首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Ectohydrolase activities of suspended microbiota were compared to those associated with sinking particles (sed-POM) retrieved from sediment traps deployed in the permanently anoxic Cariaco Basin. In shore-based assays, activities of aminopeptidase, β-glucosidase, chitinase and alkaline phosphatase were measured in samples obtained from oxic and anoxic depths using MUF- and MCA-labeled fluorogenic substrate analogs. Hydrolysis potentials for these enzymes in the seston varied widely over the nine cruises sampled (8 Nov 1996–3 May 2000) and among depths (15–1265 m); from <10 to over 1600 nM d?1 hydrolysate released, generally co-varying with one another and with suspended particulate organic carbon (POC) and particulate nitrogen (PN). Hydrolytic potentials, prokaryotic abundances and POC/PN concentrations in sinking debris were 400–1.3×107 times higher than in comparable volumes of seawater. However when normalized to PN, hydrolytic potentials in sediment trap samples were not demonstrably higher than in Niskin bottle samples. We estimate that PN pools in sediment trap samples were turned over 2–1400 times (medians=7–26x) slower by hydrolysis than were suspended PN pools. Median prokaryotic growth rates (divisions d?1) in sinking debris were also ~150 times slower than for bacterioplankton. Hydrolytic potentials in surface oxic waters were generally faster than in underlying anoxic waters on a volumetric basis (nM hydrolysate d?1), but were not significantly (p>0.05) different when normalized to PN or prokaryote abundances. Alkaline phosphatase was consistently the most active ectohydrolase in both sample types, suggesting that Cariaco Basin assemblages were adapted to decomposing phosphate esters in organic polymers. However, phosphorus limitation was not evident from nutrient inventories in the water column. Results support the hypothesis that efficiencies of polymer hydrolysis in anoxic waters are not inherently lower than in oxic waters.  相似文献   

2.
Cylindrical sediment traps were deployed at various depths in the anoxic water of Framvaren for two periods of one year (1981–1982 and 1983–1984). The traps were emptied three times during 1981–1982 and five times during 1983–1984. The vertical fluxes of total suspended material, organic carbon and nitrogen were calculated on a daily and annual basis. The average annual sediment flux 20 m above the bottom was approximately 60 g m−2 y−1 and the flux of organic carbon was 20 g m−2 y−1. On the basis of an average C/N ratio of 8 and a constant carbon flux below a depth of 20 m, it is concluded that little mineralization of the organic matter takes place in the anoxic water column. Assuming a primary production of the order to 50–100 g m−2 y−1, 22–24% of that reaches the anoxic water masses. Further breakdown of organic matter takes place in the surface sediments.  相似文献   

3.
《Marine Chemistry》2002,79(1):37-47
Profiles of dissolved organic carbon (DOC) were measured in the pore water of sediments from 1000, 2000 and 3500 m water depth in the eastern North Atlantic. A net DOC accumulation in the pore waters was observed, which followed closely the zonation of microbial respiration in these sediments. The concentration of pore water DOC in the zone of oxic respiration was elevated relative to that in the bottom ocean water. The resulting upward gradient across the sediment–water interface indicated a steady state diffusive benthic flux, FDOC, of 0.25–0.44 mmol m−2 day−1 from these sediments. Subsequent increase in the concentration of DOC in the pore water occurred only in the sediments from 1000 and 2000 m water depth that supported anoxic respiration, leading to a deep concentration maximum. By contrast, in the sediments from 3500 m water depth, a deep concentration minimum was measured, coincident with minimal postoxic respiration in this near-abyssal setting. The gradient-based FDOC represented approximately 14% of the total remineralized organic carbon (TCR=sum of FDOC and depth-integrated organic carbon oxidation rate) in the sediments from 1000 and 2000 m water depth, while it was 36% of the TCR in the sediments from 3500 m water depth. A covariance of particulate organic carbon (POC) and pore water DOC with depth in the sediments was evident, more consistently at the deepest site. While the covariance can be related to biotic processes in these sediments, an alternative interpretation suggests a possible contribution of sorption to the biotic control on sedimentary organic carbon cycling. The steady state diagenetic conditions in which this may occur can be conceivable for some organic-poor deep-sea locations, but direct evidence is clearly required to validate them.  相似文献   

4.
Application of a simple model describing regional variations in the contents of manganese and associated minor metals in deep-sea sediments suggests that solid manganese phases are being removed from the <0.5 μm fraction of seawater at ~1–7 · 1012g yr?1 in excess of the rate of stream-supplied manganese. This flux is consistent with: (1) the relative rates of sediment accumulation in the Atlantic and Pacific Oceans; (2) the contrast between the oceanic residence time of manganese calculated from stream-supply data (14 · 103 yr) and from the flux of manganese precipitating in marine sediments or as manganese nodules (0.38–2.4 · 103 yr); (3) the surplus mass of manganese revealed by geochemical balance calculations (22.9 · 102g). On this basis excess manganese is accumulating in deep-sea sediments at 0.2–2.0 · 10?6 g cm?2yr?1. Manganese supplied to the upper layers of marine sediments by diagenesis has been evaluated with the aid of vertical advection—diffusion—reaction models. The calculated diagenetic flux of manganese at the sediment surface in a near-shore environment is in agreement with the known accretion rate of manganese deposits (1.7 · 10?2 g cm?2 10?3 yr?1) and the regionally variable flux over the area assessed is consistent with the presence or absence of manganese nodules at or near the water-sediment interface. The diagenetic flux at the surface of deep-sea sediments has been calculated at 0.7 · 10?4 g cm?2 10?3 yr?1 when the upper, oxic, zone of the sediment is ~20 cm thick. A limiting factor on the in situ production flux of dissolved manganese in deep-sea sediments appears to be the availability of reducing agents for manganese dissolution rather than the rate of downward transport of manganese-rich sediment to a reaction boundary where dissolution takes place. Various estimates of the rate of upward-migrating manganese suggest that manganese precipitates in the oxic zone with a rate constant of ~10?7 sec?1 with the result that diagenetic processes cannot supply the flux of excess manganese through more than ~0.25 m of oxic sediment. However, estimates of the flux of manganese to the oceans by submarine volcanic processes (0.79–1.1 · 1012g yr?1) are similar to the surplus mass of manganese detected by geochemical balance calculations (0.7 · 1012g yr?1). If submarine hydrothermal solutions provide only 10% of this excess then their computed discharge rate (39 g cm?2 yr?1) and residence time in the upper layer of oceanic crust (130,000 yr) agree well with these parameters for continental thermal springs.  相似文献   

5.
Recent efforts to construct global ocean budgets for carbon have recognized the importance of continental margins. In this study, we constructed budgets for the Strait of Georgia, a temperate, North American west coast basin that receives the inflow of one of the world's major rivers. Drawing from published and unpublished data, we have estimated the magnitude of the various sources and sinks of fresh water, sediment and organic carbon.The Fraser River is the dominant source of fresh water and particles to the strait, contributing approximately 73% of the 158×109 m3 year−1 of water and 64% of the 30×109 kg year−1 of particles. Other rivers supply most of the remainder, while rain, groundwater and anthropogenic sources of water and particles are negligible in comparison. Fresh water escapes the Strait of Georgia through Juan de Fuca Strait, but particulate inputs are approximately balanced by sedimentation within the greater Strait of Georgia, implying almost complete trapping of particles.Dissolved and particulate organic carbon are derived mainly from in situ primary production (855×106 kg year−1) and from the Fraser River (550×106 kg year−1). Other rivers contribute 200×106 kg year−1 of organic carbon, and anthropogenic sources (ocean dumping, sewage, pulp mills and aquaculture) a further 119×106 kg year−1. Particulate organic carbon is predominantly buried (428×106 kg year−1) or oxidized (90×106 kg year−1) in the sediments of the strait. About 70% of the organic carbon that enters or is produced in the strait is dissolved. Most of the dissolved organic carbon is oxidized within the strait (784×106 kg year−1), but the remainder (400×106 kg year−1) is exported to the Pacific Ocean. Although the particulate organic carbon budget by itself implies net autotrophy, dissolved organic carbon oxidation may make the Strait of Georgia slightly net heterotrophic.  相似文献   

6.
Organic carbon content and sedimentation rate data may give information about the depositional environment of marine sediments. For sediments deposited under oxic deep-water conditions, a positive correlation exists between organic carbon content and sedimentation rate, with very high organic carbon values and high sedimentation rates typical for coastal upwelling areas. Under anoxic deep-water conditions, no such correlation exists. This relationship between (marine) organic carbon and sedimentation rate (the “OCSR diagram”) has been used to characterize the depositional environments of Deep-Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) sediments of Late Cenozoic and Cretaceous age. Furthermore, the results are compared with organic carbon/sulfur data.  相似文献   

7.
A sediment budget for the Choptank River, one of the three largest estuaries on the eastern shore of Chesapeake Bay, was developed from measurements of sediment carried in upland runoff, shore erosion, sedimentation, and levels of suspended sediments in estuarine waters. Shore erosion was the major source of sediment (340 × 106 kg y?1), contributing seven times more sediment than upland runoff. Low relief, the rural character of the Coastal Plain drainage basin, and the susceptibility of poorly consolidated shoreline materials to erosion contributed to the dominance of shore erosion over runoff as a sediment source. Box modelling indicated a net annual flux (14–44 × 106 kg y?1) of sediment from the Choptank River to Chesapeake Bay. A mass balance estimate of sedimentation, calculated as the difference between total inputs and loss at the mouth of the estuary, (350 × 106 kg y?1) agreed well with an estimate based on 210Pb profiles (340 × 106 kg y?1) measured along the longitudinal axis of the estuary. Lead-210 sedimentation rates correspond to accumulation rates of 1·5–7·9 mm y?1.  相似文献   

8.
《Marine Chemistry》2005,93(1):1-19
To examine microbially mediated degradation of algal fatty acids in marine environments, we conducted a series of microcosm experiments by incubating Emiliania huxleyi cells in simulated oxic/anoxic sediment–water interface systems. Variations in concentration of fatty acids, lipid-degrading enzyme (lipase) activity, and bacterial abundance over 2-month incubations were followed to determine degradation rate constants of major algal fatty acids and responses of bacteria. In the cell-spiked experiments, fatty acids bound in the membrane and intracellular components were separated to examine effects of structural association of fatty acids on their degradation. Experimental results showed that algal fatty acids generally degraded faster (2–4×) under oxic than under anoxic conditions. Most membrane fatty acids seemed to more readily degrade than intracellular ones under anoxic conditions but the two classes degraded at similar rates under oxic conditions. Ratios of oxic to anoxic degradation rate constants were generally higher for intracellular fatty acids than for membrane fatty acids, implying that oxygen might play a more critical role in intracellular fatty acid degradation. Most algal fatty acids degraded almost completely under oxic conditions while a significant fraction (10–40%) of initially added algal fatty acids remained after 2 months under anoxic conditions. By contrast, variations in bacterial abundance during incubations were apparently greater under anoxic conditions compared to oxic conditions, suggesting that the function and relative effectiveness of aerobic vs. anaerobic bacteria rather than total bacterial abundance control biochemical degradation of algal fatty acids. Variations in potential lipase activity followed the same pattern as bacterial abundance in oxic and anoxic systems, indicating that bacteria might be a major source for lipase in these experimental systems. Bacteria-specific fatty acids varied differently during incubations and were not directly linked to bacterial abundance.  相似文献   

9.
The rate of benthic denitrification in slope and rise sediments of a transect across the N.W. European Continental Margin (Goban Spur) was evaluated from 31 pore water nitrate profiles obtained during six cruises between May and October. All profiles had well separated zones of nitrification and denitrification. High near-surface nitrate concentrations prevented the influx of nitrate from the bottom water. The denitrification rates obtained from steady-state-modelling ranged from 0.13 to 2.56 μmol N cm−2 y−1 and showed an exponential increase both with decreasing water depth and with increasing rate of organic carbon degradation. Denitrification rates in a nearby canyon, which did not follow these relationships, were estimated to be much higher as a result of erosion and redistribution of organic matter. Denitrification at the Goban Spur slope and rise is much lower than previously reported for similar environments in the Pacific resulting predominantly from the different oxygen and nitrate concentrations in the bottom water. A weighted average for the whole slope and rise sediment system shows that 17% of the particulate organic nitrogen input (8.93 μmol N cm−2 y−1) is denitrified and only 1% is buried, the rest being released as nitrate. Although being ten times higher compared with basin sediments, denitrification on the slope and rise is several times lower than on the adjacent shelf.  相似文献   

10.
As a contribution to the EC-OMEX-II program, sediment carbon and nitrogen budgets are presented for the Iberian Margin (northeastern Atlantic). The budgets for degradable organic carbon and associated nitrogen were calculated from sediment and pore water properties, using a steady-state version of a numerical coupled diagenetic model, OMEXDIA. Data were collected throughout the major upwelling period along five transects, four of which were located on the open margin and one positioned in a major submarine canyon, the Nazaré Canyon.A comparison of in situ oxygen profiles measured with monocathodic microelectrodes and with Clark type microelectrodes showed that monocathodic electrodes overestimate the oxygen concentration gradient near the sediment–water interface. This artifact probably results from the loss in sensitivity of the monocathodic microelectrode during profiling. Shipboard time course measurements with Clark type electrodes demonstrated transient conditions upon sediment retrieval on deck and indicated enhanced rates of oxygen consumption in the surface sediment, presumably as a result of lysis or exudation of oxidisable substrates by infauna. As a result, oxygen fluxes calculated from shipboard oxygen profiles overestimated in situ fluxes by up to a factor of 5 for water depths >1000 m.The sediments from the canyon and from a depositional area on the shelf were enriched in organic carbon (3–4.5 wt%) relative to the open margin stations (0.5–2 wt%) and showed C/N ratios exceeding Redfield stoichiometry for marine organic matter, indicating there was deposition of organic carbon of terrestrial origin in these areas. The oxidation of organic carbon on the open margin declined from ˜11 gCm−2y−1 on the shelf to 2 gCm−2y−1 at 5000 m water depth, and was dominated by aerobic oxidation. The reactivity of the degradable organic carbon at the time of deposition was <2.5 y−1 on the shelf, and declined to <0.5 y−1 offshore. The burial of refractory organic carbon at the stations along the open margin transects also declined with increasing water depth from ˜5 gCm−2y−1 on the shelf to <1 gCm−2y−1 at 2000 m depth, whereas the burial of particulate inorganic carbon declined from ˜20 gCm−2y−1 to <5 gCm−2y−1. A comparison of the estimated total organic carbon deposition and predicted delivery for the shelf suggest that 58 to 165 gCm−2y−1 is oxidized in the water column, laterally advected, or focused into one of the canyons.Anaerobic oxidation, denitrification and, therefore, total oxidation of organic carbon was enhanced within the canyon relative to the open margin. Total organic carbon oxidation decreased with water depth from 22 gCm−2y−1 at the head of the canyon to 3 gCm−2y−1 over its fan. The reactivity of the organic carbon deposited in the canyon was lower than those of the shelf stations, suggesting that the canyon is being enriched in older, laterally advected organic matter. The burial of refractory organic carbon in sediments from the Nazaré Canyon was considerably higher than in the sediments from the open margin; it also decreased with depth from 20 gCm−2y−1 at 343 m to ˜2.5 gCm−2y−1 at 4298 m water depth. The burial of particulate inorganic carbon was slightly lower than that of refractory organic carbon.The burial of refractory organic carbon and the deposition of degradable organic carbon were both positively correlated with the sedimentation rates for the Iberian Margin, and indicated burial efficiencies were 0.6 to 48%. A single trend for burial efficiency versus sedimentation rate for both the canyon and the open margin indicates that the sedimentation rate was the master variable for the geographical distribution of organic carbon oxidation and carbon preservation on the NW Iberian Margin.  相似文献   

11.
Detailed bulk geochemistry and organo-petrography of outcrop Cretaceous sediments (with no significant effects of weathering) from the Calabar Flank, southeast Nigeria were performed to understand the organic carbon source, accumulation and degradation, and paleo-climatic, paleoceanographic and paleoenvironmental conditions in West Africa during Early Cretaceous (Aptian) to Maastrichtian times. This study was based on microscopic, elemental analyses (organic carbon, nitrogen, iron and sulphur), Rock-eval pyrolysis and carbon-isotope analyses. In general, the Calabar Flank shales are characterised by highly variable total organic carbon (TOC) contents, which range between 0.1% in Aptian–Albian Mfamosing Limestone and 9.9% in the Awi Formation sediments. The organic matter (OM) is a mixture of immature to early-mature marine and terrigenous OM of types III and IV. This is indicated by low hydrogen indices (HI value (10–190 mg HC/g TOC), Tmax (417–460 °C), vitrinite reflectance %Ro (0.39–0.62 %Ro), low to high C/N ratios (3.4–1158.0) and high amounts of terrigenous macerals (vitrinite + inertinite). Based on carbon isotope, C/N ratios and sulphate reduction index (SRI), OM degradation (up to 70%, SRI > 2.5) is most pronounced for shales deposited in a marine environment. The geochemical and petrographic data indicate that local factors such as low bioproductivity, down slope transport and redeposition of sediments from a fluvial–deltaic basin to nearshore facies, shallower, oxic and mildly oxygen-deficient environments, humid–arid paleogeographic conditions, specifically controlled the amount and quality of the OM during Aptian–Mastrichtian stages where marine sediments have been assumed to be deposited during the global anoxic events. Therefore, the order of the main factors controlling OM content in sediments are: input of terrigenous material transported from the land > low OM productivity by marine photoautotrophs > low preservation.  相似文献   

12.
A new method is proposed for the determination of complexing capacities and conditional stability constants for complexes of copper(II) with dissolved organic ligands in seawater. This method is based on ligand competition by the added ligand catechol for free metal ions. The concentration of copper-catechol complex ions is measured with great sensitivity by cathodic stripping voltammetry. The concentration of the free copper ion is calculated from the concentration of copper-catechol complex ions. Ligand concentrations and conditional stability constants are obtained from a titration of the ligands with copper. Two techniques for treatment of the data are compared. A seawater sample, originating from open oceanic conditions, is analysed and two complexing ligands were detected, having concentrations of 1.1 × 10?8 and 3.3 × 10?8 M, and conditional stability constants (log KCuL) of 12.2 and 10.2, respectively.  相似文献   

13.
The first carbon budget constructed for the Barents Sea to study the fluxes of carbon into, out of, and within the region is presented. The budget is based on modelled volume flows, measured dissolved inorganic carbon (DIC) concentration, and literature values for dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations. The results of the budget show that ~5600±660×106 t C yr?1 is exchanged through the boundaries of the Barents Sea. If a 40% uncertainty in the volume flows is included in the error calculation it resulted in a total uncertainty of ±1600×106 t C yr?1. The largest part of the total budget flux consists of DIC advection (~95% of the inflow and ~97% of the outflow). The other sources and sinks are, in order of importance, advection of organic carbon (DOC+POC; ~3% of both in- and outflow), total uptake of atmospheric CO2 (~1% of the inflow), river and land sources (~0.2% of the inflow), and burial of organic carbon in the sediments (~0.2% of the outflow). The Barents Sea is a net exporter of carbon to the Arctic Ocean; the net DIC export is ~2500±660×106 t C yr?1 of which ~1700±650×106 t C yr?1 (~70%) is in subsurface water masses and thus sequestered from the atmosphere. The net total organic carbon export to the Arctic Ocean is ~80±20×106 t C yr?1. Shelf pumping in the Barents Sea results in an uptake of ~22±11×106 t C yr?1 from the atmosphere which is exported out of the area in the dense modified Atlantic Waters. The main part of this carbon was channelled through export production (~16±10×106 t C yr?1).  相似文献   

14.
Origin of sedimentary organic matter in the north-western Adriatic Sea   总被引:1,自引:0,他引:1  
In order to evaluate the origin and the transformation of organic matter on the shallow shelf of the NW Adriatic Sea, organic carbon, total nitrogen and stable isotope ratios of organic carbon were analysed in riverine suspended matter and sediments as well as in marine suspended and sedimentary organic matter, in marine phytoplankton and zooplankton.The deposition of organic matter is influenced by fine sediment concentration. Surface sediments were characterised by highly variable biogeochemical conditions on the sea floor, whereas sub-surface sediments showed a more homogeneous hypoxic/anoxic environment.Low Corg/N ratio and high organic carbon and nitrogen concentrations in riverine suspended organic matter indicate an important contribution of freshwater phytoplankton within rivers, particularly during low flow regimes, which adds to the marine phyto- and zooplankton at shelf locations.In order to evaluate the importance of terrestrial, riverine and marine sources of OM in shelf sediments, a three end-member mixing model was applied to shelf surface sediments using 13C/12C values for organic matter and N/C ratios. The model showed an elevated contribution of terrestrial organic substances at intermediate depths (10–15 m), mostly corresponding to an area of coarser grain-size, whereas the riverine and marine organic fractions were mainly accumulating near the coast and offshore, respectively.  相似文献   

15.
The MnO2 adsorption method combined with voltammetry is proposed for the direct determination of metal complexation in seawater of various salinities as a more satisfactory alternative to direct voltammetric measurements and bioassay methods. A small quantity of MnO2 is equilibrated with copper ions in filtered seawater. Natural organic ligands in the seawater compete for copper with the MnO2. Total dissolved copper is measured by differential pulse anodic stripping voltammetry after filtration and acidification of the sample. Preconcentration of natural water samples is unnecessary and measurement is performed at the natural equilibrium pH of the aerated sample. The analytical limit of detection of the method depends on contamination from the filtration step, and for copper complexation a ligand concentration of 5 × 10?8 M was obtained. The sensitivity can be increased by use of radioisotopes as tracers. The method is very versatile in that complexation of various metals may be determined by any analytical method that measures total dissolved metal concentrations. Neither organic ligands nor their complexes with copper adsorb on the MnO2 at pH8, but at pH 1.8 MnO2 is an efficient scavenger for electroactive organic material.Samples of surface water from the Irish Sea and the Atlantic Ocean were found to contain ligand concentrations of 1.7 × 10?7 and 1.1 × 10?7 M, with conditional stability constants (log values) of 9.84 ± 0.13 and 9.86 ± 0.23, respectively, at pH 8.0.  相似文献   

16.
Chromophoric dissolved organic matter (CDOM), as the light absorbing fraction of bulk dissolved organic matter (DOM), plays a number of important roles in the global and local biogeochemical cycling of dissolved organic carbon (DOC) and in controlling the optical properties of estuarine and coastal waters. Intertidal areas such as salt marshes can contribute significant amounts of the CDOM that is exported to the ocean, but the processes controlling this CDOM source are not well understood. In this study, we investigate the production of DOM and CDOM from the decomposition of two salt marsh cordgrasses, Spartina patens, a C4 grass, and Typha latifolia, a C3 grass, in well-controlled laboratory experiments. During the seven-week incubation period of the salt marsh grasses in oxic and anoxic seawater, changes in dissolved organic carbon (DOC) concentrations, dissolved nitrogen (DN) concentrations, stable carbon isotopic composition of DOC (DOC-δ13C), and CDOM fluorescence demonstrate a significant contribution of DOC and CDOM to estuarine waters from salt marsh plants, such as Spartina and Typha species. In the natural environment, however, the release processes of CDOM from different cordgrass species could be controlled largely by the in situ oxic and anoxic conditions present during degradation which affects both the production and decomposition of DOC and CDOM, as well as the optical properties of CDOM in estuarine and coastal waters.  相似文献   

17.
The relation between the nitrate and phosphate concentrations in the Sea of Okhotsk and the bordering waters of the Pacific Ocean were studied. The surveys were carried out in the autumn, spring, and summer of 2001–2002. For the deepwater part of the sea, the relation [NO? 3] = ((14.88 ± 0.07) × [PO3? 4] ? 5.46 ± 0.17) was found. The coefficients in the equation given are statistically different from those in the similar equation for the Pacific waters: [NO? 3] = (16.05 ± 0.15) × [PO3? 4]-(7.23 ± 0.36). In the northern part of the sea; on the shelf; in the slope area; and, especially, in the deep waters of the TINRO Depression, the linear dependence between the phosphate and nitrate concentrations was distorted. This feature was described in terms of nitrate deficiency. The maximum values of this deficiency were found in the near-bottom waters. The principal processes that might cause the nitrate deficiency were considered: the difference in the oxidation rates of the nitrogen and phosphorus organic compounds, the matter transfer between the continent and the sea, the different efficiency of the biogenic burial of nitrogen and phosphorus in the bottom sediments, and the denitrification in the upper layer of the bottom sediments. It was shown that the most probable cause of the nitrate deficiency was the denitrification. The loss of inorganic nitrogen owing to the supply of the waters of the Sea of Okhotsk to the Pacific Ocean was estimated as ~2.5 × 1011 mol N/year.  相似文献   

18.
The distribution of iodine and bromine was examined in sediments which receive inputs of marine and terrigenous organic matter. The I and Br concentrations are directly related to the content of ‘marine’ organic matter defined using carbon/nitrogen ratios. In the Etive sediments both Br and I may be used as an indicator of ‘marine’ organic matter; Br is of general application as the BrCmar ratio (180 × 10?4) is similar to ratios in other sedimentary environments but the use of I is restricted as the ICmar ratio is unlike those in other sediments. Experimental study of iodine sorption clearly shows the importance of decaying marine organic matter and oxygenated conditions in the incorporation of iodine by sediments. This suggests that the mechanism of incorporation of iodine by seston previously proposed is probably an important pathway to sediments. The similarity of Br association with marine organic matter suggests that Br sorption as opposed to residual enrichment may be important for sediment Br accumulation.  相似文献   

19.
《Marine Chemistry》2001,73(1):65-81
Radiocarbon (Δ14C) abundance and stable carbon isotope (δ13C) compositions were measured for total lipid, total hydrolyzable amino acids (THAA), total carbohydrates (TCHO), and acid-insoluble organic fractions separated from phytoplankton, zooplankton, and sediment cores collected from two abyssal sites, one in the northeast (NE) Pacific Ocean and one in the Southern Ocean. These results are compared with those obtained for a separate core from the NE Pacific and reported by Wang et al. [Geochim. Cosmochim. Acta 62 (1998) 1365.]. An uncharacterized acid-insoluble fraction dominated (43–57%) the sediment TOC pool at both sites. Sediment collected from the NE Pacific exhibited higher TOC, TN. and higher Δ14C values and contained both labile (THAA and TCHO) and refractory (lipid and acid-insoluble) fractions. In contrast, sediment from the Southern Ocean had much lower TOC and Δ14C values, which indicated that organic matter was extremely refractory. Sedimentation rates calculated from 14C ages of TOC for both sites indicate that the differences in the organic composition and Δ14C signatures of organic matter in the sediments likely resulted from the differences in production and deposition of organic matter to the sediment, and the diagenetic stages of sedimentary organic matter in the two oceans.Unlike Δ14C, stable carbon isotopic (δ13C) compositions of TOC in the sediments of the two oceans had similar values, which reflect not only the organic matter input from marine-derived sources but also the nature of degraded, predominately uncharacterized organic fraction in these sediments. The differences in δ13C values among the compound classes in sediments at both sites can be attributed to the carbon isotopic signatures in original sources during photosynthesis and associated environmental factors. Preferential degradation of organic matter and heterotrophic effects may also play important roles for the observed δ13C variations and these effects need to be further investigated.  相似文献   

20.
The annual flux of biologically produced organic carbon from surface waters is equivalent to annual net community production (NCP) at a steady state and equals the export of particulate and dissolved organic carbon (POC and DOC, respectively) to the ocean interior. NCP was estimated from carbon budgets of salinity-normalized dissolved inorganic carbon (nDIC) inventories at two time-series stations in the western subarctic (K2) and subtropical (S1) North Pacific Ocean. By using quasi-monthly biogeochemical observations from 2004 to 2013, monthly mean nDIC inventories were integrated from the surface to the annual maximum mixed layer depth and corrected for changes due to net air–sea CO2 exchange, net CaCO3 production, vertical diffusion from the upper thermocline, and horizontal advection. The annual organic carbon flux at K2 (1.49 ± 0.42 mol m?2 year?1) was lower than S1 (2.81 ± 0.53 mol m?2 year?1) (p < 0.001 based on t test). These fluxes consist of three components: vertically exported POC fluxes (K2: 1.43 mol m?2 year?1; S1: 2.49 mol m?2 year?1), vertical diffusive DOC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.25 mol m?2 year?1), and suspended POC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.07 mol m?2 year?1). The estimated POC export flux at K2 was comparable to the sum of the POC flux observed with drifting sediment traps and active carbon flux exported by migrating zooplankton. The export fluxes at both stations were higher than those reported at other time-series sites (ALOHA, the Bermuda Atlantic Time-series Study, and Ocean Station Papa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号