首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study analyses the atmospheric boundary layer over the Bilbao metropolitan area during summer (13–18 Jul 2009) and winter (20–29 Jan 2010) episodes using the Environment–High Resolution Limited Area Model (Enviro-HIRLAM) coupled with the building effect parameterisation (BEP). The main objectives of this study are: to evaluate the performance of the model to simulate the land–sea breezes over this complex terrain; to assess the simulations with the integration of an urban parameterisation in Enviro-HIRLAM and finally; and to analyse the urban–atmosphere interactions. Even if the hydrostraticity of the model is a limitation to simulate atmospheric flows over complex terrain, sensibility tests demonstrate that 2.4 km is the optimal horizontal resolution over Bilbao that allows at the same time: to obtain satisfactory reproducibility of the large-scale processes and to explore the urban effects at local scale. During the summer episode, a typical regime of diurnal sea breeze from the NW-N-NE direction and nocturnal valley breezes from the SE direction are observed over Bilbao. The urban heat island (UHI) phenomenon is developed in the city centre expanding to the suburbs from 22 to 10 local time (LT), covering an area of 130 km2. The maximum UHI intensity, 1 °C, is reached at the end of the night (5 LT), and it is advected 12 km towards the sea by the land breezes. The urban boundary layer (UBL) height amplitude varies from 100 (night time) to 1,360 m (at 14 LT). During the winter episode, the land breeze dominates the atmospheric diffusion during the day and night time. The maximum UHI intensity, 1.7 °C, is observed at 01 LT. It is spread and remained over the city covering an area of 160 km2, with a vertical extension of 33 m. The UBL reaches 780 m height at 16 LT the following day.  相似文献   

2.
利用中尺度数值模式WRF耦合单层城市冠层模块UCM,引入2005年MODIS土地利用类型资料,在对2005年1月25—28日兰州市热岛现象进行高分辨率数值模拟的基础上,设计了去除城市下垫面敏感性试验,探讨了城市下垫面对城市边界层的影响程度。结果表明,城市下垫面能使近地层大气温度升高而风速减小,并且,在夜间表现更明显。由城市热岛强度日变化分析可知,城市下垫面对兰州市热岛强度的贡献率为44%。夜间,城市上空200 m以下的近地层大气保持了白天的混合层特征,热岛环流的上升运动促进了山风环流,使得上升气流到达地面以上600 m左右;白天,由于山峰加热效应,城市上空400—600 m存在一个脱地逆温层,城市热岛环流使得11—15时(北京时)市区近地层出现弱上升气流,抑制了谷风环流的形成及发展。城市下垫面的低反照率特性和建筑物的多次反射作用导致城市下垫面的净辐射通量大于非城市下垫面;城市下垫面由于建筑材料的不透水性,导致潜热通量远小于感热通量,而储热项所占比重明显增大。  相似文献   

3.
From 1973–1976, research was performed around the Sea of Galilee, aimed at examining the wind regime in the area and whether the area develops a land-sea breeze despite its particular topographical location.
    The main conclusions were:
  1. During the summer mornings a lake breeze develops, blowing towards the shores of the lake. It ceases at the peak of its development when a westerly wind, originating in the development of a breeze along the Israeli Mediterranean coast, plunges towards the lake.
  2. Late at night, a wind flow develops from the land towards the lake, which combines with the katabatic winds that blow along the steep slopes surrounding the Kinneret.
  3. The stations at the upper level, at a height of 400–500 m above the Kinneret, are not affected by the lake breeze during the day or by the land breeze at night.
  4. In winter, the Kinneret lake breeze is almost as developed as in summer, because the westerly winds, originating in the Mediterranean sea breeze which hardly develops in this season, do not plunge into the Kinneret.
  相似文献   

4.
Canopy-level humidity is often less at night during fine weather in a mid-latitude city, compared to its rural surroundings. This feature has been attributed, in part, to reduced urban dew, but links are largely unproven, because urban dew data are rare. In this study, surface moisture (i.e., dew + guttation by blotting) and dewfall (by mini-lysimeter) were measured at rural and urban residential sites in Vancouver, Canada, during the summer of 1996. Air temperature and humidity were measured at both sites, and on rural-to-urban vehicle traverses. Weather and location effects were evident. Humidity data suggested the small (< 1 g m–3) urban moisture excess observed on fine nights was linked to reduced urban dew. For grass, the frequency of moisture events, and surface moisture amounts, were similar for both sites. However, on grass, rural dewfall (mean=0.10 mm per night) was more than urban dewfall (mean=0.07 mm per night). On the other hand, data for a roof lysimeter (mean dewfall=0.12 mm per night) showed that an urban roof could rival rural grass as a favoured location for dewfall in Vancouver.  相似文献   

5.
The urban impact on the sea breeze is studied by means of a mesoscale model with a detailed urban parameterisation. Four simulations are carried out on an idealised two-dimensional flat domain. In the base case, half of the domain is characterised by seaand the other half by rural land. In the urban case, an urban area 10 km wide is added near the shoreline. Simulations are performed for a moist rural soil (weak sea breeze) and for a dry rural soil (strong sea breeze). Results are analysed in order to evaluate the impact of the city on the wind, temperature and turbulent kinetic energy fields. The dispersion of a passive tracer emitted near the coastline is, also, used in the comparison. Results show that the city accelerates the sea-breeze formation in the morning (combinations of urban circulation and sea breeze), but it slows thesea-breeze front penetration. Moreover, the presence of the city enhances the recirculation processes and strongly modifies the pollutant dispersion. These effects are enhanced for a moist rural soil.  相似文献   

6.
Summary The dispersion of recycled particulates in the complex coastal terrain surrounding Kangnung city, Korea was investigated using a three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). The results show that particulates at the surface of the city that float to the top of thermal internal boundary layer (TIBL) are then transported along the eastern slope of the mountains with the sea breeze passage and nearly reach the top of the mountains. Those particulates then disperse eastward at this upper level over the coastal sea and finally spread out over the open sea. Total suspended particulate (TSP) concentration near the surface of Kangnung city is very low. At night, synoptic scale westerly winds intensify due to the combined effect of the synoptic scale wind and land breeze descending the eastern slope of the mountains toward the coast and further seaward. This increase in speed causes development of internal gravity waves and a hydraulic jump up to a height of about 1km above the surface over the city. Particulate matter near the top of the mountains also descends the eastern slope of the mountains during the day, reaching the central city area and merges near the surface inside the nocturnal surface inversion layer (NSIL) with a maximum ground level concentration of TSP occurring at 0300 LST. Some particulates are dispersed following the propagation area of internal gravity waves and others in the NSIL are transported eastward to the coastal sea surface, aided by the land breeze. The following morning, particulates dispersed over the coastal sea from the previous night, tend to return to the coastal city of Kangnung with the sea breeze, developing a recycling process and combine with emitted surface particulates during the morning. These processes result in much higher TSP concentration. In the late morning, those particulates float to the top of the TIBL by the intrusion of the sea breeze and the ground level TSP concentration in the city subsequently decreases.  相似文献   

7.
大理苍山—洱海局地环流的数值模拟   总被引:4,自引:2,他引:2  
许鲁君  刘辉志  曹杰 《大气科学》2014,38(6):1198-1210
利用耦合了湖泊模型的WRF_CLM模式模拟了秋季大理苍山—洱海地区的局地环流特征。结果表明:模式对近地面温度、风向、风速的模拟与观测基本一致,模拟结果能较好地再现该地区山谷风和湖陆风相互作用的局地环流特征。在秋季,大理苍山的谷风起止时间为08:00~17:00(北京时,下同),湖风起止时间为09:00~19:00。局地环流受高山地形及洱海湖面影响明显,山谷风形成早于湖陆风1 h,夜间山风、陆风强盛于白天谷风、湖风。白天苍山谷风与洱海湖风的叠加作用会驱动谷风到达2600 m的高度,而傍晚最先形成的苍山山风则会减弱洱海的湖风环流。夜间盆地南部在两侧山风、陆风的共同作用下,形成稳定而持续的气旋式环流。日出以后,对流边界层迅速发展,边界层高度逐渐增高。陆地17:00温度达到最高,边界层高度也达到峰值2000 m,之后逐渐降低。日落后形成稳定边界层,边界层高度在夜间基本保持在100 m。相对于陆地,湖面白天边界层高度低300 m,夜间边界层高度高100 m。  相似文献   

8.
The Town Energy Budget (TEB) model, a detailed urban parameterisation using a generalised canyon geometry, coupled with the Regional Atmospheric Modelling System (RAMS) is used to simulate the wintertime local circulation in the megacity environment of the metropolitan area of Sao Paulo (MASP) in Brazil. Model simulations are performed using actual topography and land-use fields. Comparison with a simple urban parameterisation based on the LEAF-2 scheme is also shown. Validation is based on comparison between model simulations and observations. Sensitivity tests with TEB reveal an important interaction between the sea breeze and the MASP heat island circulation. Even though topography is known to play an important role in the MASP region’s weather, in these tests the simulations were performed without topography in order to unambiguously identify the interaction between the two local circulations. The urban heat island (UHI) forms a strong convergence zone in the centre of the city and thereby accelerates the sea-breeze front toward the centre of the city. The presence of the urban region increases the sea-breeze front propagation mean speed by about 0.32 m s−1 when compared with the situation of no city. After its arrival in the urban region, the sea-breeze front stalls over the centre of the city for about 2 h. Subsequently, the sea breeze progresses beyond the city when the heat island dissipates. Thereafter, the sea breeze propagates beyond the urban area at a decelerated rate compared to a simulation without an UHI.  相似文献   

9.
Summary A three-dimensional non-hydrostatic numerical model and lagrangian particle model (random walk model) were used to investigate the effects of the atmospheric circulation and boundary layer structure on the dispersion of suspended particulates in the Seoul metropolitan area. Initially, emitted particulate matter rises from the surface of the city towards the top of the convective boundary layer (CBL), owing to daytime thermal heating of the surface and the combined effect of an onshore wind with a westerly synoptic-scale wind. A reinforcing sea-valley breeze directed from the coast toward the city of Seoul, which is enclosed in a basin and bordered by mountains to its east, disperses the suspended particulate matter toward the eastern mountains. Total suspended particulate concentration (TSP) at ground level in the city is very low and relatively high in the mountains. Radiative cooling of the surface produces a shallow nocturnal surface inversion layer (NSIL) and the suspended particulate matter still present near the top of the CBL from the previous day, sinks to the surface. An easterly downslope mountain wind is directed into the metropolitan area, transporting particulate matter towards the city, thereby recycling the pollutants. The particulates descending from the top of the NSIL and mountains, combine with particulates emitted near the surface over the city at night, and under the shallow NSIL spread out, resulting in a maximum ground level concentration of TSP in the metropolitan area at 2300 LST. As those particles move toward the Yellow Sea through the topographically shaped outlet west of Seoul city under the influence of the easterly land breeze, the maximum TSP concentration occurs at the coastal site. During the following morning, onshore winds resulting from a combined synoptic-scale westerly wind and westerly sea breeze, force particulates dispersed the previous night to move over the adjacent sea and back over the inland metropolitan area. The recycled particulates combine with the particulates emitted from the surface in the central part of the metropolitan area, producing a high TSP and again rise towards the top of the CBL ready to repeat the cycle.  相似文献   

10.
Shallow Drainage Flows   总被引:1,自引:1,他引:0  
Two-dimensional sonic anemometers and slowresponse thermistors were deployedacross a shallow gully during CASES99. Weak gully flow of a few tenths of m s-1 anda depth of a few metres develops in the earlyevening on most nights with clear skies.Flow down the gully developed sometimes evenwhen the opposing ambient wind exceeded10 m s-1 at the top of the60–m tower. Cold air drainage fromlarger-scale slopes flows over the top ofthe colder gully flow. The gully flowand other drainage flows are generally eliminated in the middle of the night in conjunctionwith flow acceleration abovethe surface inversion layer and downwardmixing of warmer air and highermomentum. As the flow decelerates later inthe night, the gully flow may re-form.The thin drainage flows decouple standard observational levels of3–10 m from the surface.Under such common conditions, eddy correlationflux measurements cannot be used toestimate surface fluxes nor even detect thethin gully and drainage flows. The gentlegully system in this field program is typical ofmuch of the Earths land surface.  相似文献   

11.
The flows over four two-dimensional triangular hills and three two-dimensional bell-shaped hills have been investigated in a simulated rural atmospheric boundary layer modelled to a scale of 1:300: Further measurements were made over two of the triangular hills in a simulated rural boundary layer of 1: 3000 scale and in a simulated urban boundary layer modelled to a scale of 1:400. The effect of the model hill surface roughness was also investigated. Flow measurements were restricted to the mean velocity U, RMS velocity fluctuations u and the energy spectra for the streamwise velocity component Measurements were made at a number of longitudinal positions in the approach flow, over the model hills and downstream of the model hills. For each model hill, the crest was the region of largest mean velocity and smallest velocity fluctuations. The largest mean velocities over the model hills occurred for hills of intermediate slope rather than for the steepest hills. A decrease in the scale of the simulated atmospheric boundary layer led to a reduction in the amplification factors at the hill crests, whereas an increase in the surface roughness of the approach flow resulted in increased amplification factors at the hill crests.  相似文献   

12.
The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

13.
Summary The boundary-layer structure of the Elqui Valley is investigated, which is situated in the arid north of Chile and extends from the Pacific Ocean in the west to the Andes in the east. The climate is dominated by the south-eastern Pacific subtropical anticyclone and the cold Humboldt Current. This combination leads to considerable temperature and moisture gradients between the coast and the valley and results in the evolution of sea and valley wind systems. The contribution of these mesoscale wind systems to the heat and moisture budget of the valley atmosphere is estimated, based on radiosoundings performed near the coast and in the valley. Near the coast, a well-mixed cloud-topped boundary layer exists. Both, the temperature and the specific humidity do not change considerably during the day. In the stratus layer the potential temperature increases, while the specific humidity decreases slightly with height. The top of the thin stratus layer, about 300 m in depth, is marked by an inversion. Moderate sea breeze winds of 3–4 m s−1 prevail in the sub-cloud and cloud layer during daytime, but no land breeze develops during the night. The nocturnal valley atmosphere is characterized by a strong and 900 m deep stably stratified boundary layer. During the day, no pronounced well-mixed layer with a capping inversion develops in the valley. Above a super-adiabatic surface layer of about 150 m depth, a stably stratified layer prevails throughout the day. However, heating can be observed within a layer above the surface 800 m deep. Heat and moisture budget estimations show that sensible heat flux convergence exceeds cold air advection in the morning, while both processes compensate each other around noon, such that the temperature evolution stagnates. In the afternoon, cold air advection predominates and leads to net cooling of the boundary layer. Furthermore, the advection of moist air results in the accumulation of moisture during the noon and afternoon period, while latent heat flux convergence is of minor relevance to the moisture budget of the boundary layer. Correspondence: Norbert Kalthoff, Institut für Meteorologie und Klimaforschung, Universit?t Karlsruhe/Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany  相似文献   

14.
珠江三角洲秋季大气边界层温度和风廓线观测研究   总被引:4,自引:1,他引:3       下载免费PDF全文
根据2004年10月珠江三角洲3个代表性观测点大气边界层观测资料, 分析了珠江三角洲秋季大气边界层温度和风廓线特征。结果表明:珠江三角洲秋季气温递减率较低, 逆温出现频率较高, 强度较弱, 海风使珠江口贴地逆温的出现时间推迟、低空逆温的出现频率增加。珠江三角洲秋季受多种局地环流影响, 边界层内风廓线比较复杂, 晚上城市群与非城市群地区风向有明显差别; 城市群和珠江口多次分别观测到城市热岛环流和海风环流。  相似文献   

15.
朱丽  苗峻峰  高阳华 《大气科学》2020,44(3):657-678
利用中尺度模式WRF(V3.9)对2016年8月17~18日重庆一次城市热岛环流个例进行了数值模拟,探讨了山地城市热岛环流的三维结构和演变特征,分析了热岛环流期间湍流动能和各项湍流通量的特征。结果表明:15:00(北京时,下同)乡村风开始出现,随着热岛强度增强乡村风增大,18:00热岛环流结构最显著,次日02:00热岛环流结构被破坏,仅低层存在微弱的乡村风。其中,重庆市城市热岛环流最强时,水平尺度约城市尺度的1.5~2倍,垂直厚度约1.3 km,水平风速约2~4 m s?1,最大上升速度约0.5 m s?1。受地形、河流以及背景风的影响,环流呈现非对称的结构,且强度较弱。湍流特征分析结果表明,城市区域的湍流动能明显大于其它区域。此外,城市热岛环流通过湍流运动将郊区的水汽输向城市;高层湍流动量补充边界层中因热岛环流发展而造成的动量耗散。  相似文献   

16.
Observational results of the structure of the sea breeze over the urban and suburban areas of Tokyo for four summer days are presented.On two of these days, the inland penetration of the sea breeze front could be clearly traced. In one case, the sea breeze was first observed along the shores of Tokyo Bay around 0900 JST, and propagated in three hours through the Tokyo City area, the width of which is about 20 km. It then advanced inland at a rate of 16 km h–1. Prior to the arrival of the sea breeze at the suburban site, the mixing height had remained at about 600 m for four hours. With the arrival of the sea breeze front, accompanied by an abrupt change in wind speed and direction, the mixing height increased sharply to 1700 m. It is suggested that this behavior and the structure of the front are intensified due to the urban effect, or the difference in the thermal characteristics between the urban and rural areas.On the days without a sea breeze front, the land breeze system during the early morning was less intense, allowing the sea breeze to develop simultaneously with the inland valley wind and easily form a large-scale local wind system during the morning hours. In both cases, the vertical motion accompanying the local wind system works as a feedback mechanism to control the local winds by modifying the thermal and pressure fields.  相似文献   

17.
夏季青海湖局地环流及大气边界层特征的数值模拟   总被引:13,自引:8,他引:5  
使用美国NCAR新版MM5V3.6非静力模式,采用两重嵌套方法,模拟了青海湖区域的局地环流及大气边界层特征,并且与无湖试验进行了比较。结果表明:白天由于青海湖的存在有很好的降温作用,夜晚则有保温效应,表现出明显的冷(暖)湖效应;青海湖对感热和潜热的影响有很强的日变化,白天湖面感热、潜热都小,夜间情况相反,这使得白天青海湖是冷干岛,夜间是暖湿岛;青海湖使得白天湖面边界层顶低,陆面边界层顶高,夜间相反。这样的边界层顶高度和温度、地面能量通量相配合,形成了一个很好的保护机制,对青海湖的水土保持和生态环境的维持有正效应;青海湖使得湖面上空大气下沉,陆面上空大气上升,从而产生了湖面上空大气冷干,陆面上空大气暖湿的边界层特征;青海湖边缘的陆面形成的较大的湿气柱围绕着湖面,起到了保护湖面的作用;青海湖低空白天有明显的湖面向四周的辐散气流,而夜间则为从北偏东方向来的陆风。  相似文献   

18.
The urban surface wind field in the dry-tropical city of Ouagadougou, Burkina Faso was studied based on data collected at one urban and one suburban station during early dry season. An intra-urban thermal breeze, creating almost opposite wind directions at the two sites, was found during nights with high atmospheric stability. The high atmospheric stability suggests a decoupling of the surface wind layer from the layer above, allowing the wind system to develop due to the strong intra-urban temperature gradients in the city. Frequent temporary breakdowns of the thermal wind system were noticed, generally generating a turn in wind direction towards that of the regional wind, thus indicating a re-coupling with a stronger wind flow in the wind layer above.  相似文献   

19.
利用RAMS模式对山谷城市冬季局地风场的数值模拟   总被引:4,自引:1,他引:3       下载免费PDF全文
利用美国科罗拉多州立大学和MRC/ASTER发展的中尺度数值模式RAMS, 采用三重嵌套的方法, 模拟研究了兰州山谷地区局地环流特征。结果表明: (1)兰州市近地面流场以偏东风为主, 在城市东西部之间的狭窄地带, 风速相对较大些, 在东西部山谷城市中心区域有大片的静风区; 冬季兰州市山谷夜间是辐合流场, 白天是辐散流场。受城市热岛环流的影响, 白天热岛环流抑制谷风环流, 夜间增大山风环流, 夜间的山风风速大于白天的谷风风速。(2)白天, 兰州市区山顶和山谷之间上空气柱以下沉气流为主, 这主要是由于地形作用使得白天盛行谷风环流和山峰加热作用的共同影响。夜间, 兰州市区山顶和山谷之间上空以上升气流为主, 这主要是由于地形作用使得市区和山谷在夜间盛行山风环流, 但是冬天夜间兰州市区和山谷上空有较厚的逆温层存在, 抑制了气流的上升运动。(3)在午后13:00左右, 兰州市区山谷从近地面到400 m高度, 辐散场在逐渐减弱, 在510 m左右的高度转变为辐合场; 皋兰山顶上空从近地面到400 m高度, 辐合场在逐渐减弱, 在510 m左右的高度转变为辐散场。在凌晨01:00左右, 兰州市区山谷从近地面到400 m高度, 辐合场在逐渐增强, 到400 m高度达到最强, 从400 m到510 m高度又逐渐减弱; 皋兰山顶上空从近地面到220 m左右的高度, 辐散场在逐渐减弱, 在400 m左右的高度辐散场转变为辐合场, 从400 m到510 m左右的高度, 皋兰山顶的辐合场逐渐增强。  相似文献   

20.
Meteorological measurements were carried out at North Chennai semi rural area during pre-monsoon period as a part of an air quality study program. Analysis of the data showed the effects of coastal terrain namely the land-sea breeze circulation, temperature cooling during the sea breeze, difference in onset times at these sites etc. Sea breeze onset was observed with a sharp turning of the wind from westerly to south easterly associated with rise in wind speed. Advection speed of the front was about 2.0 m s− 1. A simple mesoscale meteorological model (MAM-I) developed at Kalpakkam for coastal atmospheric dispersion estimation was used to simulate the observed characteristics. All the major features observed could be simulated by the model while significant difference was noticed in sea breeze frontal movement. MAM results were also inter-compared with MM5. There were no significant differences in the estimate of mean parameters by both the models. It is concluded that the simple model, which takes less run time in a desktop PC, is adequate enough for practical application of providing wind field for plume dispersion models at coastal sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号