor QR isproposed in this paper. Introduction of complex velocities into the dispersion function allowscalculation of the dispersion function of Rayleigh-type channel waves in coal seams. By thecontrol variable method, we analyzed changes in QR with changes in coal seam thickness andP- and S-wave Q-factors within the coal seam and adjacent rock layers. The numerical resultsshow that the trend of the QR curve is consistent with the group velocity curve. The minimumQR value occurs at the Airy phase frequency; the Airy phase frequency decreases as coal seamthickness increases. The value of QR increases with increasing Qs2 (quality factor for S wavein coal seam). We can compensate for the absorption of Rayleigh-type channel waves usingthe computed QR curve. Inversion of the QR curve can also be used to predict the thicknessesand litholoeies of coal seams.  相似文献   

7.
The most abundant mineral on Earth has a perovskite crystal structure and a chemistry that is dominated by MgSiO3 with the next most abundant cations probably being aluminum and ferric iron. The dearth of experimental elasticity data for this chemically complex mineral limits our ability to calculate model seismic velocities for the lower mantle. We have calculated the single crystal elastic moduli (cij) for (Mg, Fe3 +)(Si, Al)O3 perovskite using density functional theory in order to investigate the effect of chemical variations and spin state transitions of the Fe3+ ions. Considering the favored coupled substitution of Mg2+-Si4 + by Fe3+-Al3+, we find that the effect of ferric iron on seismic properties is comparable with the same amount of ferrous iron. Ferric iron lowers the elastic moduli relative to the Al charge-coupled substitution. Substitution of Fe3+ for Al3+, giving rise to an Fe/Mg ratio of 6%, causes 1.8% lower longitudinal velocity and 2.5% lower shear velocity at ambient pressure and 1.1% lower longitudinal velocity and 1.8% lower shear velocity at 142 GPa. The spin state of the iron for this composition has a relatively small effect (< 0.5% variation) on both bulk modulus and shear modulus.  相似文献   

8.
Spectra of internal friction between 2 and 8 Hz were studied in a single crystal of enstatite, in a polycrystal of synthetic forsterite and in several samples of natural peridotite. Measurements of Q?1 and μ were performed in vacuum (10?6 torr), from room temperature up to 1100°C. For these experimental conditions no peak was observed in the polycrystalline undeformed forsterite, but the background attenuation irregularly increased from 5 · 10?3 to 10?2.A peak Q?1 = 7 · 10?2 appears in a deformed peridotite at 930°C. It is reduced of 60% after 5 h of annealing at 1100°C. But the background attenuation persists. In the single crystal of enstatite, a peak is observed at 760°C (Q?1 = 6 · 10?2). A mechanism involving dislocations is suggested as a possible explanation for the peak obtained with the peridotite samples. If this hypothesis is right, the observed effect would be diffusion controlled so that one can expect pressure to translate it towards higher temperature. This mechanism could therefore appear in the upper mantle. Background attenuation could be the result of intergranular thermal losses.  相似文献   

9.
Attenuation data extracted from full waveform sonic logs is sensitive to vuggy and matrix porosities in a carbonate aquifer. This is consistent with the synthetic attenuation (1 / Q) as a function of depth at the borehole-sonic source-peak frequency of 10 kHz. We use velocity and densities versus porosity relationships based on core and well log data to determine the matrix, secondary, and effective bulk moduli. The attenuation model requires the bulk modulus of the primary and secondary porosities. We use a double porosity model that allows us to investigate attenuation at the mesoscopic scale. Thus, the secondary and primary porosities in the aquifer should respond with different changes in fluid pressure. The results show a high permeability region with a Q that varies from 25 to 50 and correlates with the stiffer part of the carbonate formation. This pore structure permits water to flow between the interconnected vugs and the matrix. In this region the double porosity model predicts a decrease in the attenuation at lower frequencies that is associated with fluid flowing from the more compliant high-pressure regions (interconnected vug space) to the relatively stiff, low-pressure regions (matrix). The chalky limestone with a low Q of 17 is formed by a muddy porous matrix with soft pores. This low permeability region correlates with the low matrix bulk modulus. A low Q of 18 characterizes the soft sandy carbonate rock above the vuggy carbonate.This paper demonstrates the use of attenuation logs for discriminating between lithology and provides information on the pore structure when integrated with cores and other well logs. In addition, the paper demonstrates the practical application of a new double porosity model to interpret the attenuation at sonic frequencies by achieving a good match between measured and modeled attenuation.  相似文献   

10.
Ultrasonic compressional wave velocity Vp and quality factor Qp have been measured in alkali basalt, olivine basalt and basic andesite melts in the frequency range of 3.4–22 MHz and in the temperature range of 1100–1400°C. Velocity and attenuation of the melts depend on frequency and temperature, showing that there are relaxation mechanisms in the melts. Complex moduli are calculated from the ultrasonic data. The results fit well a complex modulus of Arrhenius temperature dependence with log-normal Gaussian distribution in relaxation times of attenuation. The analysis yields average relaxation time, its activation energy, relaxed modulus, unrelaxed modulus and width of Gaussian distribution in relaxation times. Relaxed modulus is smaller (17.5 GPa) for basic andesite melt of high silica and high alumina contents than for the other two basalt melts (18.1–18.4 GPa). The most probable relaxation times decrease from ~ 3 × 10?10 s for basic andesite to ~ 10?11 s for alkali basalt at 1400°C. Activation energies of attenuation, ranging from 270 to 340 kJ mol?1 in the three melts, are highest in basic andesite. Longitudinal viscosity values and their temperature dependences are also calculated from Vp and Qp data. The volume viscosity values are estimated from the data using the shear viscosity values. Longitudinal, volume and shear viscosities and their activation energies are highest in the basic andesite melt of the most polymerized structure.  相似文献   

11.
Pore structure and mineral matrix elastic moduli are indispensable in rock physics models. We propose an estimation method of pore structure and mineral moduli based on Kuster-Toksöz model and Biot’s coefficient. In this technique, pore aspect ratios of five different scales from 100 to 10?4 are considered, Biot’s coefficient is used to determine bounds of mineral moduli, and an estimation procedure combined with simulated annealing (SA) algorithm to handle real logs or laboratory measurements is developed. The proposed method is applied to parameter estimations on 28 sandstone samples, the properties of which have been measured in lab. The water saturated data are used for estimating pore structure and mineral moduli, and the oil saturated data are used for testing these estimated parameters through fluid substitution in Kuster-Toksöz model. We then compare fluid substitution results with lab measurements and find that relative errors of P-wave and S-wave velocities are all less than 5%, which indicates that the estimation results are accurate.  相似文献   

12.
Separating effects of climate change (ΔQc) and human activity (ΔQh) on stream discharge at the watershed scale is needed for developing adaptive measures to climate change. However, information is scarce in existing literature regarding whether such separating is feasible and whether reliable results can be produced. The objectives of this overview were to: (1) compare currently-used methods; (2) assess assumptions and issues of the methods; and (3) present a generic framework that overcomes possible issues. Based on the overview of fifteen recent representative studies, two methods can be used to estimate absolute magnitudes of ΔQc and ΔQh, while another method can be used to distinguish relative magnitudes of ΔQc versus ΔQh only. Because the methods’ fundamental assumptions about baseline versus altered period, water storage change and deep groundwater loss, precipitation-runoff relationship, hysteresis influence of human activity, and record of time series can seldom be satisfied for many watersheds, it is more realistic and practical to distinguish relative effects than to estimate absolute magnitudes of ΔQc and ΔQh. Moreover, a generic framework was presented for gauged watersheds with negligible groundwater loss, aiming to avoid misuse of the methods in practice.  相似文献   

13.
Fracturing and hydrothermal alteration in normal fault zones   总被引:9,自引:0,他引:9  
Large normal fault zones are characterized by intense fracturing and hydrothermal alteration. Displacement is localized in a slip zone of cataclasite, breccia and phyllonite surrounding corrugated and striated fault surfaces. Slip zone rock grades into fractured, but less comminuted and hydrothermally altered rock in the transition zone, which in turn grades abruptly into the wall rock. Fracturing and fluid flow is episodic, because permeability generated during earthquakes is destroyed by hydrothermal processes during the time between earthquakes.Fracture networks are described by a fracture fabric tensor (F). The permeability tensor (k) is used to estimate fluid transport properties if the trace of F is sufficiently large. Variations in elastic moduli and seismic velocities between fault zone and wall rock are estimated as a function of fracture density (). Fracturing decreases elastic moduli in the transition zone by 50–100% relative to the country rock, and similar or even greater changes presumably occur in the slip zone.P-andS-wave velocity decrease, andV p /V s increases in the fault zone relative to the wall rock. Fracture permeability is highly variable, ranging between 10–13 m2 and 10–19 m2 at depths near 10 km. Changes in permeability arise from variations in effective stress and fracture sealing and healing.Hydrothermal alteration of quartzo-feldspathic rock atT>300°C creates mica, chlorite, epidote and alters the quartz content. Alteration changes elastic moduli, but the changes are much less than those caused by fracturing.P-andS-wave velocities also decrease in the hydrothermally altered fault rock relative to the country rock, and there is a slight decrease inV p /V s , which partially offsets the increase inV p /V s caused by fracturing.Fracturing and hydrothermal alteration affect fault mechanics. Low modulus rock surrounding fault surfaces increases the probability of exceeding the critical slip distance required for the onset of unstable slip during rupture initiation. Boundaries between low modulus fault rock and higher modulus wall rock also act as rupture guides and enhance rupture acceleration to dynamic velocity. Hydrothermal alteration at temperatures in excess of 300°C weakens the deeper parts of the fault zone by producingphyllitic mineral assemblages. Sealing of fracture in time periods between large earthquakes generates pods of abnormally pressured fluid which may play a fundamental role in the initiation of large earthquakes.  相似文献   

14.
—Observed velocities and attenuation of fundamental-mode Rayleigh waves in the period range 7–82 sec were inverted for shear-wave velocity and shear-wave Q structure in the Middle East using a two-station method. Additional information on Q structure variation within each region was obtained by studying amplitude spectra of fundamental-mode and higher-mode Rayleigh waves. We obtained models for the Turkish and Iranian Plateaus (Region 1), areas surrounding and including the Black and Caspian Seas (Region 2), and the Arabian Peninsula (Region 3). The effect of continent-ocean boundaries and mixed paths in Region 2 may lead to unrealistic features in the models obtained there. At lower crustal and upper-mantle depths, shear velocities are similar in all three regions. Shear velocities vary significantly in the uppermost 10 km of the crust, being 3.21, 2.85, and 3.39 km/s for Regions 1, 2, and 3, respectively. Q models obtained from an inversion of interstation attenuation data show that crustal shear-wave Q is highest in Region 3 and lowest in Region 1. Q’s for the upper 10 km of the crust are 63, 71, and 201 for Regions 1, 2, and 3, respectively. Crustal Q’s at 30 km depth for the three regions are about 51, 71, and 134. The lower crustal Q values contrast sharply with results from stable continental regions where shear-wave Q may reach one thousand or more. These low values may indicate that fluids reside in faults, cracks, and permeable rock at lower crustal, as well as upper crustal depths due to convergence and intense deformation at all depths in the Middle Eastern crust.  相似文献   

15.
The elastic moduli of single-crystal LiF and NaF have been determined by the ultrasonic pulse superposition technique as a function of temperature from T = 298–650° K. These new data are consistent with low-temperature (T < 298° K) data obtained by other ultrasonic pulse techniques and are superior to previous high-temperature data from resonance experiments. The elastic moduli (c) are represented by quadratic functions in T over the experimental temperature range although the curvature is not in the same sense for all modes. For LiF, NaF, MgO and CaO, evaluation of the temperature derivatives of the elastic moduli at constant volume (V) indicates that the elastic moduli are only weakly dependent on T at constant volume. The fluoride—oxide analogue pair LiFMgO both exhibit high-temperature elastic behaviour at approximately the same absolute temperature. Mitskevich's theory and observed KS-V systematics imply that (?c/?T)P should be a function of the nearest neighbour distance for rocksalt fluorides and oxides; this result lends further support to a fluorideoxide modelling scheme based on similar ionic radii.  相似文献   

16.
Both elastic and anelastic properties of the earth simultaneously play an important role in the high-attenuation, low-velocity zone (H.A.L.V.Z.), in the upper mantle, where the drop of velocity appears to be correlated with high attenuation. Internal friction studies and experiments suggest the possibility of relaxation mechanisms occurring within the H.A.L.V.Z. and clearly it is important to compare assumptions of relaxation processes with seismic data and investigate the consequences of such a model. A variety of physical explanations of the H.A.L.V.Z. are discussed and it is concluded that three mechanisms could produce the H.A.L.V.Z., namely partial melting, viscous grain-boundary effects and dislocation-impurity interactions. Only more experiments and more data on the Q-structure of the H.A.L.V.Z. would allow us to decide which is the most probable of these mechanisms.  相似文献   

17.
The effect of surface phenomena occurring at the interfaces between immiscible fluids and a solid on the seismic attributes of partially saturated rocks has not yet been fully studied. Meanwhile, over the past two decades considerable progress has been made in the physics of wetting to understand effects such as contact line friction, contact line pinning, contact angle hysteresis, and equilibrium contact angle. In this paper, we developed a new rock physics model considering the aforementioned effects on seismic properties of the rock with a partially saturated plane-strain crack. We demonstrated that for small wave-induced stress perturbations, the contact line of the interface meniscus will remain pinned, while the meniscus will bulge and change its shape through the change of the contact angles. When the stress perturbation is larger than a critical value, the contact line will move with advancing or receding contact angle depending on the direction of contact line motion. A critical stress perturbation predicted by our model can be in the range of ∼102−104 Pa, that is typical for linear seismic waves. Our model predicts strong seismic attenuation in the case when the contact line is moving. When the contact line is pinned, the attenuation is negligibly small. Seismic attenuation is associated with the hysteresis of loading and unloading bulk moduli, predicted by our model. The hysteresis is large when the contact line is moving and negligibly small when the contact line is pinned. Furthermore, we demonstrate that the bulk modulus of the rock with a partially saturated crack depends also on the surface tension and on the contact angle hysteresis. These parameters are typically neglected during calculation of the effecting fluid moduli by applying different averaging techniques. We demonstrate that contact line friction may be a dominant seismic attenuation mechanism in the low frequency limit (<∼10 Hz) when capillary forces dominate over viscous forces during wave-induced two-phase fluid flow.  相似文献   

18.
—Instantaneous frequency matching has been used to compute differential t* values for seismic reflection data from the Great Lakes International Multidisciplinary Program on Crustal Evolution (GLIMPCE) experiment. The differential attenuation values were converted to apparent Q ?1 models by a fitting procedure that simultaneously solves for the interval Q ?1 values using non-negative least squares. The bootstrap method was then used to estimate the variance in the interval Q ?1 models. The shallow Q ?1 structure obtained from the seismic reflection data corresponds closely with an attenuation model derived using instantaneous frequency matching on seismic refraction data along the same transect. This suggests that the effects of wave propagation and scattering on the apparent attenuation are similar for the two data sets. The Q ?1 model from the reflection data was then compared with the structural interpretation of the reflectivity data. The highest interval Q ?1 values (>0.01) were found near the surface, corresponding to the sedimentary rock sequence of the upper Keweenawan. Low Q ?1 values (<0.0006) are found beneath the Midcontinent rift’s central basin. In addition to structural interpretation, seismic attenuation models derived in this way can be used to correct reflection data for dispersion, frequency and amplitude effects, and allow for improved imaging of the subsurface.  相似文献   

19.
This work explores the application of the electron paramagnetic resonance (EPR) technique, a high sensitivity spectral method, as a means of characterizing stratigraphic facies and identifying depositional environments. We have studied two marine sedimentary sections, of mid-Cretaceous and mid-Eocene ages, that are located in southwestern Venezuela. The different paramagnetic species (e.g. manganese, free radicals and different forms of Fe) have been identified and their relative concentrations measured from the EPR spectra. These results were then integrated to those from petrographic and magnetic susceptibility analyses (room and high temperature) as well as to some other rock magnetic data such as Qn and S-ratios. Because Mn2+ content seems to be finely tuned to variations of redox conditions, it could serve as a sensitive index of paleoenvironmental changes in stratigraphic columns with large lithological contrasts. Conversely, the presence and concentration of distinct Fe species proves to be quite useful characterizing different depositional environments at those stratigraphic sections that exhibit similar lithologies throughout. The integration of EPR results with rock magnetic data allows the identification of diagenetic events that could have taken place after sediment deposition.  相似文献   

20.
Differential effective medium (DEM) theory is applied to determine the elastic properties of dry rock with spheroidal pores. These pores are assumed to be randomly oriented. The ordinary differential equations for bulk and shear moduli are coupled and it is more difficult to obtain accurate analytical formulae about the moduli of dry porous rock. In this paper, we derive analytical solutions of the bulk and shear moduli for dry rock from the differential equations by applying an analytical approximation for dry-rock modulus ratio, in order to decouple these equations. Then, the validity of this analytical approximation is tested by integrating the full DEM equation numerically. The analytical formulae give good estimates of the numerical results over the whole porosity range. These analytical formulae can be further simplified under the assumption of small porosity. The simplified formulae for spherical pores (i.e., the pore aspect ratio is equal to 1) are the same as Mackenzie's equations. The analytical formulae are relatively easy to analyze the relationship between the elastic moduli and porosity or pore shapes, and can be used to invert some rock parameters such as porosity or pore aspect ratio. The predictions of the analytical formula for the sandstone experimental data show that the analytical formulae can accurately predict the variations of elastic moduli with porosity for dry sandstones. The effective elastic moduli of these sandstones can be reasonably well characterized by spheroidal pores, whose pore aspect ratio was determined by minimizing the error between theoretical predictions and experimental measurements. For sandstones the pore aspect ratio increases as porosity increases if the porosity is less than 0.15, whereas the pore aspect ratio remains relatively stable (about 0.14) if the porosity is more than 0.15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号