首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The fall of the Puerto Lápice eucrite occurred on May 10, 2007, at 17 h 57 m 30 ± 30 s UTC. Its daylight fireball was witnessed by hundreds of people from Spain, and produced a meteorite fall associated with a large strewn field of fragments. There were no direct pictures of the fireball, but several pictures of the fireball's train were taken from different locations in Spain. Additional theodolite calibrations of visual records were made in order to find the most probable fireball trajectory based on the available data. The shape of the meteorite strewn field was considered as well. Although the orbit of the Puerto Lápice meteoroid could not be computed due to the absence of velocity data, we assumed a likely range of geocentric velocities and computed a range of possible orbits. All solutions show that the body was in an Apollo‐type orbit, with low inclination and perihelion distance just below 1 astronomical unit (AU). This is the first case that an orbit can be discussed for an HED meteorite fall.  相似文献   

2.
Abstract– Analysis of the mineralogy, isotopic, and bulk compositions of the eucrite meteorites is imperative for understanding their origin on the asteroid 4 Vesta, the proposed parent body of the HED meteorites. We present here the petrology, mineral compositions, and bulk chemistry of several lithic components of the new brecciated basaltic eucrite Northwest Africa (NWA) 3368 to determine if all the lithologies reflect formation from one rock type or many rock types. The meteorite has three main lithologies: coarse‐ and fine‐grained clasts surrounded by a fine‐grained recrystallized silicate matrix. Silicate compositions are homogeneous, and the average rare earth element pattern for NWA 3368 is approximately 10× CI chondrites with a slight negative Eu anomaly. Major and trace element data place NWA 3368 with the Main Group‐Nuevo Laredo trend. High‐Ti chromites with ilmenite exsolution lamellae provide evidence of NWA 3368’s history of intense metamorphism. We suggest that this meteorite underwent several episodes of brecciation and metamorphism, similar to that proposed by Metzler et al. (1995) . We conclude that NWA 3368 is a monomict basaltic eucrite breccia related to known eucrites in texture and in mineral, bulk, and oxygen isotopic composition.  相似文献   

3.
Abstract— Dar al Gani 872 (DaG 872) is a new meteorite from Libya that we classified by means of Instrumental Neutron Activation Analysis (INAA), electron microprobe, and optical microscopy. According to our results, DaG 872 is a Mg‐rich main group eucrite, i.e., a monomict noncumulate basaltic eucrite displaying a predominant coarse‐grained relict subophitic and a fine‐grained granulitic texture. The meteorite also shows pockets of late‐stage mesostasis and is penetrated by several calcite veins due to terrestrial weathering. Finally, it exhibits shock phenomena of stage 1–2 including heavily fractured mineral components, undulose extinction of plagioclase, kinked lamellae, and mosaicism in pyroxenes corresponding to peak pressures of ?20 GPa. In view of petrographic criteria as well as compositional and exsolution characteristics of its pyroxenes, the sample represents a metamorphic type 5 eucrite. Assuming the metamorphic type to be a function of burial depth on the parent body and taking into account the relatively high shock stage, the excavation of DaG 872 was likely induced by a major impact event. Prior to this point, DaG 872 apparently underwent a 4‐stage geological evolution that is reflected by intricate textural and mineralogical features.  相似文献   

4.
The Dawn spacecraft mission has provided extensive new and detailed data on Vesta that confirm and strengthen the Vesta–howardite–eucrite–diogenite (HED) meteorite link and the concept that Vesta is differentiated, as derived from earlier telescopic observations. Here, we present results derived by newly calibrated spectra of Vesta. The comparison between data from the Dawn imaging spectrometer—VIR—and the different class of HED meteorites shows that average spectrum of Vesta resembles howardite spectra. Nevertheless, the Vesta spectra at high spatial resolution reveal variations in the distribution of HED‐like mineralogies on the asteroid. The data have been used to derive HED distribution on Vesta, reported in Ammannito et al. (2013), and to compute the average Vestan spectra of the different HED lithologies, reported here. The spectra indicate that, not only are all the different HED lithologies present on Vesta, but also carbonaceous chondritic material, which constitutes the most abundant inclusion type found in howardites, is widespread. However, the hydration feature used to identify carbonaceous chondrite material varies significantly on Vesta, revealing different band shapes. The characteristic of these hydration features cannot be explained solely by infalling of carbonaceous chondrite meteorites and other possible origins must be considered. The relative proportion of HEDs on Vesta's surface is computed, and results show that most of the vestan surface is compatible with eucrite‐rich howardites and/or cumulate or polymict eucrites. A very small percentage of surface is covered by diogenite, and basaltic eucrite terrains are relatively few compared with the abundance of basaltic eucrites in the HED suite. The largest abundance of diogenitic material is found in the Rheasilvia region, a deep basin, where it clearly occurs below a basaltic upper crust. However, diogenite is also found elsewhere; although the depth to diogenite is consistent with one magma ocean model, its lateral extent is not well constrained.  相似文献   

5.
Abstract– This work describes two newly discovered eucrite breccias: three presumably paired meteorites, all named Northwest Africa (NWA) 6105, and NWA 6106. For each meteorite, major‐ and minor‐element compositions of minerals were determined using the electron microprobe. Pyroxene Fe‐Mn co‐variations and bulk‐rock oxygen isotope compositions confirm their classification as eucrites. Variations in mineral compositions and textures are attributed to differences in clast types present (i.e., basaltic or cumulate eucrite). The pyroxene compositions support the hypothesis that samples NWA 6105,1; 6105,2; and 6105,3 are paired polymict eucritic breccias, whereas sample NWA 6106 is a monomict basaltic eucritic breccia. Two‐pyroxene geothermometry yields temperatures too low for igneous crystallization. The variation in temperatures among samples suggests that metamorphism occurred prior to brecciation.  相似文献   

6.
We report the results of a detailed study of the basaltic eucrite Northwest Africa (NWA) 7188, including its mineralogical and bulk geochemical characteristics, oxygen isotopic composition, and 147,146Sm‐143,142Nd mineral isochron ages. The texture and chemical composition of pyroxene and plagioclase demonstrate that NWA 7188 is a monomict eucrite with a metamorphic grade of type 4. The oxygen isotopic composition and the Fe/Mn ratios of pyroxene confirmed that NWA 7188 belongs to the howardite–eucrite–diogenite meteorite suite, generally considered to originate from asteroid 4 Vesta. Whole‐rock TiO2, La, and Hf concentrations and a CI chondrite‐normalized rare earth element pattern are in good agreement with those of representative Stannern‐group eucrites. The 147,146Sm‐143,142Nd isochrons for NWA 7188 yielded ages of 4582 ± 190 and 4554 +17/?19 Ma, respectively. The closure temperature of the Sm‐Nd system for different fractions of NWA 7188 was estimated to be >865 °C, suggesting that the Sm‐Nd decay system has either been resistant to reheating at ~800 °C during the global metamorphism or only partially reset. Therefore, the 146Sm‐142Nd age of NWA 7188 corresponds to the period of initial crystallization of basaltic magmas and/or global metamorphism on the parent body, and is unlikely to reflect Sm‐Nd disturbance by late reheating and impact events. In either case, NWA 7188 is a rare Stannern‐group eucrite that preserves the chronological information regarding the initial crustal evolution of Vesta.  相似文献   

7.
Abstract— I have done a detailed petrologic study of Ibitira, a meteorite that has been classified as a basaltic eucrite since 1957. The mean Fe/Mn ratio of pyroxenes in Ibitira with <10 mole% wollastonite component is 36.4 ± 0.4; this value is well resolved from those of similar pyroxenes in five basaltic eucrites studied for comparison, which range from 31.2 to 32.2. Data for the latter five eucrites completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes; thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents, and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Thus, Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust, the others being the HED, mesosiderite, angrite, and NWA 011 parent asteroids. 4 Vesta is generally assumed to be the HED parent asteroid. The Dawn mission will orbit 4 Vesta and will perform detailed mapping and mineralogical, compositional, and geophysical studies of the asteroid. Ibitira is only subtly different from eucritic basalts. A challenge for the Dawn mission will be to distinguish different basalt types on the surface and to attempt to determine whether 4 Vesta is indeed the HED parent asteroid.  相似文献   

8.
The howardite‐eucrite‐diogenite (HED) clan of meteorites, which most likely originate from the asteroid Vesta, provide an opportunity to combine in‐depth sample analysis with the comprehensive remote‐sensing data set from NASA's recent Dawn mission. Miller Range (MIL) 11100, an Antarctic howardite, contains diverse rock and mineral fragments from common HED lithologies (diogenites, cumulate eucrites, and basaltic eucrites). It also contains a rare pyroxferroite‐bearing lithology—not recognized in HED until recently—and rare Mg‐rich (Fo86‐91) olivine crystals that possibly represent material excavated from the Vestan mantle. Clast components underwent different histories of thermal and impact metamorphism before being incorporated into this sample, reflecting the diversity in geological histories experienced by different parts of Vesta. The bulk chemical composition and petrography of MIL 11100 suggest that it is akin to the fragmental howardite meteorites. The strong lithological heterogeneity across this sample suggests that at least some parts of the Vestan regolith show heterogeneity on the mm‐scale. We combine the outcomes of this study with data from NASA's Dawn mission and hypothesize on possible source regions for this meteorite on the surface of Vesta.  相似文献   

9.
We have done petrologic and compositional studies on a suite of polymict eucrites and howardites to better understand regolith processes on their parent asteroid, which we accept is (4) Vesta. Taking into account noble gas results from companion studies, we interpret five howardites to represent breccias assembled from the true regolith: Elephant Moraine (EET) 87513, Grosvenor Mountains (GRO) 95535, GRO 95602, Lewis Cliff (LEW) 85313, and Meteorite Hills (MET) 00423. We suggest that EET 87503 is paired with EET 87513, and thus is also regolithic. Pecora Escarpment (PCA) 02066 is dominated by melt‐matrix clasts, which may have been formed from true regolith by impact melting. These meteorites display a range in eucrite:diogenite mixing ratio from 55:45 to 76:24. There is no correlation between degree of regolith character and Ni content. The Ni contents of howardite, eucrite, and diogenites (HEDs) are mostly controlled by the distribution of coarse chondritic clasts and metal grains, which in some cases resulted from individual, low‐velocity accretion events, rather than extensive regolith gardening. Trace element compositions indicate that the mafic component of HED polymict breccias is mostly basalt similar to main‐group eucrites; Stannern‐trend basaltic debris is less common. Pyroxene compositions show that some trace element‐rich howardites contain abundant debris from evolved basalts, and that cumulate gabbro debris is present in some breccias. The scale of heterogeneity varies considerably; regolithic howardite EET 87513 is more homogeneous than fragmental howardite Queen Alexandra Range (QUE) 97001. Individual samples of a given howardite can have different compositions even at roughly 5 g masses, indicating that obtaining representative meteorite compositions requires multiple or large samples.  相似文献   

10.
The Emmaville eucrite is a relatively poorly studied basaltic achondrite with an anomalous oxygen isotope signature. In this study, we report comprehensive mineralogical, petrographic, and geochemical data from Emmaville in order to understand its petrogenesis and relationship with the basaltic eucrites. Emmaville is an unusually fine‐grained, hornfelsic‐textured metabasalt with pervasive impact melt veins and mineral compositions similar to those of typical basaltic eucrites. The major and trace element bulk composition of Emmaville is also typical of a basaltic eucrite. Three separated individual lithologies were also analyzed for O isotopes; a dark gray fraction (E1), a shocked lithology (E2), and a lighter gray portion (E3). Fractions E1 and E2 shared similar O isotope compositions to the bulk sample (E‐B), whereas the lighter gray portion (E3) is slightly elevated in Δ17O and significantly elevated in δ18O compared to bulk. No evidence for any exogenous material is observed in the thin sections, coupled with the striking compositional similarity to typical basaltic eucrites, appears to preclude a simple impact‐mixing hypothesis. The O‐isotopes of Emmaville are similar to those of Bunburra Rockhole, A‐881394, and EET 92023, and thus distinct from the majority of the HEDs, despite having similarities in petrology, mineral, and bulk compositions. It would, therefore, seem plausible that all four of these samples are derived from a single HED‐like parent body that is isotopically distinct from that of the HEDs (Vesta) but similar in composition.  相似文献   

11.
Abstract– We report an analysis of the first instrumentally observed meteorite fall in Australia, which was recorded photographically and photoelectrically by two eastern stations of the Desert Fireball Network (DFN) on July 20, 2007. The meteoroid with an initial mass of 22 kg entered the atmosphere with a low speed of 13.36 km s?1 and began a luminous trajectory at an altitude of 62.83 km. In maximum, it reached ?9.6 absolute magnitude and terminated after a 5.7 s and 64.7 km long flight at an altitude of 29.59 km with a speed of 5.8 km s?1. The angle of the atmospheric trajectory to the Earth’s surface was 30.9°. The first organized search took place in October 2008 and the first meteorite (150 g) was found 97 m southward from the predicted central line at the end of the first day of searching (October 3, 2008). The second stone (174 g) was recovered 39 m northward from the central line, both exactly in the predicted mass limits. During the second expedition in February 2009, a third fragment of 14.9 g was found again very close (~100 m) from the predicted position. Total recovered mass is 339 g. The meteorite was designated Bunburra Rockhole (BR) after a nearby landscape structure. This first DFN sample is an igneous achondrite. Initial petrography indicated that BR was a brecciated eucrite but detailed analyses proved that BR is not a typical eucrite, but an anomalous basaltic meteorite ( Bland et al. 2009 ). BR was delivered from an unusual, Aten type orbit (a < 1 AU) where virtually the entire orbit was contained within Earth’s orbit. BR is the first achondrite fall with a known orbit and it is one of the most precise orbits ever calculated for a meteorite dropping fireball.  相似文献   

12.
Abstract— Many lines of evidence indicate that meteorites are derived from the asteroid belt but, in general, identifying any meteorite class with a particular asteroid has been problematical. One exception is asteroid 4 Vesta, where a strong case can be made that it is the ultimate source of the howardite‐eucrite‐diogenite (HED) family of basaltic achondrites. Visible and near‐infrared reflectance spectra first suggested a connection between Vesta and the basaltic achondrites. Experimental petrology demonstrated that the eucrites (the relatively unaltered and unmixed basaltic achondrites) were the product of approximately a 10% melt. Studies of siderophile element partitioning suggested that this melt was the residue of an asteroidal‐scale magma ocean. Mass balance considerations point to a parent body that had its surface excavated, but remains intact. Modern telescopic spectroscopy has identified kilometer‐scale “Vestoids” between Vesta and the 3:1 orbit‐orbit resonance with Jupiter. Dynamical simulations of impact into Vesta demonstrate the plausibility of ejecting relatively unshocked material at velocities consistent with these astronomical observations. Hubble Space Telescope images show a 460 km diameter impact basin at the south pole of Vesta. It seems that nature has provided multiple free sample return missions to a unique asteroid. Major challenges are to establish the geologic context of the HED meteorites on the surface of Vesta and to connect the remaining meteorites to specific asteroids.  相似文献   

13.
Comparative planetary geochemistry provides insight into the origin and evolutionary paths of planetary bodies in the inner solar system. The eucrite and angrite achondrite groups are particularly interesting because they show evidence of early planetary differentiation. We present 147Sm‐143Nd and 176Lu‐176Hf analyses of eight noncumulate (basaltic) eucrites, two cumulate eucrites, and three angrites, which together place new constraints on the evolution and differentiation histories of the crusts of the eucrite and angrite parent bodies and their mantle mineralogies. The chemical compositions of both eucrites and angrites indicate similar evolutionary paths and petrogenetic models with formation and isolation of differentiated crustal reservoirs associated with segregation of ilmenite. We report a 147Sm‐143Nd mineral isochron age for the Moama cumulate eucrite of 4519 ± 34 Ma (MSWD = 1.3). This age indicates protracted magmatism within deep crustal layers of the eucrite parent body lasting up to about 50 Ma after the formation of the solar system. We further demonstrate that the isotopic compositions of constituent minerals are compromised by secondary processes hindering precise determination of mineral isochron ages of basaltic eucrites and angrites. We interpret the changes in geochemistry and, consequently, the erroneous 147Sm‐143Nd and 176Lu‐176Hf internal mineral isochron ages of basaltic eucrites and angrites as the result of metamorphic events such as impacts (effects from pressure, temperature, and peak shock duration) on the surfaces of the eucrite and angrite parent bodies.  相似文献   

14.
Abstract— In 1998, Dar al Gani (DaG) 476 was found in the Libyan desert. The meteorite is classified as a basaltic shergottite and is only the 13th martian meteorite known to date. It has a porphyritic texture consisting of a fine‐grained groundmass and larger olivines. The groundmass consists of pyroxene and feldspathic glass. Minor phases are oxides and sulfides as well as phosphates. The presence of olivine, orthopyroxene, and chromite is a feature that DaG 476 has in common with lithology A of Elephant Moraine (EET) A79001. However, in DaG 476, these phases appear to be early phenocrysts rather than xenocrysts. Shock features, such as twinning, mosaicism, and impact‐melt pockets, are ubiquitous. Terrestrial weathering was severe and led to formation of carbonate veins following grain boundaries and cracks. With a molar MgO/(MgO + FeO) of 0.68, DaG 476 is the most magnesian member among the basaltic shergottites. Compositions of augite and pigeonite and some of the bulk element concentrations are intermediate between those of lherzolitic and basaltic shergottites. However, major elements, such as Fe and Ti, as well as LREE concentrations are considerably lower than in other shergottites. Noble gas concentrations are low and dominated by the mantle component previously found in Chassigny. A component, similar to that representing martian atmosphere, is virtually absent. The ejection age of 1.35 ± 0.10 Ma is older than that of EETA79001 and could possibly mark a distinct ejection. Dar al Gani 476 is classified as a basaltic shergottite based on its mineralogy. It has a fine‐grained groundmass consisting of clinopyroxene, pigeonite and augite, feldspathic glass and chromite, Ti‐chromite, ilmenite, sulfides, and whitlockite. Isolated olivine and single chromite grains occur in the groundmass. Orthopyroxene forms cores of some pigeonite grains. Shock‐features, such as shock‐twinning, mosaicism, cracks, and impact‐melt pockets, are abundant. Severe weathering in the Sahara led to significant formation of carbonate veins crosscutting the entire meteorite. Dar al Gani 476 is distinct from other known shergottites. Chemically, it is the most magnesian member among known basaltic shergottites and intermediate in composition for most trace and major elements between Iherzolitic and basaltic shergottites. Unique are the very low bulk REE element abundances. The CI‐normalized abundances of LREEs are even lower than those of Iherzolitic shergottites. The overall abundance pattern, however, is similar to that of QUE 94201. Textural evidence indicates that orthopyroxene, as well as olivine and chromite, crystallized as phenocrysts from a magma similar in composition to that of bulk DaG 476. Whether such a magma composition can be a shergottite parent melt or was formed by impact melting needs to be explored further. At this time, it cannot entirely be ruled out that these phases represent relics of disaggregated xenoliths that were incorporated and partially assimilated by a basaltic melt, although the texture does not support this possibility. Trapped noble gas concentrations are low and dominated by a Chassigny‐like mantle component. Virtually no martian atmosphere was trapped in DaG 476 whole‐rock splits. The exposure age of 1.26 ± 0.09 Ma is younger than that of most shergottites and closer to that of EETA79001. The ejection age of 1.35 ± 0.1 Ma could mark another distinct impact event.  相似文献   

15.
Abstract— Antarctic meteorite Queen Alexandra Range (QUE) 94201 is a 12 g basaltic achondrite dominated by plagioclase (now maskelynite) and zoned low‐ and high‐Ca pyroxene. Petrologic, geochemical, and isotopic analyses indicate that it is related to previously described basaltic and Iherzolitic shergottites, which are a group of igneous meteorites that are believed to be from Mars. Unlike previous shergottites, however, QUE 94201 represents a bulk melt rather than a cumulate fraction, meaning it can be used to infer magmatic source regions and the compositions of other melts on Mars. This melt has much more Fe and P than basaltic melts produced on Earth and formed at a much lower oxygen fugacity. This has altered the crystallization sequence of the melt, removing olivine from the liquidus to produce a plagioclase and 2‐pyroxene assemblage. If the high‐phosphorus and low‐oxygen fugacity conditions represented by QUE 94201 are common in magmatic regions of Mars, then olivine may be rare in marrian basalts. No solar cosmic ray effects were seen in the concentrations of 10Be, 26A1, and 36C1 with depth in the meteorite, implying at least 3 cm of ablation during entry to Earth. Significant excesses of neutron capture noble gas isotopes (80,82Kr and 128,131Xe) suggest that the QUE 94201 sample came from a depth >22 cm in a meteoroid of at least that radius. The meteorite also has very low 21Ne/22Ne, which would often be interpreted to mean little ablation (contradicting above evidence) but, in this case, appears to reflect a very low abundance of Mg (the principal target element for Ne) in the meteorite, consistent with our bulk chemical analyses. The meteorite has a terrestrial 36C1 age of 0.29 ± 0.05 Myr and a 10Be exposure age of 2.6 ± 0.5 Myr in a 47π geometry, implying an ejection age of 2.9 ± 0.5 Myr.  相似文献   

16.
Abstract— Eucrite meteorites are igneous rocks that derived from a large asteroid, probably 4 Vesta. Past studies have shown that after most eucrites formed, they underwent metamorphism in temperatures up to ≥800°C. Much later, many were brecciated and heated by large impacts into the parent body surface. The less common basaltic, unbrecciated eucrites also formed near the surface but, presumably, escaped later brecciation, while the cumulate eucrites formed at depths where metamorphism may have persisted for a considerable period. To further understand the complex HED parent body thermal history, we determined new 39Ar‐40Ar ages for 9 eucrites classified as basaltic but unbrecciated, 6 eucrites classified as cumulate, and several basaltic‐brecciated eucrites. Precise Ar‐Ar ages of 2 cumulate eucrites (Moama and EET 87520) and 4 unbrecciated eucrites give a tight cluster at 4.48 ± 0.02 Gyr (not including any uncertainties in the flux monitor age). Ar‐Ar ages of 6 additional unbrecciated eucrites are consistent with this age within their relatively larger age uncertainties. By contrast, available literature data on Pb‐Pb isochron ages of 4 cumulate eucrites and 1 unbrecciated eucrite vary over 4.4–4.515 Gyr, and 147Sm‐143Nd isochron ages of 4 cumulate and 3 unbrecciated eucrites vary over 4.41–4.55 Gyr. Similar Ar‐Ar ages for cumulate and unbrecciated eucrites imply that cumulate eucrites do not have a younger formation age than basaltic eucrites, as was previously proposed. We suggest that these cumulate and unbrecciated eucrites resided at a depth where parent body temperatures were sufficiently high to cause the K‐Ar and some other chronometers to remain as open diffusion systems. From the strong clustering of Ar‐Ar ages at ?4.48 Gyr, we propose that these meteorites were excavated from depth in a single large impact event ?4.48 Gyr ago, which quickly cooled the samples and started the K‐Ar chronometer. A large (?460 km) crater postulated to exist on Vesta may be the source of these eucrites and of many smaller asteroids thought to be spectrally or physically associated with Vesta. Some Pb‐Pb and Sm‐Nd ages of cumulate and unbrecciated eucrites are consistent with the Ar‐Ar age of 4.48 Gyr, and the few older Pb‐Pb and Sm‐Nd ages may reflect an isotopic closure before the large cratering event. One cumulate eucrite gives an Ar‐Ar age of 4.25 Gyr; 3 additional cumulate eucrites give Ar‐Ar ages of 3.4–3.7 Gyr; and 2 unbrecciated eucrites give Ar‐Ar ages of ?3.55 Gyr. We attribute these younger ages to a later impact heating. Furthermore, the Ar‐Ar impact‐reset ages of several brecciated eucrites and eucritic clasts in howardites fall within the range of 3.5–4.1 Gyr. Among these, Piplia Kalan, the first eucrite to show evidence for extinct 26Al, was strongly impact heated ?3.5 Gyr ago. When these data are combined with eucrite Ar‐Ar ages in the literature, they confirm that several large impact heating events occurred on Vesta between ?4.1–3.4 Gyr ago. The onset of major impact heating may have occurred at similar times for both Vesta and the moon, but impact heating appears to have persisted for a somewhat later time on Vesta.  相似文献   

17.
Abstract— The cumulate eucrite meteorites are gabbros that are related to the eucrite basalt meteorites. The eucrite basalts are relatively primitive (nearly flat REE patterns with La ~ 8–30 × CI), but the parent magmas of the cumulate eucrites have been inferred as extremely evolved (La to > 100 × CI). This inference has been based on mineral/magma partitioning, and on mass balance considering the cumulate eucrites as adcumulates of plagioclase + pigeonite only; both approaches have been criticized as inappropriate. Here, mass balance including magma + equilibrium pigeonite + equilibrium plagioclase is used to test a simple model for the cumulate eucrites: that they formed from known eucritic magma types, that they consisted only of magma + crystals in chemical equilibrium with the magma, and that they were closed to chemical exchange after the accumulation of crystals. This model is tested for major and rare earth elements (REE). The cumulate eucrites Serra de Magé and Moore County are consistent, in both REE and major elements, with formation by this simple model from a eucrite magma with a composition similar to the Nuevo Laredo meteorite: Serra de Magé as 14% magma, 47.5% pigeonite, and 38.5% plagioclase; Moore County as 35% magma, 37.5% pigeonite, and 27.5% plagioclase. These results are insensitive to the choice of mineral/magma partition coefficients. Results for the Moama cumulate eucrite are strongly dependent on choice of partition coefficients; for one reasonable choice, Moama's composition can be modeled as 4% Nuevo Laredo magma, 60% pigeonite, and 36% plagioclase. Selection of parent magma composition relies heavily on major elements; the REE cannot uniquely indicate a parent magma among the eucrite basalts. The major element composition of Y-791195 can be fit adequately as a simple cumulate from any basaltic eucrite composition. However, Y-791195 has LREE abundances and La/Lu too low to be accommodated within the model using any basaltic eucrite composition and any reasonable partition coefficients. Postcumulus loss of incompatible elements seems possible. It is intriguing that Serra de Magé, Moore County, and Moama are consistent with the same parental magma; could they be from the same igneous body on the eucrite parent asteroid (4 Vesta)?  相似文献   

18.
Abstract– Northwest Africa (NWA) 1068 is one of the few olivine‐phyric shergottites (e.g., NWA 1068, Larkman Nunatak [LAR] 06319, and Roberts Massif [RBT] 04262) that is not depleted in light rare earth elements (LREE). Its REE pattern is similar to that of the basaltic shergottite Shergotty, suggesting a possible connection between the olivine‐phyric and the basaltic shergottites. To test this possible link, we have investigated the high‐pressure near‐liquidus phase equilibria for the NWA 1068 meteorite bulk composition. Our results show that the NWA 1068 bulk composition does not represent an unmodified mantle‐derived melt; the olivine and pyroxene in our near‐liquidus experiments are more magnesian than in the rock itself, which suggests that NWA 1068 contains cumulate minerals (extra olivine). We have then used these experimental results combined with the pyroxene compositions in NWA 1068 to constrain the possible high‐pressure crystallization history of the parental magma. These results suggest that NWA 1068 had a complex polybaric history. Finally, we have calculated a model parental magma composition for the NWA 1068 meteorite. The calculated parental magma is an evolved basaltic composition which is too ferroan to be a primitive melt directly derived from the mantle. We suggest that it ponded and crystallized at approximately the base of the crust. This provided an opportunity for the magma to become contaminated by an “enriched” crustal component prior to crystallization. The results and modeling from these experiments are applicable not only to the NWA 1068 meteorite, but also to LAR 06319 and possibly any other enriched olivine‐phyric shergottite.  相似文献   

19.
Apatite was analyzed by electron microprobe in 3 cumulate and 10 basaltic eucrites. Eucritic apatite is fluorine‐rich with minor chlorine and hydroxyl (calculated by difference). We confirmed the hydroxyl content by measuring hydroxyl directly in apatites from three representative eucrites using secondary ionization mass spectroscopy. Overall, most eucritic apatites resemble fluorine‐rich lunar mare apatites, but intriguing OH‐ and Cl‐rich apatites suggest a role for water and/or hydrothermal fluids in the Vestan interior or on other related differentiated asteroids. Most late‐stage apatite found in mesostasis has little hydroxyl or chlorine and is thought to have crystallized from a degassed magma; however, several apatites exhibit atypical compositions and/or textural characteristics. For example, the isotopically anomalous basaltic eucrite Pasamonte has apatite in the mesostasis with significant OH. Apatites in Juvinas also have significant OH and occur as veinlets crosscutting silicates. Euhedral apatites in the Moore County cumulate eucrite occur as inclusions in pyroxene and are also hydroxyl‐rich (0.62 wt% OH). The OH was confirmed by SIMS analysis and this apatite clearly points to the presence of water, at least locally, in the Vestan interior. Portions of Elephant Moraine (EET) 90020 have large and abundant apatites, which may be the product of apatite accumulation in a zone of melt‐rock reaction. Relatively chlorine‐rich apatites occur in basaltic eucrite Graves Nunataks (GRA) 98098 (approximately 1 wt% Cl). Particularly striking is the compositional similarity between apatite in GRA 98098 and apatites in lunar KREEP, which may indicate the presence of residual magmas from an asteroid‐wide magma ocean on Vesta.  相似文献   

20.
A newly found polymict eucrite, EETA79006, is described. Lithic clasts are similar to those found in howardites and fall into four groups: fine-grained (aphanitic), coarse-grained, basaltic, and cataclastic. All have eucritic compositions and differ mainly in cooling and deformation histories. Some basaltic clasts cooled faster than others and may be impact melts. Analysis of pyroxene and feldspar in the matrix and in 20 lithic clasts indicates that the matrix was not derived from the observed lithic clast population. This meteorite and similar polymict eucrites may have formed by addition of younger more fractionated lithic clasts to the regolith of the parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号