首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, ~65 Ma). The impactites reported from the crater to date mainly include centimeter‐ to decimeter‐sized impact‐melt bombs, and aerodynamically shaped millimeter‐ and submillimeter‐sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non–in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non–in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top‐most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter‐sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH‐type chondrite with the submillimeter‐sized spherules containing ~6 wt% impactor components.  相似文献   

2.
Abstract— We surveyed the impact crater populations of Venus and the Moon, dry targets with and without an atmosphere, to characterize how the 3‐dimensional shape of a crater and the appearance of the ejecta blanket varies with impact angle. An empirical estimate of the impact angle below which particular phenomena occur was inferred from the cumulative percentage of impact craters exhibiting different traits. The results of the surveys were mostly consistent with predictions from experimental work. Assuming a sin2θ dependence for the cumulative fraction of craters forming below angle θ, on the Moon, the following transitions occur: >?45 degrees, the ejecta blanket becomes asymmetric; >?25 degrees, a forbidden zone develops in the uprange portion of the ejecta blanket, and the crater rim is depressed in that direction; >?15 degrees, the rim becomes saddle‐shaped; >?10 degrees, the rim becomes elongated in the direction of impact and the ejecta forms a “butterfly” pattern. On Venus, the atmosphere causes asymmetries in the ejecta blanket to occur at higher impact angles. The transitions on Venus are: >?55 degrees, the ejecta becomes heavily concentrated downrange; >?40 degrees, a notch in the ejecta that extends to the rim appears, and as impact angle decreases, the notch develops into a larger forbidden zone; >?10 degrees, a fly‐wing pattern develops, where material is ejected in the crossrange direction but gets swept downrange. No relationship between location or shape of the central structure and impact angle was observed on either planet. No uprange steepening and no variation in internal slope or crater depth could be associated with impact angle on the Moon. For both planets, as the impact angle decreases from vertical, first the uprange and then the downrange rim decreases in elevation, while the remainder of the rim stays at a constant elevation. For craters on Venus >?15 km in diameter, a variety of crater shapes are observed because meteoroid fragment dispersal is a significant fraction of crater diameter. The longer path length for oblique impacts causes a correlation of clustered impact effects with oblique impact effects. One consequence of this correlation is a shallowing of the crater with decreasing impact angle for small craters.  相似文献   

3.
Abstract— We have surveyed Martian impact craters greater than 5 km in diameter using Viking and thermal emission imaging system (THEMIS) imagery to evaluate how the planform of the rim and ejecta changes with decreasing impact angle. We infer the impact angles at which the changes occur by assuming a sin2θ dependence for the cumulative fraction of craters forming below angle θ. At impact angles less than ?40° from horizontal, the ejecta become offset downrange relative to the crater rim. As the impact angle decreases to less than ?20°, the ejecta begin to concentrate in the cross‐range direction and a “forbidden zone” that is void of ejecta develops in the uprange direction. At angles less than ?10°, a “butterfly” ejecta pattern is generated by the presence of downrange and uprange forbidden zones, and the rim planform becomes elliptical with the major axis oriented along the projectile's direction of travel. The uprange forbidden zone appears as a “V” curving outward from the rim, but the downrange forbidden zone is a straight‐edged wedge. Although fresh Martian craters greater than 5 km in diameter have ramparts indicative of surface ejecta flow, the ejecta planforms and the angles at which they occur are very similar to those for lunar craters and laboratory impacts conducted in a dry vacuum. The planforms are different from those for Venusian craters and experimental impacts in a dense atmosphere. We interpret our results to indicate that Martian ejecta are first emplaced predominantly ballistically and then experience modest surface flow.  相似文献   

4.
Abstract— Previous X‐ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X‐ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.  相似文献   

5.
Abstract— The only well‐known terrestrial analogue of impact craters in basaltic crusts of the rocky planets is the Lonar crater, India. For the first time, evidence of the impactor that formed the crater has been identified within the impact spherules, which are ?0.3 to 1 mm in size and of different aerodynamic shapes including spheres, teardrops, cylinders, dumbbells and spindles. They were found in ejecta on the rim of the crater. The spherules have high magnetic susceptibility (from 0.31 to 0.02 SI‐mass) and natural remanent magnetization (NRM) intensity. Both NRM and saturation isothermal remanent magnetization (SIRM) intensity are ?2 Am2/Kg. Demagnetization response by the NRM suggests a complicated history of remanence acquisition. The spherules show schlieren structure described by chains of tiny dendritic and octahedral‐shaped magnetite crystals indicating their quenching from liquid droplets. Microprobe analyses show that, relative to the target basalt compositions, the spherules have relatively high average Fe2O3 (by ?1.5 wt%), MgO (?1 wt%), Mn (?200 ppm), Cr (?200 ppm), Co (?50 ppm), Ni (?1000 ppm) and Zn (?70 ppm), and low Na2O (?1 wt%) and P2O5 (?0.2 wt%). Very high Ni contents, up to 14 times the average content of Lonar basalt, require the presence of a meteoritic component in these spherules. We interpret the high Ni, Cr, and Co abundances in these spherules to indicate that the impactor of the Lonar crater was a chondrite, which is present in abundances of 12 to 20 percent by weight in these impact spherules. Relatively high Zn yet low Na2O and P2O5 contents of these spherules indicate exchange of volatiles between the quenching spherule droplets and the impact plume.  相似文献   

6.
Abstract— Using detailed geological, petrographic, geochemical, and geographical constraints we have performed numerical modeling studies that relate the Steinheim crater (apparent diameter Da = 3.8 km), the Ries crater (Da = 24 km) in southern Germany, and the moldavite (tektite) strewn field in Bohemia and Moravia (Czech Republic), Lusatia (East Germany), and Lower Austria. The moldavite strewn field extends from ~200 to 450 km from the center of the Ries to the east‐northeast forming a fan with an angle of ~57°. An oblique impact of a binary asteroid from a west‐southwest direction appears to explain the locations of the craters and the formation and distribution of the moldavites. The impactor must have been a binary asteroid with two widely separated components (some 1.5 and 0.15 km in diameter, respectively). We carried out a series of three‐dimensional hydrocode simulations of a Ries‐type impact. The results confirm previous results suggesting that impacts around 30–50° (from the horizontal) are the most favorable angles for near‐surface melting, and, consequently for the formation of tektites. Finally, modeling of the motion of impact‐produced tektite particles through the atmosphere produces, in the downrange direction, a narrow‐angle distribution of the moldavites tektites in a fan like field with an angle of ~75°. An additional result of modeling the motion of melt inside and outside the crater is the preferred flow of melt from the main melt zone of the crystalline basement downrange towards the east‐northeast rim. This explains perfectly the occurrence of coherent impact melt bodies (some tens of meters in size) in a restricted zone of the downrange rim of the Ries crater. The origin of these melt bodies, which represent chemically a mixture of crystalline basement rocks similar to the main melt mass contained (as melt particles <0.5 m in size) in the suevite, do not occur at any other portion of the Ries crater rim and remained enigmatic until now. Although the calculated distribution of moldavites still deviates to some degree from the known distribution, our results represent an important step toward a better understanding of the origin and distribution of the high‐velocity surface melts and the low‐velocity, deep‐seated melt resulting from an oblique impact on a stratified target.  相似文献   

7.
The Ramgarh structure is a morphological landmark in southeastern Rajasthan, India. Its 200 m high and 3.5–4 km wide annular collar has provoked many hypotheses regarding its origin, including impact. Here, we document planar deformation features, planar fractures, and feather features in quartz grains of the central part of the Ramgarh structure, which confirm its impact origin. The annular collar does not mark the crater rim but represents the outer part of a central uplift of an approximately 10 km diameter complex impact structure. The apparent crater rim is exposed as a low‐angle normal fault and can be traced as lineaments in remote sensing imagery. The central uplift shows a stratigraphic uplift of ~1000 m and is rectangular in shape. It is dissected by numerous faults that are co‐genetic with the formation of the central uplift. The central uplift has a bilateral symmetry along an SW‐NE axis, where a large strike‐slip fault documents a strong horizontal shear component. This direction corresponds to the assumed impact trajectory from the SW toward the NE. The uprange sector is characterized by concentric reverse faults, whereas radial faults dominate downrange. Sandstones of the central uplift are infiltrated by Fe‐oxides and suggest an impact‐induced hydrothermal mineralization overprint. The impact may have occurred into a shallow water environment as indicated by soft‐sediment deformation features, observed near the apparent crater rim, and the deposition of a diamictite layer above them. Gastropods embedded in the diamictite have Middle Jurassic age and may indicate the time of the impact.  相似文献   

8.
Abstract— The Lonar crater, India, is the only well‐preserved simple crater on Earth in continental flood basalts; it is excavated in the Deccan trap basalts of Cretaceous‐Tertiary age. A representative set of target basalts, including the basalt flows excavated by the crater, and a variety of impact breccias and impact glasses, were analyzed for their major and trace element compositions. Impact glasses and breccias were found inside and outside the crater rim in a variety of morphological forms and shapes. Comparable geochemical patterns of immobile elements (e.g., REEs) for glass, melt rock and basalt indicates minimal fractionation between the target rocks and the impactites. We found only little indication of post‐impact hydrothermal alteration in terms of volatile trace element changes. No clear indication of an extraterrestrial component was found in any of our breccias and impact glasses, indicating either a low level of contamination, or a non‐chondritic or otherwise iridium‐poor impactor.  相似文献   

9.
Abstract– We detail the Kamil crater (Egypt) structure and refine the impact scenario, based on the geological and geophysical data collected during our first expedition in February 2010. Kamil Crater is a model for terrestrial small‐scale hypervelocity impact craters. It is an exceptionally well‐preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and target rocks comprising subhorizontally layered sandstones. The high depth‐to‐diameter ratio of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45°. Newly identified asymmetries, including the off‐center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well‐preserved craters. Geomagnetic data reveal no buried individual impactor masses >100 kg and suggest that the total mass of the buried shrapnel >100 g is approximately 1050–1700 kg. Based on this mass value plus that of shrapnel >10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t.  相似文献   

10.
Lockne is a concentric impact structure due to a layered target where weak sediments and seawater covered a crystalline basement. A matrix‐supported, sedimentary breccia is interlayered between the crystalline breccia lens and the resurge deposits in the crater infill. As the breccia is significantly different from the direct impact breccia and the resurge deposit, we propose a separate unit name, Tramsta Breccia, based on the type locality (i.e., the LOC02 drilling at Tramsta). We use granulometry and a novel matrix line‐log method to characterize the sedimentology of the Tramsta Breccia. The obliquity of impact combined with the layered target caused an asymmetric, concentric transient crater, which upon its collapse controlled the deposition of the breccia. On the wide‐brimmed downrange side of the crater where the sedimentary target succession was removed during crater excavation, wide, overturned basement crater ejecta flaps prevented any slumping of exterior sediments. Instead, the sediments most likely originated from the uprange side where the brim was narrow and the basement crater rim was poorly developed, sediment‐rich, and relatively unstable. Here, the water cavity wall remained in closer proximity to the basement crater and, aided by the pressure of the collapsing water wall, unconsolidated black mud would flow back into the crater. The absence of interlayered resurge deposits in the Tramsta Breccia and the evidence for reworking at the contact between the overlying resurge deposits and the Tramsta Breccia indicate that the slumping was a rapid process (<75 s) terminating well before the resurge entered the crater.  相似文献   

11.
Abstract– The <1,100 yr old Whitecourt meteorite impact crater, located south of Whitecourt, Alberta, Canada, is a well‐preserved bowl‐shaped structure having a depth and diameter of approximately 6 and 36 m, respectively. There are fewer than a dozen known terrestrial sites of similar size and age. Unlike most of these sites, however, the Whitecourt crater contains nearly all of the features associated with small impact craters including meteorites, ejecta blanket, observable transient crater boundary, raised rim, and associated shock indicators. This study indicates that the crater formed from the impact of an approximately 1 m diameter type IIIAB iron meteoroid traveling east‐northeast at less than approximately 10 km s?1, striking the surface at an angle between 40° and 55° to horizontal. It appears that the main mass survived atmospheric transit relatively intact, with fragmentation and partial melting during impact. Most meteoritic material has a jagged, shrapnel‐like morphology and is distributed downrange of the crater.  相似文献   

12.
The Deep Impact oblique impact cratering experiment   总被引:1,自引:0,他引:1  
The Deep Impact probe collided with 9P Tempel 1 at an angle of about 30° from the horizontal. This impact angle produced an evolving ejecta flow field very similar to much smaller scale oblique-impact experiments in porous particulate targets in the laboratory. Similar features and phenomena include a decoupled vapor/dust plume at the earliest times, a pronounced downrange bias of the ejecta, an uprange “zone of avoidance” (ZoA), heart-shaped ejecta ray system (cardioid pattern), and a conical (but asymmetric) ejecta curtain. Departures from nominal cratering evolution, however, provide clues on the nature of the impact target. These departures include: fainter than expected flash at first contact, delayed emergence of the self-luminous vapor/dust plume, uprange-directed plume, narrow early-time uprange ray followed by a late-stage uprange plume, persistence of ejecta asymmetries (and the uprange ZoA) throughout the approach sequence, emergence of a downrange ZoA at late times, detachment of uprange curved rays, very long lasting non-radial ejecta rays, and high-angle ejecta plume lasting over the entire encounter. The first second of crater formation most closely resembles the consequences of a highly porous target, while later evolution indicates that the target may be layered as well. Experiments also reveal that impacts into highly porous targets produce a vapor/dust plume directed back up the incoming trajectory. This uprange plume is attributed to cavitation within a narrow penetration funnel. The observed lateral expansion speed of the initial vapor plume downrange provides an estimate for the total vaporized mass equal to ∼5mp (projectile masses) of water ice or 6mp of CO2. The downrange plume speed is consistent with the gas expansion added to the downrange horizontal component of the DI probe. Based on high-speed spectroscopy of experimental impacts, the observed delay in brightening of the DI plume may be the result of delayed condensation of carbon, in addition to silicates. Observed molecular species in the initial self-luminous vapor plume likely represent recombination products from completely dissociated target materials. The crater produced by the impact can be estimated from Earth-based observations of total ejected mass to be 130-220 m in diameter. This size range is consistent with a 220 m-diameter circular feature at the point of impact visible in highly processed, deconvolved HRI images. The final crater, however, may resemble an inverted sombrero-hat, with a deep central pit surrounded by a shallow excavation crater. Excavated distal material observed from the Earth was likely from the upper few meters contrasted with ballistic ejecta observed from the DI flyby, which included deep materials (10-30 m) within the diffuse plume above the crater and shallower (5-10 m) materials within the ejecta curtain.  相似文献   

13.
Abstract— The 4 km wide and 500 m deep circular Kärdla impact structure in Hiiumaa Island, Estonia, of middle Ordovician age (~455 Ma), is buried under Upper Ordovician and Quaternary sediments. To constrain the geophysical models of the structure, petrophysical properties such as magnetic susceptibility, natural remanent magnetization (NRM), density, electrical conductivity, porosity and P-wave velocity were measured on samples of crystalline and sedimentary rocks collected from drill cores in different parts of the structure and the surrounding area. The results were used to interpret the central gravity anomaly of ?3 mGal and the magnetic anomaly of ?100 nT and also the surrounding weak positive anomalies revealed by high precision survey data. The unshocked granitic rocks outside the structure have a mean density of ~2630 kgm?3. Their shocked counterparts have densities of ~2400 kgm?3 at a depth of ~500 m, increasing up to 2550 kgm?3 at a depth of 850 m. Porosity and electrical conductivity decrease, but P-wave velocity increases as density increases away from the impact point. Thus, the gradual changes in the physical properties of the rocks as a function of radial distance from the crater centre are consistent with an impact origin for Kärdla. As in many other impact structures, the magnetization of the shocked rocks are also clearly lower than those of unshocked target rocks. A new geophysical and geological model of the Kärdla structure is presented based on geophysical field measurements and data on gradual changes in petrophysical parameters of the shocked target and overlying rocks, together with structural data from numerous boreholes. An important feature of this model is the lack of an observable geophysical signature of the central uplift observed in drillcores.  相似文献   

14.
The Lonar crater is a ~0.57‐Myr‐old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best‐preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr‐Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact‐related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re‐Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re‐Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near‐chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12–20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.  相似文献   

15.
Abstract— The 50,000 year old, 1.8 km diameter Lonar crater is one of only two known terrestrial craters to be emplaced in basaltic target rock (the 65 million year old Deccan Traps). The composition of the Lonar basalts is similar to martian basaltic meteorites, which establishes Lonar as an excellent analogue for similarly sized craters on the surface of Mars. Samples from cores drilled into the Lonar crater floor show that there are basaltic impact breccias that have been altered by post‐impact hydrothermal processes to produce an assemblage of secondary alteration minerals. Microprobe data and X‐ray diffraction analyses show that the alteration mineral assemblage consists primarily of saponite, with minor celadonite, and carbonate. Thermodynamic modeling and terrestrial volcanic analogues were used to demonstrate that these clay minerals formed at temperatures between 130°C and 200°C. By comparing the Lonar alteration assemblage with alteration at other terrestrial craters, we conclude that the Lonar crater represents a lower size limit for impact‐induced hydrothermal activity. Based on these results, we suggest that similarly sized craters on Mars have the potential to form hydrothermal systems, as long as liquid water was present on or near the martian surface. Furthermore, the Fe‐rich alteration minerals produced by post‐impact hydrothermal processes could contribute to the minor iron enrichment associated with the formation of the martian soil.  相似文献   

16.
Abstract— Crater‐ejecta correlation is an important element in the analysis of crater formation and its influence on the geological evolution. In this study, both the ejecta distribution and the internal crater development of the Jurassic/Cretaceous Mjølnir crater (40 km in diameter; located in the Barents Sea) are investigated through numerical simulations. The simulations show a highly asymmetrical ejecta distribution, and underscore the importance of a layer of surface water in ejecta distribution. As expected, the ejecta asymmetry increases as the angle of impact decreases. The simulation also displays an uneven aerial distribution of ejecta. The generation of the central high is a crucial part of crater formation. In this study, peak generation is shown to have a skewed development, from approximately 50–90 sec after impact, when the peak reaches its maximum height of 1‐1.5 km. During this stage, the peak crest is moved about 5 km from an uprange to a downrange position, ending with a final central position which has a symmetrical appearance that contrasts with its asymmetrical development.  相似文献   

17.
Most impacts occur at an angle with respect to the horizontal plane. This is primarily reflected in the ejecta distribution, but at very low angle structural asymmetries such as elongation of the crater and nonradial development of the central peak become apparent. Unfortunately, impact craters with pristine ejecta layers are rare on Earth and also in areas with strong past or ongoing surface erosion on other planetary bodies, and the structural analysis of central peaks requires good exposures or even on‐site access to outcrop. However, target properties are known to greatly influence the shape of the crater, especially the relatively common target configuration of a weaker layer covering a more rigid basement. One such effect is the formation of concentric craters, i.e., a nested, deeper, inner crater surrounded by a shallow, outer crater. Here, we show that with decreasing impact angle there is a downrange shift of the outer crater with respect to the nested crater. We use a combination of (1) field observation and published 3‐D numerical simulation of one of the best examples of a terrestrial, concentric impact crater formed in a layered target with preserved ejecta layer: the Lockne crater, Sweden; (2) remote sensing data for three pristine, concentric impact craters on Mars with preserved ejecta layers further constraining the direction of impact; as well as (3) laboratory impact experiments, to develop the offset in crater concentricity into a complementary method to determine the direction of impact for layered‐target craters with poorly preserved ejecta layers.  相似文献   

18.
Abstract— The Lockne impact crater in central Sweden, with a diameter of about 7 km, formed in the mid‐Ordovician in a marine environment that was deeper than present shelf seas. The present dip of the so‐called sub‐Cambrian peneplain in the target area of the impact is about 0.85° toward the northwest. The peneplain is cut by a set of northwest‐striking, nearly vertical faults with a throw of up to just over 100 m, collectively. The identification of the peneplain and its deformation by faulting allows us to infer that the part of the crater that is exposed to the east of Lake Locknesjön has been lowered by about 100 m relative to parts exposed to the west of the lake and that it has, therefore, been spared from significant erosion. Therefore, the preservation of the whole crater is even better than was assumed in previous work. The peneplain extends to 600–700 m from the rim of the inner crater. Hence, the structural uplift of the rim is quite subdued compared to the craters that formed on land.  相似文献   

19.
Coesite has been identified within ejected blocks of shocked basalt at Lonar crater, India. This is the first report of coesite from the Lonar crater. Coesite occurs within SiO2 glass as distinct ~30 μm spherical aggregates of “granular coesite” identifiable both with optical petrography and with micro‐Raman spectroscopy. The coesite+glass occurs only within former silica amygdules, which is also the first report of high‐pressure polymorphs forming from a shocked secondary mineral. Detailed petrography and NMR spectroscopy suggest that the coesite crystallized directly from a localized SiO2 melt, as the result of complex interactions between the shock wave and these vesicle fillings.  相似文献   

20.
Abstract– The 3.8 km Steinheim Basin in SW Germany is a complex impact crater with central uplift hosted by a sequence of Triassic to Jurassic sedimentary rocks. It exhibits a well‐preserved crater morphology, intensely brecciated limestone blocks that form the crater rim, as well as distinct shatter cones in limestones. In addition, an impact breccia mainly composed of Middle to Upper Jurassic limestones, marls, mudstones, and sandstones is known from drilling into the impact crater. No impact melt lithologies, however, have so far been reported from the Steinheim Basin. In samples of the breccia that were taken from the B‐26 drill core, we discovered small particles (up to millimeters in size) that are rich in SiO2 (~50 wt%) and Al2O3 (~28 wt%), and contain particles of Fe‐Ni‐Co sulfides, as well as target rock clasts (shocked and unshocked quartz, feldspar, limestone) and droplet‐shaped particles of calcite. The particles exhibit distinct flow structures and relicts of schlieren and vesicles. From the geochemical composition and the textural properties, we interpret these particles as mixed silicate melt fragments widely recrystallized, altered, and/or transformed into hydrous phyllosilicates. Furthermore, we detected schlieren of lechatelierite and recrystallized carbonate melt. On the basis of impactite nomenclature, the melt‐bearing impact breccia in the Steinheim Basin can be denominated as Steinheim suevite. The geochemical character of the mixed melt particles points to Middle Jurassic sandstones (“Eisensandstein” Formation) that crop out at the center of the central uplift as the source for the melt fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号