首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
Using smoothed particle hydrodynamics, we numerically simulate steady-state accretion discs for cataclysmic variable dwarf novae systems that have a secondary-to-primary mass ratio  0.35 ≤ q ≤ 0.55  . After these accretion discs have come to quasi-equilibrium, we rotate each disc out of the orbital plane by  δ= (1, 2, 3, 4, 5 or 20)°  to induce negative superhumps. For accretion discs tilted  5°  , we generate light curves and associated Fourier transforms for an atlas on negative superhumps and retrograde precession. Our simulation results suggest that accretion discs need to be tilted more than 3° for negative superhumps to be statistically significant. We also show that if the disc is tilted enough such that the gas stream strikes a disc face, then a dense cooling ring is generated near the radius of impact.
In addition to the atlas, we study these artificially tilted accretion discs to find the source to negative superhumps. Our results suggest that the source is additional light from innermost disc annuli, and this additional light waxes and wanes with the amount of gas stream overflow received as the secondary orbits. The nodes, where the gas stream transitions from flowing over to under the disc rim (and vice versa), precess in the retrograde direction.  相似文献   

2.
We report on the discovery of a 25.5-min superhump period for the suspected helium dwarf nova system KL Draconis in a high state. The presence of superhumps combined with the previously observed helium spectrum and large-amplitude photometric variations confirm that KL Dra is an AM CVn system similar to CR Bootis, V803 Cen and CP Eridani. We also find a low-state photometric period at 25.0 min that we suggest may be the orbital period. With this assumption, we estimate   q =0.075  ,   M 1=0.76 M  and   M 2=0.057 M  .  相似文献   

3.
We compare analytical expressions of precession rates from apsidal (positive) superhumps in close binary systems with numerical disc simulation results and observed values. In the analytical expressions, we include both the dynamical effects on the precession of the disc and effects caused by pressure forces that have been theorized to provide a retrograde effect (i.e. slowing) on the prograde disc precession. We establish new limits on density wave pitch angle to a normalized disc sound speed 60≥Ωorb  d  tan  i / c >2.214 . Using average values for the density wave pitch angle i and speed of sound c , we find good correlation between numerical simulations and the analytical expression for the apsidal superhump period excess, which includes both the prograde and retrograde effects, for mass ratios of 0.025≤ q ≤0.33 . We also show good correlations with the four known eclipsing systems, OY Car, Z Cha, HT Cas, and WZ Sge. Our analytical expression for apsidal superhump period excess as a function of orbital period is consistent with the trend found in observed systems.  相似文献   

4.
A time-resolved spectroscopic study of V603 Aql (Nova Aquilae 1918) is presented. An orbital period of P orb=01385±00002, consistent with previous results, and a radial velocity semi-amplitude of K =20±3 km s1 are obtained from the radial velocity variations of the H emission line. Similar K values are also found in H , H , and He  i emission lines. Using the measured FWHM of the H line and assuming that the derived semi-amplitude is that of the white dwarf, we deduce a most likely mass ratio of q =0.24±0.05 and stellar masses of M 2=0.29±0.04 M and M 1=1.2±0.2 M for the secondary and primary (the white dwarf) star, respectively. The dynamical solution also indicates a very low orbital inclination, i =13°±2°. We find that the continuum and line variations are modulated with both the positive and the negative superhump periods, indicating that they arise from similar regions of the accretion disc. Moreover, we find, for the first time from spectroscopy, evidence of negative superhumps in addition to the positive superhumps. Positive superhumps are explained within the disc instability model as caused by an eccentric disc surrounding the white dwarf, which is precessing (apsidal advance) because of tidal instabilities, causing the observed positive superhumps. A nodal precession in the accretion disc is currently believed to be the cause of the observed negative superhumps. The low value of q is consistent with the expected value for systems that show superhumps, in accordance with the eccentric disc model. We find no evidence of periodicity associated with the spin period.  相似文献   

5.
We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1−2455. Our R -band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Hα emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km s−1, placing a lower limit of  0.05 M  on the secondary mass. For a  1.4 M  primary, this implies that the orbital inclination is low, ≲20°. Utilizing the observed relationship between the secondary mass and the orbital period in short-period cataclysmic variables, we estimate the secondary mass to be ∼0.085  M  , which implies an upper limit of  ∼2.4 M  for the primary mass.  相似文献   

6.
The eclipsing nova-like cataclysmic variable star V348 Pup exhibits a persistent luminosity modulation with a period 6 per cent longer than its 2.44-h orbital period ( P orb). This has been interpreted as a 'positive superhump' resulting from a slowly precessing non-axisymmetric accretion disc gravitationally interacting with the secondary. We find a clear modulation of mid-eclipse times on the superhump period, which agrees well with the predictions of a simple precessing eccentric disc model. Our modelling shows that the disc light centre is on the far side of the disc from the donor star when the superhump reaches maximum light. This phasing suggests a link between superhumps in V348 Pup and late superhumps in SU UMa systems. Modelling of the full light curve and maximum entropy eclipse mapping both show that the disc emission is concentrated closer to the white dwarf at superhump maximum than at superhump minimum. We detect additional signals consistent with the beat periods between the implied disc precession period and both and  相似文献   

7.
Superhumps in low-mass X-ray binaries   总被引:1,自引:0,他引:1  
We propose a mechanism for the superhump modulations observed in optical photometry of at least two black-hole X-ray transients (SXTs). As in extreme mass-ratio cataclysmic variables (CVs), superhumps are assumed to result from the presence of the 3:1 orbital resonance in the accretion disc. This causes the disc to become non-axisymmetric and precess. However, the mechanism for superhump luminosity variations in low-mass X-ray binaries (LMXBs) must differ from that in CVs, where it is attributed to a tidally-driven modulation of the disc's viscous dissipation, varying on the beat between the orbital and disc precession period. By contrast in LMXBs, tidal dissipation in the outer accretion disc is negligible: the optical emission is overwhelmingly dominated by reprocessing of intercepted central X-rays. Thus a different origin for the superhump modulation is required. Recent observations and numerical simulations indicate that in an extreme mass-ratio system the disc area changes on the superhump period. We deduce that the superhumps observed in SXTs arise from a modulation of the reprocessed flux by the changing area. Therefore, unlike the situation in CVs, where the superhump amplitude is inclination-independent, superhumps should be best seen in low-inclination LMXBs, whereas an orbital modulation from the heated face of the secondary star should be more prominent at high inclinations. Modulation at the disc precession period (10 s of days) may indicate disc asymmetries such as warping. We comment on the orbital period determinations of LMXBs, and the possibility and significance of possible permanent superhump LMXBs.  相似文献   

8.
We present three-dimensional smoothed particle hydrodynamics calculations of warped accretion discs in X-ray binary systems. Geometrically thin, optically thick accretion discs are illuminated by a central radiation source. This illumination exerts a non-axisymmetric radiation pressure on the surface of the disc, resulting in a torque that acts on the disc to induce a twist or warp. Initially planar discs are unstable to warping driven by the radiation torque and, in general, the warps also precess in a retrograde direction relative to the orbital flow. We simulate a number of X-ray binary systems which have different mass ratios, using a number of different luminosities for each. Radiation-driven warping occurs for all systems simulated. For mass ratios   q ∼ 0.1  a moderate warp occurs in the inner disc while the outer disc remains in the orbital plane (cf. X 1916−053). For less extreme mass ratios, the entire disc tilts out of the orbital plane (cf. Her X–1). For discs that are tilted out of the orbital plane in which the outer edge material of the disc is precessing in a prograde direction, we obtain both positive and negative superhumps simultaneously in the dissipation light curve (cf. V603 Aql).  相似文献   

9.
Phase-resolved medium-resolution VLT spectroscopy of the low-mass X-ray binary GX 9+9 has revealed narrow C  iii emission lines that move in phase relative to our new estimate of the ephemeris, and show a velocity amplitude of 230 ± 35 km s−1. We identify the origin of these lines as coming from the surface of the donor star, thereby providing the first estimate of the mass function of   f ( M 1) ≥ 0.22 M  . Rotational broadening estimates together with assumptions for the mass donor give  0.07 ≤ q ≤ 0.35  and  182 ≤ K 2≤ 406 km s−1  . Despite a low-mass ratio, there is no evidence for a superhump in our data set. Doppler maps of GX 9+9 show the presence of a stream overflow, either in the form of material flowing downward along the accretion disc rim or in a similar fashion as occurs in high mass transfer rate cataclysmic variables known as the SW Sex stars. Finally, we note that the Bowen region in GX 9+9 is dominated by C  iii instead of N  iii emission as has been the case for most other X-ray binaries.  相似文献   

10.
We consider the effect of a supernova (SN) explosion in a very massive binary that is expected to form in a portion of Population III stars with the mass higher than  100 M  . In a Population III binary system, a more massive star can result in the formation of a black hole (BH) and a surrounding accretion disc. Such BH accretion could be a significant source of the cosmic reionization in the early Universe. However, a less massive companion star evolves belatedly and eventually undergoes a SN explosion, so that the accretion disc around a BH might be blown off in a lifetime of companion star. In this paper, we explore the dynamical impact of a SN explosion on an accretion disc around a massive BH, and elucidate whether the BH accretion disc is totally demolished or not. For the purpose, we perform three-dimensional hydrodynamic simulations of a very massive binary system, where we assume a BH of  103 M  that results from a direct collapse of a very massive star and a companion star of  100 M  that undergoes a SN explosion. We calculate the remaining mass of a BH accretion disc as a function of time. As a result, it is found that a significant portion of gas disc can survive through three-dimensional geometrical effects even after the SN explosion of a companion star. Even if the SN explosion energy is higher by two orders of magnitude than the binding energy of gas disc, about a half of disc can be left over. The results imply that the Population III BH accretion disc can be a long-lived luminous source, and therefore could be an important ionizing source in the early Universe.  相似文献   

11.
The analysis of hard X-ray INTEGRAL observations (2003–2008) of superaccreting Galactic microquasar SS433 at precessional phases of the source with the maximum disc opening angle is carried out. It is found that the shape and width of the primary X-ray eclipse are strongly variable, suggesting additional absorption in dense stellar wind and gas outflows from the optical A7I component and the wind–wind collision region. The independence of the observed hard X-ray spectrum on the accretion disc precessional phase suggests that hard X-ray emission (20–100 keV) is formed in an extended, hot, quasi-isothermal corona, probably heated by interaction of relativistic jet with inhomogeneous wind outflow from the precessing supercritical accretion disc. A joint modelling of X-ray eclipsing and precessional hard X-ray variability of SS433 revealed by INTEGRAL by a geometrical model suggests the binary mass ratio   q = mx / m v ≃  0.25–0.5. The absolute minimum of joint orbital and precessional  χ2  residuals is reached at   q ≃ 0.3  . The found binary mass ratio range allows us to explain the substantial precessional variability of the minimum brightness at the middle of the primary optical eclipse. For the mass function of the optical star   f v = 0.268 M  as derived from Hillwig & Gies data, the obtained value of   q ≃ 0.3  yields the masses of the components   mx ≃ 5.3 M, m v ≃ 17.7 M  , confirming the black hole nature of the compact object in SS433.  相似文献   

12.
We present spectroscopic and high-speed photometric data of the eclipsing polar V895 Cen. We find that the eclipsed component is consistent with it being the accretion regions on the white dwarf. This is in contrast to Stobie et al. who concluded that the eclipsed component was not the white dwarf. Further, we find no evidence for an accretion disc in our data. From our Doppler tomography results, we find that the white dwarf has   M ≳0.7 M  . Our indirect imaging of the accretion stream suggests that the stream is brightest close to the white dwarf. When we observed V895 Cen in its highest accretion state, emission was concentrated along field lines leading to the upper pole. There is no evidence for enhanced emission at the magnetic coupling region.  相似文献   

13.
We present phase resolved optical spectroscopy and Doppler tomography of V1341 Cygni, the optical counterpart to the neutron star low-mass X-ray binary (LMXB) Cygnus X-2 (Cyg X-2). We derive a radial velocity (RV) curve for the secondary star, finding a projected RV semi-amplitude of   K 2= 79 ± 3 km s−1  , leading to a mass function of  0.51 ± 0.06 M, ∼30  per cent lower than the previous estimate. We tentatively attribute the lower value of K 2 (compared to that obtained by other authors) to variations in the X-ray irradiation of the secondary star at different epochs of observations. The limited phase coverage and/or longer timebase of previous observations may also contribute to the difference in K 2. Our value for the mass function implies a primary mass of  1.5 ± 0.3 M  , somewhat lower than previous dynamical estimates, but consistent with the value found by analysis of type-I X-ray bursts from this system. Our Doppler tomography of the broad He  ii λ4686 line reveals that most of the emission from this line is produced on the irradiated face of the donor star, with little emission from the accretion disc. In contrast, the Doppler tomogram of the N  iii λ4640.64 Bowen blend line shows bright emission from near the gas stream/accretion disc impact region, with fainter emission from the gas stream and secondary star. This is the first LMXB for which the Bowen blend is dominated by emission from the gas stream/accretion disc impact region, without comparable emission from the secondary star. This has implications for the interpretation of Bowen blend Doppler tomograms of other LMXBs for which the ephemeris may not be accurately known.  相似文献   

14.
We present results from three XMM–Newton observations of the M31 low mass X-ray binary (LMXB) XMMU J004314.4+410726.3 (Bo 158), spaced over 3 d in 2004 July. Bo 158 was the first dipping LMXB to be discovered in M31. Periodic intensity dips were previously seen to occur on a 2.78-h period, due to absorption in material that is raised out of the plane of the accretion disc. The report of these observations stated that the dip depth was anticorrelated with source intensity. In light of the 2004 XMM–Newton observations of Bo 158, we suggest that the dip variation is due to precession of the accretion disc. This is to be expected in LMXBs with a mass ratio ≲0.3 (period ≲4 h), as the disc reaches the 3:1 resonance with the binary companion, causing elongation and precession of the disc. A smoothed particle hydrodynamics simulation of the disc in this system shows retrograde rotation of a disc warp on a period of  ∼11 P orb  , and prograde disc precession on a period of  29 ± 1 P orb  . This is consistent with the observed variation in the depth of the dips. We find that the dipping behaviour is most likely to be modified by the disc precession, hence we predict that the dipping behaviour repeats on an  81 ± 3 h  cycle.  相似文献   

15.
We present phase resolved optical spectroscopy and photometry of V4580 Sagittarii, the optical counterpart to the accretion powered millisecond pulsar SAX J1808.4−3658, obtained during the 2008 September/October outburst. Doppler tomography of the N  iii λ4640.64 Bowen blend emission line reveals a focused spot of emission at a location consistent with the secondary star. The velocity of this emission occurs at  324 ± 15 km s−1  ; applying a ' K -correction', we find the velocity of the secondary star projected on to the line of sight to be  370 ± 40 km s−1  . Based on existing pulse timing measurements, this constrains the mass ratio of the system to be  0.044+0.005−0.004  , and the mass function for the pulsar to be  0.44+0.16−0.13 M  . Combining this mass function with various inclination estimates from other authors, we find no evidence to suggest that the neutron star in SAX J1808.4−3658 is more massive than the canonical value of  1.4 M  . Our optical light curves exhibit a possible superhump modulation, expected for a system with such a low mass ratio. The equivalent width of the Ca  ii H and K interstellar absorption lines suggest that the distance to the source is ∼2.5 kpc. This is consistent with previous distance estimates based on type-I X-ray bursts which assume cosmic abundances of hydrogen, but lower than more recent estimates which assume helium-rich bursts.  相似文献   

16.
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup (=LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of   K R= 198 ± 5 km s−1  . The rotational velocity of the secondary star in V347 Pup is found to be   v sin  i = 131 ± 5 km s−1  and the system inclination is   i = 840 ± 23  . From these parameters we obtain masses of   M 1= 0.63 ± 0.04 M  for the white dwarf primary and   M 2= 0.52 ± 0.06 M  for the M0.5V secondary star, giving a mass ratio of   q = 0.83 ± 0.05  . On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc.  相似文献   

17.
Two nights of phase-resolved medium-resolution Very Large Telescope spectroscopy of the extra-galactic low-mass X-ray binary LMC X−2 have revealed a 0.32 ± 0.02 d spectroscopic period in the radial velocity curve of the He  ii λ4686 emission line that we interpret as the orbital period. However, similar to previous findings, this radial velocity curve shows a longer term variation that is most likely due to the presence of a precessing accretion disc in LMC X−2. This is strengthened by He  ii λ4686 Doppler maps that show a bright spot that is moving from night to night. Furthermore, we detect narrow emission lines in the Bowen region of LMC X−2, with a velocity of   K em= 351 ± 28 km s−1  , that we tentatively interpret as coming from the irradiated side of the donor star. Since K em must be smaller than K 2, this leads to the first upper limit on the mass function of LMC X−2 of   f ( M 1) ≥ 0.86  M  (95 per cent confidence), and the first constraints on its system parameters.  相似文献   

18.
The high-mass X-ray binary RX J0146.9+6121, with optical counterpart LS I+61°235 (V831 Cas), is an intriguing system on the outskirts of the open cluster NGC 663. It contains the slowest Be type X-ray pulsar known with a pulse period of around 1400 s and, primarily from the study of variation in the emission line profile of Hα, it is known to have a Be decretion disc with a one-armed density wave period of approximately 1240 d. Here we present the results of an extensive photometric campaign, supplemented with optical spectroscopy, aimed at measuring short time-scale periodicities. We find three significant periodicities in the photometric data at, in order of statistical significance, 0.34, 0.67 and 0.10 d. We give arguments to support the interpretation that the 0.34 and 0.10 d periods could be due to stellar oscillations of the B-type primary star and that the 0.67 d period is the spin period of the Be star with a spin axis inclination of  23+10−8  degrees. We measured a systemic velocity of  −37.0 ± 4.3 km s−1  confirming that LS I+61°235 has a high probability of membership in the young cluster NGC 663 from which the system's age can be estimated as 20–25 Myr. From archival RXTE All Sky Monitor (ASM) data we further find 'super' X-ray outbursts roughly every 450 d. If these super outbursts are caused by the alignment of the compact star with the one-armed decretion disc enhancement, then the orbital period is approximately 330 d.  相似文献   

19.
We present results from photometric observations of the dwarf nova system HT Cas during the eruption of 1995 November. The data include the first two-colour observations of an eclipse on the rise to outburst. They show that during the rise to outburst the disc deviates significantly from steady-state models, but the inclusion of an inner-disc truncation radius of about 4 R wd and a 'flared' disc of semi-opening angle of 10° produces acceptable fits. The disc is found to have expanded at the start of the outburst to about 0.41 R L1, as compared with quiescent measurements. The accretion disc then gradually decreases in radius reaching <  0.32 R L1  during the last stages of the eruption. Quiescent eclipses were also observed prior to and after the eruption and a revised ephemeris is calculated.  相似文献   

20.
Short time-scale photometric properties of eight faint cataclysmic variable (CV) stars are presented. Nova Carinae 1895 (RS Car) has a photometric modulation at 1.977 h that could be either an orbital or a superhump period. Nova Carinae 1948 (V365 Car) shows flickering, but any orbital modulation has a period in excess of 6 h. The nova-like variable and X-ray source V436 Car has an orbital modulation at   P orb= 4.207 h  , no detectable period near 2.67 h (which had previously given it a possible intermediate polar classification), and dwarf nova oscillations (DNOs) at ∼40 s. Nova Crucis 1936 (AP Cru) has a double-humped ellipsoidal modulation at   P orb= 5.12 h  and a stable modulation at 1837 s characteristic of an intermediate polar. Nova Chamaeleontis 1953 (RR Cha) is an eclipsing system with   P orb= 3.362 h  , but at times shows negative superhumps at 3.271 h and positive superhumps at 3.466 h. In addition it has a stable period at 1950 s, characteristic of an intermediate polar. BI Ori is a dwarf nova that we observed at quiescence and outburst without detecting any orbital modulation. CM Phe is a nova-like variable for which we confirm the value of   P orb= 6.454 h  found by Hoard, Wachter & Kim-Quijano . We have identified the remnant of Nova Sagittarii 1931 (V522 Sgr) with a flickering source ∼2.2 mag fainter than the previously proposed candidate (which we find to be non-variable).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号