首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Cerro do Jarau is a conspicuous, circular morpho‐structural feature in Rio Grande do Sul State (Brazil), with a central elevated core in the otherwise flat “Pampas” terrain typical for the border regions between Brazil and Uruguay. The structure has a diameter of approximately 13.5 km. It is centered at 30o12′S and 56o32′W and was formed on basaltic flows of the Cretaceous Serra Geral Formation, which is part of the Paraná‐Etendeka Large Igneous Province (LIP), and in sandstones of the Botucatu and Guará formations. The structure was first spotted on aerial photographs in the 1960s. Ever since, its origin has been debated, sometimes in terms of an endogenous (igneous) origin, sometimes as the result of an exogenous (meteorite impact) event. In recent years, a number of studies have been conducted in order to investigate its nature and origin. Although the results have indicated a possible impact origin, no conclusive evidence could be produced. The interpretation of an impact origin was mostly based on the morphological characteristics of the structure; geophysical data; as well as the occurrence of different breccia types; extensive deformation/silicification of the rocks within the structure, in particular the sandstones; and also on the widespread occurrence of low‐pressure deformation features, including some planar fractures (PFs). A detailed optical microscopic analysis of samples collected during a number of field campaigns since 2007 resulted in the disclosure of a large number of quartz grains from sandstone and monomict arenite breccia from the central part of the structure with PFs and feather features (FFs), as well as a number of quartz grains exhibiting planar deformation features (PDFs). While most of these latter grains only carry a single set of PDFs, we have observed several with two sets, and one grain with three sets of PDFs. Consequently, we here propose Cerro do Jarau as the seventh confirmed impact structure in Brazil. Cerro do Jarau, together with Vargeão Dome (Santa Catalina state) and Vista Alegre (Paraná State), is one of very few impact structures on Earth formed in basaltic rocks.  相似文献   

2.
The Vargeão impact structure was formed in the Serra Geral basaltic and rhyodacitic to rhyolitic lava flows of southern Brazil, that belong to the Paraná‐Etendeka large igneous province. The Chapecó‐type rhyodacites contain small baddeleyite crystals recently dated at 134.3 (±0.8) Ma, which is regarded as the age of this acid volcanism coeval to the flood basalt eruption. Inside the impact structure, a brecciated rhyodacitic sample displays fine veinlets containing numerous lithic fragments in a former melt. This impact breccia contains newly formed zircons, either in the veins or at the contact between a vein and the volcanic matrix. The zircons are 10–50 μm in length, clear and nearly unzoned. In situ laser‐ablation dating of the zircons provides a concordant Early Aptian age of 123.0 ± 1.4 Ma that is regarded as the age of the impact event. As in situ age determination ensures the best possible selection of the analyzed mineral grains, the methodology employed in this study also represents a promising method for dating other impact structures.  相似文献   

3.
Riachão, located at S7°42′/W46°38′ in Maranhão State, northeastern Brazil, is a complex impact structure of about 4.1 km diameter, formed in Pennsylvanian to Permian sedimentary rocks of the Parnaíba Basin sequence. Although its impact origin was already proposed in the 1970s, information on its geology and shock features is still scarce in the literature. We present here the main geomorphological and geological characteristics of the Riachão impact structure obtained by integrated geophysical and remote sensing analysis, as well as geological field work and petrographic analysis. The identified lithostratigraphic units consist of different levels of the Pedra de Fogo Formation and, possibly, the Piauí Formation. Our petrographic analysis confirms the presence of shock‐diagnostic planar microdeformation structures in quartz grains of sandstone from the central uplift as evidence for an impact origin of the Riachão structure. The absence of crater‐filling impact breccias and melt rocks, shatter cones, as well as the restricted occurrence of microscopic shock effects, suggests that intense and relatively deep erosion has occurred since crater formation.  相似文献   

4.
Abstract– The Vista Alegre structure, centered at 25°57′S and 52°41′W, has been recently proposed as a meteorite impact structure. The 9.5 km‐diameter structure is located in the Paraná state of southern Brazil, within the Paraná Basin, which contains one of the largest and most extensive flood basalt provinces on Earth. The Paraná flood basalts belong to the Serra Geral Formation and are temporally related to the opening of the South Atlantic Ocean, having been dated at about 133–132 Ma. Tholeiitic basalts dominate the western portion of Paraná state, with some minor rhyodacites. Morphologically, Vista Alegre has a prominent circular outline, in the form of an incomplete ring of escarpments, and an inner depression. The presence of a central uplift is not obvious, but it is inferred by the occurrence of deformed sandstone blocks near the center of the structure. These sandstones are possibly related to the Triassic Pirambóia Formation and/or to the Cretaceous Botucatu Formation. These units are normally at stratigraphic depths of about 700–800 m below the present surface in this portion of the Paraná Basin. The structure appears to be in an advanced erosion stage and its interior is occupied by a soil cover several meters thick, extensively used for agriculture. As a result there are limited outcrops in the interior of the structure, all of polymict breccias, some of them melt‐bearing. We report the extensive occurrence of shatter cones, in the form of fine‐grained rock clasts within the polymict breccias. The shatter cone‐bearing breccias occur at different locations within the structure, separated by several kilometers. The nested shatter cones range in size from about 0.5 to 20 cm for individual cones, and up to half a meter for complete assemblages. The shatter cones formed in fine‐grained Parana flood basalt and might be the first examples of shatter cones in such a rock type. In addition, planar deformation features (PDFs) were found in quartz grains within sedimentary rock clasts of the polymict breccia. These findings confirm the impact origin of the Vista Alegre structure.  相似文献   

5.
We present the outcomes of simulations of the formation of the Vista Alegre impact structure, Paraná Basin, Brazil. The target comprised a thick sequence of volcanic rocks of predominantly basaltic composition of the Serra Geral Formation that had been deposited on top of sedimentary rocks (sandstones) of the Pirambóia/Botucatu formations. The cratering process was modeled using the iSALE shock physics code. Our best‐fit model suggests that (1) the crater was originally ~10 km in size; (2) it was formed in ~115 s by a stony projectile of 1000 m in diameter, for an assumed impact velocity of 12 km s?1; (3) target rocks underwent a peak pressure of ~20 GPa, in agreement with previous petrographic investigations of shock deformation. Furthermore, the model points out that the sedimentary strata below the layer of volcanic rocks were raised by ~650 meters at the central part of the crater, which resulted in the current partial exposure of the sandstones at the surface. The outcomes of our modeling suggest that parameters like cohesion and strength of the target rocks, after shock compression, determined the final morphology of the crater, especially the absence of a topographically prominent central peak. Finally, the results of the numerical modeling are roughly in agreement with gravity data over the structure, in particular with respect to the presence of the uplifted sedimentary strata, which are responsible for a low gravity signature at the center of the structure.  相似文献   

6.
Abstract– We have performed forward magnetic and gravity modeling of data obtained during the 2007 expedition to the 3.7 km in diameter, circular, Tsenkher structure, Mongolia, in order to evaluate the cause of its formation. Extensive occurrences of brecciated rocks, mainly in the form of an ejecta blanket outside the elevated rim of the structure, support an explosive origin (e.g., cosmic impact, explosive volcanism). The host rocks in the area are mainly weakly magnetic, silica‐rich sandstones, and siltstones. A near absence of surface exposures of volcanic rocks makes any major volcanic structures (e.g., caldera) unlikely. Likewise, the magnetic models exclude any large, subsurface, intrusive body. This is supported by an 8 mGal gravity low over the structure indicating a subsurface low density body. Instead, the best fit is achieved for a bowl‐shaped structure with a slight central rise as expected for an impact crater of this size in mainly sedimentary target. The structure can be either root‐less (i.e., impact crater) or rooted with a narrow feeder dyke with relatively higher magnetic susceptibility and density (i.e., volcanic maar crater). The geophysical signature, the solitary appearance, the predominantly sedimentary setting, and the comparably large size of the Tsenkher structure favor the impact crater alternative. However, until mineralogical/geochemical evidence for an impact is presented, the maar alternative remains plausible although exceptional as it would make the Tsenkher structure one of the largest in the world in an unusual setting for maar craters.  相似文献   

7.
We have investigated the Ash Shutbah circular structure in central Saudi Arabia (21°37′N 45°39′E) using satellite imagery, field mapping, thin‐section petrography, and X‐ray diffraction of collected samples. The approximately 2.1 km sized structure located in flat‐lying Jurassic Tuwaiq Mountain Limestone has been nearly peneplained by erosional processes. Satellite and structural data show a central area consisting of Dhruma Formation sandstones with steep bedding and tight folds plunging radially outward. Open folding occurs in displaced, younger Tuwaiq Mountain Limestone Formation blocks surrounding the central area, but is absent outside the circular structure. An approximately 60 cm thick, unique folded and disrupted orthoquartzitic sandstone marker bed occurring in the central area of the structure is found 140 m deeper in undisturbed escarpment outcrops located a few hundred meters west of the structure. With exception of a possible concave shatter cone found in the orthoquartzite of the central area, other diagnostic shock features are lacking. Some quartz‐rich sandstones from the central area show pervasive fracturing of quartz grains with common concussion fractures. This deformation was followed by an event of quartz dissolution and calcite precipitation consistent with local sea‐ or groundwater heating. The combination of central stratigraphic uplift of 140 m, concussion features in discolored sandstone, outward‐dipping concentric folds in the central area, deformation restricted to the rocks of the ring structure, a complex circular structure of 2.1 km diameter that appears broadly consistent with what one would expect from an impact structure in sedimentary targets, and a possible shatter cone all point to an impact origin of the Ash Shutbah structure. In fact, the Ash Shutbah structure appears to be a textbook example of an eroded, complex impact crater located in flat‐lying sedimentary rocks, where the undisturbed stratigraphic section can be studied in escarpment outcrops in the vicinity of the structure.  相似文献   

8.
Roter Kamm, located in the Namib Desert of SW Africa, is an 8,000-foot-diameter crater developed essentially in Precambrian granitic rocks. Sand overburden is pervasive both inside ami outside the crater and the only significant rock exposures are high in the crater rim. In most cases these exposed rocks proved entirely normal when examined microscopically but two specimens were found which exhibited features compatible with, and suggestive of, shock pressures in the range of 50 to 100 kilobars. Both specimens are probably foreign to the rim environment and may represent remnants of ejecta from the crater formation. There is a strong negative residual gravity anomaly across the structure which reaches a maximum of ?9.3 milligals. The size and shape of the anomaly are fully compatible with a meteorite impact structure of “normal” dimensions. It is more difficult to interpret the gravity data in terms of an explosive volcanic origin and neither is there any evidence of such an origin in the rim rock exposures. An impact origin for the crater is strongly suggested by all the evidence to date. Definitive evidence of shock metamorphism could perhaps be found by a further search for “exotic” rocks in the rim.  相似文献   

9.
Abstract— Lake El'gygytgyn, Chukotka, Russia, lies in a ~18 km crater of presumably impact origin. The crater is sited in Cretaceous volcanic rocks of the Okhotsk‐Chukotka volcanic belt. Laser 40Ar/39Ar dating of impact‐melted volcanic rocks from the rim of Lake El'gygytgyn yields a 10‐sample weighted plateau age of 3.58 ± 0.04 Ma. The Ar step‐heating method was critical in this study in identifying inherited Ar in the samples due to incomplete degassing of the Cretaceous volcanic rocks during impact melting. This age is consistent with, but more precise than, previous K‐Ar and fission‐track ages and indicates an “instantaneous” formation of the crater. This tight age control, in conjunction with the presence of impactites, shocked quartz, and other features, is consistent with an impact origin for the structure and seems to discount internal (volcanogenic) origin models.  相似文献   

10.
Abstract– The twin Arkenu circular structures (ACS), located in the al‐Kufrah basin in southeastern Libya, were previously considered as double impact craters (the “Arkenu craters”). The ACS consist of a NE (Arkenu 1) and a SW structure (Arkenu 2), with approximate diameters of about 10 km. They are characterized by two shallow depressions surrounded by concentric circular ridges and silica‐impregnated sedimentary dikes cut by local faults. Our field, petrographic, and textural observations exclude that the ACS have an impact origin. In fact, we did not observe any evidence of shock metamorphism, such as planar deformation features in the quartz grains of the collected samples, and the previously reported “shatter cones” are wind‐erosion features in sandstones (ventifacts). Conversely, the ACS should be regarded as a “paired” intrusion of porphyritic stocks of syenitic composition that inject the Nubia Formation and form a rather simple and eroded ring dike complex. Stock emplacement was followed by hydrothermal activity that involved the deposition of massive magnetite–hematite horizons (typical of iron oxide copper‐gold deposits). Their origin was nearly coeval with the development of silicified dikes in the surroundings. Plugs of tephritic‐phonolitic rocks and lamprophyres (monchiquites) inject the Nubian sandstone along conjugate fracture zones, trending NNW–SSE and NE–SW, that crosscut the structural axis of the basin.  相似文献   

11.
Abstract– The 3.8 km Steinheim Basin in SW Germany is a complex impact crater with central uplift hosted by a sequence of Triassic to Jurassic sedimentary rocks. It exhibits a well‐preserved crater morphology, intensely brecciated limestone blocks that form the crater rim, as well as distinct shatter cones in limestones. In addition, an impact breccia mainly composed of Middle to Upper Jurassic limestones, marls, mudstones, and sandstones is known from drilling into the impact crater. No impact melt lithologies, however, have so far been reported from the Steinheim Basin. In samples of the breccia that were taken from the B‐26 drill core, we discovered small particles (up to millimeters in size) that are rich in SiO2 (~50 wt%) and Al2O3 (~28 wt%), and contain particles of Fe‐Ni‐Co sulfides, as well as target rock clasts (shocked and unshocked quartz, feldspar, limestone) and droplet‐shaped particles of calcite. The particles exhibit distinct flow structures and relicts of schlieren and vesicles. From the geochemical composition and the textural properties, we interpret these particles as mixed silicate melt fragments widely recrystallized, altered, and/or transformed into hydrous phyllosilicates. Furthermore, we detected schlieren of lechatelierite and recrystallized carbonate melt. On the basis of impactite nomenclature, the melt‐bearing impact breccia in the Steinheim Basin can be denominated as Steinheim suevite. The geochemical character of the mixed melt particles points to Middle Jurassic sandstones (“Eisensandstein” Formation) that crop out at the center of the central uplift as the source for the melt fragments.  相似文献   

12.
Abstract– The Ritland structure is a newly discovered impact structure, which is located in southwestern Norway. The structure is the remnant of a simple crater 2.5 km in diameter and 350 m deep, which was excavated in Precambrian gneissic rocks. The crater was filled by sediments in Cambrian times and covered by thrust nappes of the Caledonian orogen in the Silurian–Devonian. Several succeeding events of uplift, erosion, and finally the Pleistocene glaciations, disclosed this well‐preserved structure. The erosion has exposed brecciated rocks of the original crater floor overlain by a thin layer of melt‐bearing rocks and postimpact crater‐filling breccias, sandstones, and shales. Quartz grains with planar deformation features occur frequently within the melt‐bearing unit, confirming the impact origin of the structure. The good exposures of infilling sediments have allowed a detailed reconstruction of the original crater morphology and its infilling history based on geological field mapping.  相似文献   

13.
Abstract— Detailed field mapping has revealed the presence of a series of intra‐crater sedimentary deposits within the interior of the Haughton impact structure, Devon Island, Canadian High Arctic. Coarse‐grained, well‐sorted, pale gray lithic sandstones (reworked impact melt breccias) unconformably overlie pristine impact melt breccias and attest to an episode of erosion, during which time significant quantities of impact melt breccias were removed. The reworked impact melt breccias are, in turn, unconformably overlain by paleolacustrine sediments of the Miocene Haughton Formation. Sediments of the Haughton Formation were clearly derived from pre‐impact lower Paleozoic target rocks of the Allen Bay Formation, which form the crater rim in the northern, western, and southern regions of the Haughton structure. Collectively, these field relationships indicate that the Haughton Formation was deposited up to several million years after the formation of the Haughton crater and that they do not, therefore, represent an immediate, post‐impact crater lake deposit. This is consistent with new isotopic dating of impactites from Haughton that indicate an Eocene age for the impact event (Sherlock et al. 2005). In addition, isolated deposits of post‐Miocene intra‐crater glacigenic and fluvioglacial sediments were found lying unconformably over remnants of the Haughton Formation, impact melt breccias, and other pre‐impact target rock formations. These deposits provide clear evidence for glaciation at the Haughton crater. The wealth and complexity of geological and climatological information preserved as intra‐crater deposits at Haughton suggests that craters on Mars with intra‐crater sedimentary records might present us with similar opportunities, but also possibly significant challenges.  相似文献   

14.
The Cerro do Jarau structure is possibly the third Brazilian basaltic crater formed in continental flood basalt of the Serra Geral Formation, Paraná Basin, a large igneous province (LIP) in southern Brazil. It is a nearly circular landform with a diameter of approximately 13 km that rises 200 m above the plains of the “pampas” in southern Brazil. In this work, Bouguer anomalies were calculated from gravity accelerations measured on the area of this structure. The residual Bouguer map shows a strong positive anomaly trending NE‐SW, located in the northeastern part of the structure, a feature not commonly associated with impact structures. However, the negative anomaly present in its center and the circular positive anomaly surrounding the central portion are typical of impact structures. The residual Bouguer anomaly varies from ?2 mGal to 8 mGal. The positive circular anomaly is not spatially coincident with the rim of the structure. Based on the interpretation of our gravimetric data, the estimated diameter of the structure is 12 km and the central portion has a diameter of approximately 5 km, both slightly smaller than previously suggested. The Bouguer anomaly map was inverted into a 3D density model using a constrained inversion method with a maximum density contrast of 0.5 g cm?3. This model was interpreted to associate densities with rock types, resulting in a geological model. This geological model is in accordance with the meteorite impact nature of Cerro do Jarau.  相似文献   

15.
Abstract— The impact origin of small craters in sedimentary rocks is often difficult to confirm because of the lack of characteristic shock metamorphic features. A case in point is the 3.1 Ma Aouelloul crater (Mauritania), 390 m in diameter, which is exposed in an area of Ordovician Oujeft and Zli sandstone. We studied several fractured sandstone samples from the crater rim for the possible presence of shock metamorphic effects. In thin section, a large fraction of the quartz grains show abundant subplanar and planar fractures. Many of the fractures are healed and are evident only as fluid inclusion trails. A few grains showed sets of narrow and densely spaced fluid inclusions trails in one (rarely two) orientations per grain, which could be possible remnants of planar deformation features (PDFs), although such an interpretation is not unambiguous. In contrast, an impact origin of the crater is confirmed by Re-Os isotope studies of the target sandstone and glass found around the crater rim, which show the presence of a distinct extraterrestrial component in the glass.  相似文献   

16.
The positive identification of the Rock Elm impact structure (Wisconsin, USA) and the Upheaval Dome (Utah, USA) as impact craters was complicated by a lack of distinctive shock features in the record. Low‐impedance surface layers over high‐impedance bedrock affect energy coupling and shock effects in the substrate; in both cases, removal of surface sediments erased most of the original impact structures, thereby making identification of the impact origin difficult. In this study, a combination of laboratory and 3‐D numerical experiments reveals the underlying processes controlling subsurface deformation and demonstrates that a low‐impedance layer can reduce expression of peak shock pressures left in the rock record, as at the Rock Elm and the Upheaval Dome impact sites. 3‐D CTH models of the Rock Elm impact structure predict that peak shock pressures should fall below the hugoniot elastic limit of quartz in the basement rocks, yet still induce permanent deformation. The model predicts peak pressures around 5–10 GPa, levels consistent with field observations of shocked quartz from both Rock Elm and the Upheaval Dome. Consequently, other impact sites exhibiting minimal shock features might be explained.  相似文献   

17.
Libyan Desert Glass (LDG) is an enigmatic natural glass, about 28.5 million years old, which occurs on the floor of corridors between sand dunes of the southwestern corner of the Great Sand Sea in western Egypt, near the Libyan border. The glass occurs as centimeter‐ to decimeter‐sized, irregularly shaped, and strongly wind‐eroded pieces. The origin of the LDG has been the subject of much debate since its discovery, and a variety of exotic processes were suggested, including a hydrothermal sol‐gel process or a lunar volcanic source. However, evidence of an impact origin of these glasses included the presence of schlieren and partly or completely digested minerals, such as lechatelierite, baddeleyite (a high‐T breakdown product of zircon), and the presence of a meteoritic component in some of the glass samples. The source material of the glass remains an open question. Geochemical data indicate that neither the local sands nor sandstones from various sources in the region are good candidates to be the sole precursors of the LDG. No detailed studies of all local rocks exist, though. There are some chemical and isotopic similarity to rocks from the BP and Oasis impact structures in Libya, but no further evidence for a link between these structures and LDG was found so far. These complications and the lack of a crater structure in the area of the LDG strewn field have rendered an origin by airburst‐induced melting of surface rocks as a much‐discussed alternative. About 20 years ago, a few shocked quartz‐bearing breccias (float samples) were found in the LDG strewn field. To study this question further, several basement rock outcrops in the LDG area were sampled during three expeditions in the area. Here we report on the discovery of shock‐produced planar microdeformation features, namely planar fractures (PFs), planar deformation features (PDFs), and feather features (FFs), in quartz grains from bedrock samples. Our observations show that the investigated samples were shocked to moderate pressure, of at least 16 GPa. We interpret these observations to indicate that there was a physical impact event, not just an airburst, and that the crater has been almost completely eroded since its formation.  相似文献   

18.
Abstract— The Obolon impact structure, 18 km in diameter, is situated at the northeastern slope of the Ukrainian Shield near its margin with the Dnieper‐Donets Depression. The crater was formed in crystalline rocks of the Precambrian basement that are overlain by marine Carboniferous and continental Lower Triassic deposits. The post‐impact sediments comprise marine Middle Jurassic (Bajocian and Bathonian) and younger Mesozoic and Cenozoic deposits. Today the impact structure is buried beneath an about 300‐meter‐thick sedimentary rock sequence. Most information on the Obolon structure is derived from two boreholes in the western part of the crater. The lowest part of the section in the deepest borehole is composed by allogenic breccia of crystalline basement rocks overlain by clast‐rich impact melt rocks and suevites. Abundant shock metamorphic effects are planar deformation features (PDFs) in quartz and feldspars, kink bands in biotite, etc. Coesite and impact diamonds were found in clast‐rich impact melt rocks. Crater‐fill deposits are a series of sandstones and breccias with blocks of sedimentary rocks that are covered by a layer of crystalline rock breccia. Crystalline rock breccias, conglomeratic breccias, and sandstones with crystalline rock debris have been found in some boreholes around the Obolon impact structure to a distance of about 50 km from its center. Those deposits are always underlain by Lower Triassic continental red clay and overlain by Middle Jurassic marine clay. The K‐Ar age of impact melt glasses is 169 Ma, which corresponds to the Middle Jurassic (Bajocian) age. The composition of crater‐fill rocks within the crater and sediments outside the Obolon structure testify to its formation under submarine conditions.  相似文献   

19.
El'gygytgyn is a 3.6 Ma, 18 km diameter, impact crater formed in an approximately 88 Ma old volcanic target in Northeast Siberia. The structure has been the subject of a recent ICDP drilling project. In parallel to those efforts, a Russian‐German expedition was undertaken in summer 2011 to investigate the permafrost soil, lake terraces, and the volcanic rocks of the southern and eastern crater rim. This provided the unique opportunity for mapping and sampling of the volcanic target rocks around a large part of this complex impact structure. Samples from 43 outcrops were collected and analyzed petrographically and geochemically. The results were combined with earlier mapping outcomes to create a new geological map of this impact structure and its immediate environs, at the scale of 1:50,000. Compositions of our rock suites are compared with the lithologies of the 2009 ICDP drill core. The ignimbrite described as lower bedrock in the ICDP drill core shows petrographically and chemically strong similarities to the rhyolitic and rhyodacitic ignimbrites observed on surface. The suevite sequence exposed in the ICDP drill core is a mixture of all observed target rocks at their respective proportions in the area. In contrast to previous studies, the calculated average target composition of El'gygytgyn takes the contribution of the basic target rocks into consideration: mafic and intermediate rocks approximately 7.5%, and felsic rocks approximately 92.5%.  相似文献   

20.
Abstract— The Serra da Cangalha crater structure in northeast Brazil, ?13 km in diameter, has long been widely considered to be a confirmed impact structure, based on reports of shatter cone findings. Only very limited field work has been carried out at this crater structure. Landsat Thematic Mapper (TM) and Shuttle Radar Topography Mission (SRTM) data sets for the region around this crater structure are compared here with regard to their suitability to determine first‐order structural detail of impact crater structures. The SRTM data provide very detailed information regarding drainage patterns and topography. A pronounced central ring of up to 300 m elevation above the surrounding area, two comparatively subdued intermediate rings of 6 and 10.5 km diameter, respectively, and the broad, complex crater rim of up to >100 m elevation can be distinguished in the Serra da Cangalha data. The maximum cratering‐related regional deformation (radial and concentric features) seems to be limited to a radial distance of 16–18 km from the center of the structure. A first comparison of macrostructural information from several impact structures with that from Serra da Cangalha does not yield firm trends, but the database is still very small at this stage. The varied nature of the target geology strongly influences the development of structural features in any impact event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号