首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The trace element distributions in the matrix of primitive chondrites were examined using four least‐contaminated matrix specimens from the polished sections of the Allende (CV) meteorite. Analysis of rare earth element (REE), Ba, Sr, Rb, and K abundances by isotope dilution mass spectrometry revealed that the elemental abundances of lithophile elements except for alkali metals (K, Rb) in the specimens of the Allende matrix studied here are nearly CI (carbonaceous Orgueil) chondritic (~1 × CI). Compared to refractory elements, all the matrix samples exhibited systematic depletion of the moderately volatile elements K and Rb (0.1–0.5 × CI). We suggest that the matrix precursor material did not carry significant amounts of alkali metals or that the alkalis were removed from the matrix precursor material during the parent body process and/or before matrix formation and accretion. The matrix specimens displayed slightly fractionated REE abundance patterns with positive Ce anomalies (CI‐normalized La/Yb ratio = 1.32–1.65; Ce/Ce* = 1.16–1.28; Eu/Eu* = 0.98–1.10). The REE features of the Allende matrix do not indicate a direct relationship with chondrules or calcium‐aluminum‐rich inclusions (CAIs), which in turn suggests that the matrix was not formed from materials produced by the breakage and disaggregation of the chondrules or CAIs. Therefore, we infer that the Allende matrix retains the REE features acquired during the condensation process in the nebula gas.  相似文献   

2.
The size distribution, abundance, and physical and chemical characteristics of chondritic inclusions are key features that define the chondrite groups. We present statistics on the size and abundance of the macroscopic components (inclusions) in the Murchison (CM2) and Allende (CV3) chondrites and measure their general chemical trends using established X‐ray mapping techniques. This study provides a fine‐scale assessment of the two meteorites and a semiquantitative evaluation of the relative abundances of elements and their distribution among meteorite components. Murchison contains 72% matrix and 28% inclusions; Allende contains 57% and 43%, respectively. A broad range of inclusion sizes and relative abundances has been reported for these meteorites, which demonstrates the necessity for a more standardized approach to measuring these characteristics. Nonetheless, the characteristic mean sizes of inclusions in Allende are consistently larger than those in Murchison. We draw two significant conclusions (1) these two meteorites sampled distinct populations of chondrules and refractory inclusions, and (2) complementary Mg/Si ratios between chondrules and matrix are observed in both Murchison and Allende. Both support the idea that chondrules and matrix within each chondrite group originated in single reservoirs of precursors with approximately solar Mg/Si ratios, providing a constraint on astrophysical models of the origin of chondrite parent bodies.  相似文献   

3.
Abstract— We have studied an Allende dark inclusion by optical microscopy, scanning electron microscopy, electron microprobe analysis and transmission electron microscopy. The inclusion consists of chondrules, isolated olivines and matrix, which, as in the Allende host, is mainly composed of 5–20 μm long lath-shaped fayalitic grains with a narrow compositional range (Fa42 ± 2) and nepheline. Olivine phenocrysts in chondrules and isolated olivine grains show various degrees of replacement by 5–10 μm wide fayalitic rims (Fa39 ± 2) and 100–1000 μm wide translucent zones, which consist of 5–20 μm long lath-shaped fayalitic grains (Fa41 ± 1) intergrown with nepheline. These fayalitic olivines, like those in the matrix of the dark inclusion, contain 10–20 nm sized inclusions of chromite, hercynite, and Fe-Ni sulfides. The fayalitic rims around remnant olivines are texturally and compositionally identical to those in Allende host, suggesting that they have similar origins. Chondrules are surrounded by opaque rims consisting of tiny lath-shaped fayalitic olivines (<1–3 μm long) intergrown with nepheline. As in the Allende host, fayalitic olivine veins may crosscut altered chondrules, fine-grained chondrule rims and extend into the matrix, indicating that alteration occurred after accretion. We infer that fayalitic olivine rims and lath-shaped fayalites in Allende and its dark inclusions formed from phyllosilicate intermediate phases. This explanation accounts for (1) the similarity of the replacement textures observed in the dark inclusion and Allende host to aqueous alteration textures in CM chondrites; (2) the anomalously high abundances of Al and Cr and the presence of tiny inclusions of spinels and sulfides in fayalitic olivines in Allende and Allende dark inclusions; (3) abundant voids and defects in lath-shaped fayalites in the Allende dark inclusion, which may be analogous to those in partly dehydrated phyllosilicates in metamorphosed CM/CI chondrites. We conclude that the matrix and chondrule rims in Allende were largely converted to phyllosilicates and then completely dehydrated. The Allende dark inclusions experienced diverse degrees of aqueous/hydrothermal alteration prior to complete dehydration. The absence of low-Ca pyroxene in the dark inclusion and its significant replacement by fayalitic olivine in Allende is consistent with the lower resistance of low-Ca pyroxene to aqueous alteration relative to forsteritic olivine. Hydro-thermal processing of Allende probably also accounts for the low abundance of planetary noble gases and interstellar grains, and the formation of nepheline, sodalite, salite-hedenbergite pyroxenes, wollastonite, kirschsteinite and andradite in chondrules and Ca,Al-rich inclusions.  相似文献   

4.
Abstract— Inductively coupled plasma mass spectrometry (ICP-MS) was successfully applied to bulk samples of Allende, Jilin, Modoc, Saint-Séverin and Atlanta for the determination of rare earth elements (REE) (Y and 14 lanthanoids), Th and U. The results of ICP-MS showed good agreement with recommended values, and their reproducibilities were high enough to discuss the detailed abundances of lanthanoids and actinoids in chondritic meteorites. For the Allende reference sample issued by the Smithsonian Institution, a positive anomaly of Tm, a fractionation between light REE and heavy REE and a high Th/U ratio were observed in the CI-normalized abundances of REE, Th and U. These features are common for group II inclusions in Allende, suggesting that the abundances of refractory lithophiles in Allende are somewhat influenced by those in a specific constituent. For the other chondritic meteorites, a zigzag alteration was commonly observed in the heavy-REE region of their CI-normalized abundance patterns. It is suggested that such a zigzag pattern is attributable to erratically high abundances of monoisotopic REE (Tb, Ho and Tm) in the CI values. Abundances of REE, Th and U in the bulk samples are also discussed separately in detail.  相似文献   

5.
Abstract We report a unique, spinel-rich, extremely porous fine-grained inclusion in the Kainsaz (CO3) meteorite. This inclusion is the least altered fine-grained inclusion yet discovered, having escaped almost entirely the secondary alterations experienced by Allende fine-grained inclusions. The inclusion is comprised of loosely packed 5–30 μm spinel grains mantled by thin layers of melilite, anorthite, and diopsidic pyroxene. The inclusion, which has over 30 vol% void space, is one of the most spinel-rich, most porous fine-grained inclusions seen to date. The mineralogy of the inclusion matches that which has been predicted for a precursor of the altered mineral assemblages of Allende fine-grained inclusions, though a lack of interstitial material in the Kainsaz inclusion reduces the likelihood of a direct genetic relationship between the two (Allende fine-grained inclusions contain abundant interstitial material). Its mineralogical composition confirms that the precursors of other, more altered, fine-grained inclusions were assemblages of refractory minerals exclusively.  相似文献   

6.
The Ca-phosphate phases in the Allende CV3 meteorite were selectively dissolved in ammoniacal EDTA solution and measured for abundances of the rare earth elements (REE) by radiochemical neutron activation and mass-spectrometric isotope dilution analyses. The REE abundances in CA-phosphates of Allende are remarkably different from those of ordinary chondrites. All the REE except Eu were observed to be enriched by factors of 50–100 relative to the C1 values. This is 3–4 times lower than concentrations of REE in the ordinary-chondrite phosphates. Allende phosphates have a small positive Eu anomaly, in contrast to the large negative Eu anomaly in phosphates from ordinary chondrites. Though the positive Eu anomaly in Allende Ca-phosphates is puzzling, the lack of a negative Eu anomaly in Allende Ca-phosphates suggests that they never have been in equilibrium with Allende coarse-grained Ca, Al-rich inclusions or their precursor materials.  相似文献   

7.
Abstract— All groups of chondritic meteorites contain discrete grains of forsteritic olivine with FeO contents below 1 wt% and high concentrations of refractory elements such as Ca, Al, and Ti. Ten such grains (52 to 754 μg) with minor amounts of adhering matrix were separated from the Allende meteorite. After bulk chemical analysis by instrumental neutron activation analysis (INAA), some samples were analyzed with an electron microprobe and some with an ion microprobe. Matrix that accreted to the forsterite grains has a well‐defined unique composition, different from average Allende matrix in having higher Cr and lower Ni and Co contents, which implies limited mixing of Allende matrix. All samples have approximately chondritic relative abundances of refractory elements Ca, Al, Sc, and rare‐earth elements (REE), although some of these elements, such as Al, do not quantitatively reside in forsterite; whereas others (e.g., Ca) are intrinsic to forsterite. The chondritic refractory element ratios in bulk samples, the generally high abundance level of refractory elements, and the presence of Ca‐Al‐Ti‐rich glass inclusions suggest a genetic relationship of refractory condensates with forsteritic olivine. The Ca‐Al‐Ti‐rich glasses may have acted as nuclei for forsterite condensation. Arguments are presented that exclude an origin of refractory forsterite by crystallization from melts with compositions characteristic of Allende chondrules: (a) All forsterite grains have CaO contents between 0.5 and 0.7 wt% with no apparent zoning, requiring voluminous parental melts with 18 to 20 wt% CaO, far above the average CaO content of Allende chondrules. Similar arguments apply to Al contents. (b) The low FeO content of refractory forsterite of 0.2‐0.4 wt% imposes an upper limit of ~1 wt% of FeO on the parental melt, too low for ordinary and carbonaceous chondrule melts, (c) The Mn contents of refractory forsterites are between 30 to 40 ppm. This is at least one order of magnitude below the Mn content of chondrule olivines in all classes of meteorites. The observed Mn contents of refractory forsterite are much too low for equilibrium between olivine and melts of chondrule composition, (d) As shown earlier, refractory forsterites have O‐isotopic compositions different from chondrules (Weinbruch et al., 1993a). Refractory olivines in carbonaceous chondrites are found in matrix and in chondrules. The compositional similarity of both types was taken to indicate that all refractory forsterites formed inside chondrules (e.g., Jones, 1992). As refractory forsterite cannot have formed by crystallization from chondrule melts, we conclude that refractory forsterite from chondrules are relic grains that survived chondrule melting and probably formed in the same way as refractory forsterite enclosed in matrix. We favor an origin of refractory forsterite by condensation from an oxidized nebular gas.  相似文献   

8.
Abstract— SA-1, an unusual basaltic plagioclase-olivine inclusion (POI) in Allende, has concentric textural and mineralogic zones, a fine-grained, 100μm outer border and a coarse-grained interior with subophitic texture. Fassaite, diopside and olivine from the exterior border and interior of SA-1 have uniform intrinsic mass fractionation with isotopically heavy Mg (FMg = 3.6 ± 1.8‰/amu). In contrast, spinels from the spinel-rich regions adjacent to the fine-grained border have normal Mg isotopic composition (FMg = 0.1 ± 1.5‰/amu). The cores of large calcic (An90,99) plagioclase have no excess 26Mg, corresponding to 26Mg*/ 27Al < 3.7 × 10?6. The Mg isotopic heterogeneity in SA-1 requires initial cooling rates of spinel-rich regions adjacent to the fine-grained border to be greater than ~75 °C/hr. In contrast, the subophitic texture of the interior suggests cooling rates of 5–20 °C/ hr. The minerals in SA-1 exhibit a wide range of REE abundances. Lanthanum concentrations vary from 1 × chondritic (ch) in early crystallizing diopside to 100 × ch in late crystallizing fassaite. Nepheline has 18–20 × ch LREE and 11–25 × ch HREE and iron-rich mesostasis is highly enriched in the REE with 270–400 × ch LREE and 230–280 × ch HREE. The complementary REE patterns of clinopyroxene and plagioclase and the enrichment of incompatible trace elements in the mesostasis and late crystallizing phases is consistent with closed system crystallization. The REE data for nepheline and the iron-rich mesostasis indicate these phases are in equilibrium and that nepheline crystallized from a melt. Influx of alkalies, minor Fe and halogens must have occurred during the last stages of crystallization or the inclusion must have been partially molten during Na influx as both anorthite (An99) and nepheline are present in this inclusion. The preservation of isotopic heterogeneity in an inclusion that crystallized from a melt implies that melting was incomplete, allowing for survival of the relict spinels. The major and trace element abundances in SA-1 are inconsistent with formation as a mixture of nebular materials and suggest that SA-1 contains a chemically fractionated component produced by igneous differentiation.  相似文献   

9.
Abstract— We describe a previously unreported meteorite found in Axtell, Texas, in 1943. Based on the mineralogical composition and texture of its matrix and the sizes and abundance of chondrules, we classify it as a CV3 carbonaceous chondrite. The dominant opaque phase in the chondrules is magnetite, and that in refractory inclusions is Ni-rich NiFe metal (awaruite). Axtell, therefore, belongs to the oxidized subgroup of CV3 chondrites, although unlike Allende it escaped strong sulfidation. The meteorite bears a strong textural resemblance to Allende, and its chondrule population and matrix appear to be quite similar to those of Allende, but its refractory inclusions, thermoluminescence properties, and cosmogenic 60Co abundances are not. Our data are consistent with a terrestrial age for Axtell of ~100 years and a metamorphic grade slightly lower than that of Allende.  相似文献   

10.
Abstract– We studied three large (2–4 mm diameter) igneous‐textured inclusions in the Buzzard Coulee (H4) chondrite using microanalytical techniques (OLM, SEM, EMPA, SIMS) to better elucidate the origins of igneous inclusions in ordinary chondrites. The inclusions are clasts that come in two varieties (1) white inclusions Bz‐1 and Bz‐2 represent a nearly holocrystalline assemblage of low‐Ca and high‐Ca pyroxene (63–66 area%) and cristobalite (33–36%) and (2) tan inclusion Bz‐3 is glass‐rich (approximately 60%) with low‐Ca and high‐Ca pyroxene phenocrysts. The bulk compositions of the inclusions determined by modal reconstruction are all SiO2‐rich (approximately 67 wt% for Bz‐1 and Bz‐2, approximately 62% for Bz‐3), but Bz‐3 is enriched in incompatible elements (e.g., REE approximately 4–5 × CI abundances), whereas Bz‐2 and Bz‐1 are depleted in those elements that are most incompatible in pyroxene (e.g., La‐Ho approximately 0.15–0.4 × CI abundances). These bulk compositions do not resemble what one would expect for partial or complete shock melting of a chondritic precursor, and show no evidence for overall volatility control. We infer that the inclusions originated through igneous differentiation and FeO reduction, with Bz‐3 forming as an “andesitic” partial melt (approximately 30–40% partial melting of an H chondrite precursor), and Bz‐1 and Bz‐2 forming as pyroxene‐cristobalite cumulates from an Si‐rich melt. We suggest that both types of melts experienced a period of transit through a cold, low‐pressure space environment in which cooling, FeO reduction, and interaction with a vapor occurred. Melts may have been lofted into space by excavation or splashing during collisions, or by pyroclastic volcanism. Our results indicate intriguing similarities between the inclusions in Buzzard Coulee and the silicates in some iron (IIE‐type) and stony iron (IVA‐type) meteorites, suggesting a genetic relationship.  相似文献   

11.
We used chemical equilibrium calculations to model thermal outgassing of ordinary chondritic material as a function of temperature, pressure, and bulk composition and use our results to discuss outgassing on asteroids and the early Earth. The calculations include ∼1000 solids and gases of the elements Al, C, Ca, Cl, Co, Cr, F, Fe, H, K, Mg, Mn, N, Na, Ni, O, P, S, Si, and Ti. The major outgassed volatiles from ordinary chondritic material are CH4, H2, H2O, N2, and NH3 (the latter at conditions where hydrous minerals form). Contrary to widely held assumptions, CO is never the major C-bearing gas during ordinary chondrite metamorphism. The calculated oxygen fugacity (partial pressure) of ordinary chondritic material is close to that of the quartz-fayalite-iron (QFI) buffer. Our results are insensitive to variable total pressure, variable volatile element abundances, and kinetic inhibition of C and N dissolution in Fe metal. Our results predict that Earth's early atmosphere contained CH4, H2, H2O, N2, and NH3; similar to that used in Miller—Urey synthesis of organic compounds.  相似文献   

12.
The Weston meteorite is a breccia containing mostly light-colored equilibrated chondritic xenoliths and less abundant highly un-equilibrated chondritic inclusions fixed in a dark grey host of chondrules, mineral and rock fragments. Many of the inclusions show evidence of shock. Unlike most xenolithic chondrites, the Weston host contains a large fraction of considerably more equilibrated silicates than is found in the unequilibrated inclusions, suggesting either that most host silicates retain the mineral chemistry of an equilibrated source indigenous to Weston, or represent a unique fraction which equilibrated separately, prior to final agglomeration. The host silicates are similar in composition to minerals in the common xenoliths, supporting the former possibility that host chondrules and mineral fragments are derived from the xenolithic material, probably by impact fragmentation and melting. Also mixed with Weston is a small but distinct carbonaceous component including the minerals fassaite, Fespinel, forsterite, magnetite and Ca-Al-rich inclusion which are normally associated with carbonaceous chondrites.  相似文献   

13.
Abstract— We studied three fluffy Type A refractory inclusions from Allende that contain orange hibonite. The melilite in the present samples is very Al‐rich, averaging Åk6, Åk14, and Åk12 in the three samples studied. Hibonite in two inclusions, unlike that in Murchison, has low rare earth element abundances of <10 × CI; in the other inclusion, the hibonite, melilite and perovskite have Group II‐like patterns. The hibonite and melilite in all three inclusions studied have excess 26Mg consistent with (26Al/27Al)I = 5 × 10?5. Much of the hibonite and some of the spinel in these inclusions is corroded. These phases are found enclosed in melilite, but based on bulk compositions and phase equilibria, hibonite should not be an early‐crystallizing phase in these inclusions. We conclude that the hibonite and probably some of the spinel is relic. Reversely zoned melilite, rounded spinel and isotopically heavy Mg in the inclusions probably reflect reheating events that involved melting and evaporation. Alteration of the gehlenitic melilite gave rise to some rare phases, including corundum and nearly pure CaTs pyroxene. Studies have shown that blue hibonite contains Ti3+ while orange hibonite does not (Ihinger and Stolper, 1986; Beckett et al., 1988). Orange hibonite formed either under oxidizing conditions (such as at oxygen fugacities at least seven orders of magnitude greater than that of a solar gas at 1700 K), or under conditions reducing enough (e.g., solar) that it contained Ti3+, which was later oxidized in situ. Although V and Ce oxides are volatile at the temperature and range of oxygen fugacities at which orange hibonite is known to be stable, we find that (a) the hibonite is V‐rich (~1 wt% V2O3) and (b) there are no negative Ce anomalies in Allende hibonite. This indicates that the hibonite did not form by condensation under oxidizing conditions. In addition, there are slight excesses of Ti + Si cations relative to Mg + Fe cations (up to 0.1 of 0.8 cations per 19 oxygen anions), probably reflecting the original presence of Ti3+. The results of this study strongly support the suggestion (Ihinger and Stolper, 1986) that Allende hibonite originally formed under reducing conditions and was later oxidized. Oxygen fugacities within ~2–3 orders of magnitude of that of a solar gas are implied; otherwise, strong Ce and V depletions would be observed.  相似文献   

14.
Abstract— The low temperature fine‐grained material in unequilibrated chondrites, which occurs as matrix, rims, and dark inclusions, carries information about the solar nebula and the earliest stages of planetesimal accretion. The microdistribution of primordial noble gases among these components helps to reveal their accretionary and alteration histories. We measured the Ne and Ar isotopic ratios and concentrations of small samples of matrix, rims, and dark inclusions from the unequilibrated carbonaceous chondrites Allende (CV3), Leoville (CV3), and Renazzo (CR2) and from the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1) to decipher their genetic relationships. The primordial noble gas concentrations of Semarkona, and—with certain restrictions—also of Leoville, Bishunpur, and Allende decrease from rims to matrices. This indicates a progressive accretion of nebular dust from regions with decreasing noble gas contents and cannot be explained by a formation of the rims on parent bodies. The decrease is probably due to dilution of the noble‐gas‐carrying phases with noble‐gas‐poor material in the nebula. Krymka and Renazzo both show an increase of primordial noble gas concentrations from rims to matrices. In the case of Krymka, this indicates the admixture of noble gas‐rich dust to the nebular region from which first rims and then matrix accreted. This also explains the increase of the primordial elemental ratio 36Ar/ 20Ne from rims to matrix. Larger clasts of the noble‐gas‐rich dust form macroscopic dark inclusions in this meteorite, which seem to represent unusually pristine material. The interpretation of the Renazzo data is ambiguous. Rims could have formed by aqueous alteration of matrix or—as in the case of Krymka—by progressive admixture of noble gas‐rich dust to the reservoir from which the Renazzo constituents accreted. The Leoville and Krymka dark inclusions, as well as one dark inclusion of Allende, show noble gas signatures different from those of the respective host meteorites. The Allende dark inclusion probably accreted from the same region as Allende rims and matrix but suffered a higher degree of alteration. The Leoville and Krymka dark inclusions must have accreted from regions different from those of their respective rims and matrices and were later incorporated into their host meteorites. The noble gas data imply a heterogeneous reservoir with respect to its primordial noble gas content in the accretion region of the studied meteorites. Further studies will have to decide whether these differences are primary or evolved from an originally uniform reservoir.  相似文献   

15.
Abstract— Fine‐grained, spinel‐rich inclusions in the reduced CV chondrites Efremovka and Leoville consist of spinel, melilite, anorthite, Al‐diopside, and minor hibonite and perovskite; forsterite is very rare. Several CAIs are surrounded by forsterite‐rich accretionary rims. In contrast to heavily altered fine‐grained CAIs in the oxidized CV chondrite Allende, those in the reduced CVs experienced very little alteration (secondary nepheline and sodalite are rare). The Efremovka and Leoville fine‐grained CAIs are 16O‐enriched and, like their Allende counterparts, generally have volatility fractionated group II rare earth element patterns. Three out of 13 fine‐grained CAIs we studied are structurally uniform and consist of small concentrically zoned nodules having spinel ± hibonite ± perovskite cores surrounded by layers of melilite and Al‐diopside. Other fine‐grained CAIs show an overall structural zonation defined by modal mineralogy differences between the inclusion cores and mantles. The cores are melilite‐free and consist of tiny spinel ± hibonite ± perovskite grains surrounded by layers of anorthite and Al‐diopside. The mantles are calcium‐enriched, magnesium‐depleted and coarsergrained relative to the cores; they generally contain abundant melilite but have less spinel and anorthite than the cores. The bulk compositions of fine‐grained CAIs generally show significant fractionation of Al from Ca and Ti, with Ca and Ti being depleted relative to Al; they are similar to those of coarsegrained, type C igneous CAIs, and thus are reasonable candidate precursors for the latter. The finegrained CAIs originally formed as aggregates of spinel‐perovskite‐melilite ± hibonite gas‐solid condensates from a reservoir that was 16O‐enriched but depleted in the most refractory REEs. These aggregates later experienced low‐temperature gas‐solid nebular reactions with gaseous SiO and Mg to form Al‐diopside and ±anorthite. The zoned structures of many of the fine‐grained inclusions may be the result of subsequent reheating that resulted in the evaporative loss of SiO and Mg and the formation of melilite. The inferred multi‐stage formation history of fine‐grained inclusions in Efremovka and Leoville is consistent with a complex formation history of coarse‐grained CAIs in CV chondrites.  相似文献   

16.
Abstract— Neodymium, strontium, and chromium isotopic studies of the LEW86010 angrite established its absolute age and the formation interval between its crystallization and condensation of Allende CAIs from the solar nebula. Pyroxene and phosphate were found to contain ~98% of its Sm and Nd inventory. A conventional 147Sm-143Nd isochron yielded an age of 4.53 ± 0.04 Ga (2 σ) and ?143 Nd = 0.45 ± 1.1. An 146Sm-142Nd isochron gives initial 146Sm/144Sm = 0.0076 ± 0.0009 and ?143 Nd = ?2.5 ± 0.4. The Rb-Sr analyses give initial 87Sr/86Sr (I87Sr) = 0.698972 ± 8 and 0.698970 ± 18 for LEW and ADOR, respectively, relative to 87Sr/86Sr = 0.71025 for NBS987. The difference, ΔI87Sr, between I87Sr for the angrites and literature values for Allende CAIs, corresponds to ~9 Ma of growth in a solar nebula with a CI chondrite value of 87Rb/86Sr = 0.91, or ~5 Ma in a nebula with solar photospheric 87Rb/86Sr = 1.51. Excess 53Cr from extinct 53Mn (t1/2 = 3.7 Ma) in LEW86010 corresponds to initial 53Mn/55Mn = 1.44 ± 0.07 × 10?6 and closure to Cr isotopic homogenization 18.2 ± 1.7 Ma after formation of Allende inclusions, assuming initial 53Mn/55Mn = 4.4 ± 1.0 × 10?5 for the inclusions as previously reported by the Paris group (Birck and Allegre, 1988). The 146Sm/144Sm value found for LEW86010 corresponds to solar system initial (146Sm/144Sm)o = 0.0080 ± 0.0009 for crystallization 8 Ma after Allende, the difference between Pb-Pb ages of angrites and Allende, or 0.0086 ± 0.0009 for crystallization 18 Ma after Allende, using the Mn-Cr formation interval. The isotopic data are discussed in the context of a model in which an undifferentiated “chondritic” parent body formed from the solar nebula ~2 Ma after Allende CAIs and subsequently underwent differentiation accompanied by loss of volatiles. Parent bodies with Rb/Sr similar to that of CI, CM, or CO chondrites could satisfy the Cr and Sr isotopic systematics. If the angrite parent body had Rb/Sr similar to that of CV meteorites, it would have to form slightly later, ~2.6 Ma after the CAIs, to satisfy the Sr and Cr isotopic systematics.  相似文献   

17.
The Washougal, Washington, U.S.A., howardite fell in 1939. We studied its mineralogy optically and determined the ranges of composition of plagioclase and pyroxenes from measurements of densities and indices of refraction. Notable among many unique xenoliths are a round object whose morphology is that of an armored chondrule; a stratified fragment; and a centimeter-sized dunite xenolith (olivine Fa12.8). The abundances of 27 elements, including all major elements and 15 trace elements (Sc, V, Co, Ni, Cu, Ga, Sr, Y, Ba, La, Sm, Eu, Yb, Lu and Hf) are reported. To a first approximation, the composition of Washougal corresponds to a mixture of 51 weight percent of eucritic material and 49 percent of a diogenitic component, but excesses of some elements suggest a minor component of chondritic composition  相似文献   

18.
Abstract— The Mg‐isotopic compositions in five barred olivine (BO) chondrules, one coarse‐grained rim of a BO chondrule, a relic spinel in a BO chondrule, one skeletal olivine chondrule similar to BO chondrules in mineralogy and composition, and two non‐BO chondrules from the Allende meteorite have been measured by thermal ionization mass spectrometry. The Mg isotopes are not fractionated and are within terrestrial standard values (±2.0%o per amu) in seven of the eight analyzed ferromagnesian chondrules. A clump of relic spinel grain and its host BO chondrule R‐11 give well‐resolvable Mg fractionations that show an enrichment of the heavier isotopes, up to +2.5%‰ per amu. The Mg‐isotopic compositions of coarse‐grained rim are identical to those of the host chondrule with BO texture. The results imply that ferromagnesian and refractory precursor components of the Allende chondrule may have been formed from isotopically heterogeneous reservoirs. In the nebula region where Allende chondrules formed, recycling of chondrules and multiple high‐temperature heating did not significantly alter the chemical and isotopic memory of earlier generations. Chemical and isotopic characteristics of refractory precursors of carbonaceous chondrite chondrules and CAIs are more closely related than previously thought. One of the refractory chondrule precursors of CV Allende is enriched in the heavier Mg isotopes and different from those of more common ferromagnesian chondrule precursors. The most probable scenario at the location where chondrule R‐11 formed is as follows. Before chondrule formation, several high‐temperature events occurred and then RPMs, refractory oxides, and silicates condensed from the nebular gas in which Mg isotopes were fractionated. Then, this CAI was transported into the chondrule formation region and mixed with more common, ferromagnesian precursors with normal Mg isotopes, and formed the BO chondrule. Because Mg isotope heterogeneity among silicates and spinel are found in some CAIs (Esat and Taylor, 1984), we cannot rule out the possibility that Mg isotopes of a melted portion of the refractory precursor (i.e., outer portion of CAI) are normal or enriched in the light isotope. Magnesium isotopes in the R‐11 host are also enriched in the heavier isotopes, +2.5%o per amu, which suggests that effects of isotopic heterogeneity among silicates and spinel, if they existed, are not considered to be large. It is possible that CAI precursor silicates partially dissolved during the chondrule forming event, contributing Mg to the melt and producing a uniform Mg‐isotopic signature but enriched in the heavier Mg isotopes, +2.5%‰ per amu. Most Mg isotopes in more common ferromagnesian chondrules represent normal chondritic material. Chemical and Mg‐isotopic signatures formed during nebular fractionations were not destroyed during thermal processes that formed the chondrule, and these were partly preserved in relic phases. Recycling of Allende chondrules and multiple heating at high temperature did not significantly alter the chemical and Mg‐isotopic memory of earlier generations.  相似文献   

19.
Abstract— The CV (Vigarano‐type) chondrites are a petrologically diverse group of meteorites that are divided into the reduced and the Bali‐like and Allende‐like oxidized subgroups largely based on secondary mineralogy (Weisberg et al., 1997; Krot et al., 1998b). Some chondrules and calcium‐aluminum‐rich inclusions (CAIs) in the reduced CV chondrite Vigarano show alteration features similar to those in Allende: metal is oxidized to magnetite; low‐Ca pyroxene, forsterite, and magnetite are rimmed and veined by ferrous olivine (Fs40–50); and plagioclase mesostases and melilite are replaced by nepheline and sodalite (Sylvester et al., 1993; Kimura and Ikeda, 1996, 1997, 1998). Our petrographic observations indicate that Vigarano also contains individual chondrules, chondrule fragments, and lithic clasts of the Bali‐like oxidized CV materials. The largest lithic clast (about 1 times 2 cm in size) is composed of opaque matrix, type‐I chondrules (400–2000 μm in apparent diameter) surrounded by coarse‐grained and fine‐grained rims, and rare CAIs. The matrix‐chondrule ratio is about 1.1. Opaque nodules in chondrules in the clast consist of Cr‐poor and Cr‐rich magnetite, Ni‐ and Co‐rich metal, Ni‐poor and Ni‐rich sulfide; low‐Ni metal nodules occur only inside chondrule phenocrysts. Chromium‐poor magnetite is preferentially replaced by fayalite. Chondrule mesostases are replaced by phyllosilicates; low‐Ca pyroxene and olivine phenocrysts appear to be unaltered. Matrix in the clast consists of very fine‐grained (<1 μm) ferrous olivine, anhedral fayalite grains (Fa80–100), rounded objects of porous Ca‐Fe‐rich pyroxenes (Fs10–50Wo50), Ni‐poor sulfide, Ni‐ and Co‐rich metal, and phyllosilicates; magnetite is rare. On the basis of the presence of the Bali‐like lithified chondritic clast—in addition to individual chondrules and CAIs of both Bali‐like and Allende‐like materials—in the reduced CV chondrite Vigarano, we infer that (1) all three types of materials were mixed during regolith gardening on the CV asteroidal body, and (2) the reduced and oxidized CV materials may have originated from a single, heterogeneously altered asteroid.  相似文献   

20.
Abstract— We report the study of an unusual compact type A refractory inclusion, named the White Angel, from the Leoville CV3 meteorite. The petrologic, mineral chemical, isotopic, and trace‐element signatures of this once‐molten Ca‐Al‐rich inclusion (CAI), which contains large, equant wollastonite crystals, indicate a short multistage history that occurred very early, before substantial decay of 26Al. Magnesium in the inclusion is isotopically heavy, with FMg reaching 18‰/amu, in the range of fractionated and with unidentified nuclear effects (FUN) inclusions. However, the absence of any nuclear anomalies in Ca and Ti and an inferred 26Al/27Al ratio of (5.5 ± 0.9) × 10?5 indicate that the White Angel belongs to the F inclusions. Silicon and oxygen are also mass fractionated in favor of the heavy isotopes, but to a lesser extent. The O isotopes show a range in 16O excesses. On an O three‐isotope plot, data points lie on a line parallel and to the right of the carbonaceous chondrite anhydrous mineral mixing line, with wollastonite being the most 16O‐rich phase. The chondrite‐normalized rare earth and trace‐element pattern of the whole inclusion is the complement of an ultrarefractory pattern indicating that precursor phases of the CAI must have condensed in an Al‐, heavy rare earth element (HREE)‐depleted reservoir. Melting of those precursor phases in an 16O‐rich environment and evaporation led to mass‐dependent isotopic fractionation of Mg, Si, and O. Partial isotopic exchange with a reservoir containing unfractionated Mg took place at a later stage but before any measurable decay of 26Al. Some minerals (melilite and perovskite) in the White Angel equilibrated oxygen isotopes with a relatively 16O‐poor reservoir that was also mass‐fractionated toward the heavy isotopes, different from that with which the normal or FUN inclusions interacted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号