首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A general overview of some of the problems involved in earthquake catalogue handling is given as part of the works carried out into the ESC/SC8-TERESA project related with the seismic hazard assessment in two selected test areas: Sannio-Matese in Italy and the northern Rhine region (BGN). Furthermore, the necessary input data to be used in the calculation of seismic hazard has been obtained, including earthquake source zones and their seismic hazard parameters.The importance is pointed out of detailed analysis of seismic catalogues, mainly in relation to the use of aftershock information, the historical records of the region, and the possible temporal and spatial variation of seismicity, which could have an important influence on short-term hazard assessment.  相似文献   

2.
Catalogues of actual observed intensities are constructed for three towns in the Ionian Islands. They are used for seismic hazard assessment and the results are compared with those obtained by standard approaches; that is, by statistics applied to the data computed from epicentral parameters. The results show that seismic hazard is better assessed using observed rather than computed data, but preparation of the local catalogue presents non-trivial difficulties.  相似文献   

3.
Gujarat is one of the fastest-growing states of India with high industrial activities coming up in major cities of the state. It is indispensable to analyse seismic hazard as the region is considered to be most seismically active in stable continental region of India. The Bhuj earthquake of 2001 has caused extensive damage in terms of causality and economic loss. In the present study, the seismic hazard of Gujarat evaluated using a probabilistic approach with the use of logic tree framework that minimizes the uncertainties in hazard assessment. The peak horizontal acceleration (PHA) and spectral acceleration (Sa) values were evaluated for 10 and 2?% probability of exceedance in 50?years. Two important geotechnical effects of earthquakes, site amplification and liquefaction, are also evaluated, considering site characterization based on site classes. The liquefaction return period for the entire state of Gujarat is evaluated using a performance-based approach. The maps of PHA and PGA values prepared in this study are very useful for seismic hazard mitigation of the region in future.  相似文献   

4.
The Himalayas are one of very active seismic regions in the world where devastating earthquakes of 1803 Bihar–Nepal, 1897 Shillong, 1905 Kangra, 1934 Bihar–Nepal, 1950 Assam and 2011 Sikkim were reported. Several researchers highlighted central seismic gap based on the stress accumulation in central part of Himalaya and the non-occurrence of earthquake between 1905 Kangra and 1934 Bihar–Nepal. The region has potential of producing great seismic event in the near future. As a result of this seismic gap, all regions which fall adjacent to the active Himalayan region are under high possible seismic hazard due to future earthquakes in the Himalayan region. In this study, the study area of the Lucknow urban centre which lies within 350 km from the central seismic gap has been considered for detailed assessment of seismic hazard. The city of Lucknow also lies close to Lucknow–Faizabad fault having a seismic gap of 350 years. Considering the possible seismic gap in the Himalayan region and also the seismic gap in Lucknow–Faizabad fault, the seismic hazard of Lucknow has been studied based on deterministic and the probabilistic seismic hazard analysis. Results obtained show that the northern and western parts of Lucknow are found to have a peak ground acceleration of 0.11–0.13 g, which is 1.6- to 2.0-fold higher than the seismic hazard compared to the other parts of Lucknow.  相似文献   

5.
Generally the seismic hazard of an area of interest is considered independent of time. However, its seismic risk or vulnerability, respectively, increases with the population and developing state of economy of the area. Therefore, many areas of moderate seismic hazard gain increasing importance with respect to seismic hazard and risk analysis. However, these areas mostly have a weak earthquake database, i.e., they are characterised by relative low seismicity and uncertain information concerning historical earthquakes. In a case study for Eastern Thuringia (Germany), acting as example for similar places in the world, seismic hazard is estimated using the probabilistic approach. Because of the lack of earthquakes occurring in the recent past, mainly historical earthquakes have to be used. But for these the actual earthquake sources or active faults, needed for the analysis, are imprecisely known. Therefore, the earthquake locations are represented by areal sources, a common practice. The definition of these sources is performed carefully, because their geometrical shape and size (apart from the earthquake occurrence model) influence the results significantly. Using analysis tools such as density maps of earthquake epicentres, seismic strain and energy release support this. Oversizing of areal sources leads to underestimation of seismic hazard and should therefore be avoided. Large location errors of historical earthquakes on the other hand are represented by several alternative areal sources with final superimposition of the different results. In a very similar way information known from macroseismic observations interpreted as source rather than as site effects are taken into account in order to achieve a seismic hazard assessment as realistic as possible. In very local cases the meaning of source effects exceeds those of site effects very likely. The influence of attenuation parameter variations on the result of estimated local seismic hazard is relatively low. Generally, the results obtained by the seismic hazard assessment coincide well with macroseismic observations from the thoroughly investigated largest earthquake in the region.  相似文献   

6.
The Himalayas has experienced varying rates of earthquake occurrence in the past in its seismo-tectonically distinguished segments which may be attributed to different physical processes of accumulation of stress and its release, and due diligence is required for its inclusion for working out the seismic hazard. The present paper intends to revisit the various earthquake occurrence models applied to Himalayas and examines it in the light of recent damaging earthquakes in Himalayan belt. Due to discordant seismicity of Himalayas, three types of regions have been considered to estimate larger return period events. The regions selected are (1) the North-West Himalayan Fold and Thrust Belt which is seismically very active, (2) the Garhwal Himalaya which has never experienced large earthquake although sufficient stress exists and (3) the Nepal region which is very seismically active region due to unlocked rupture and frequently experienced large earthquake events. The seismicity parameters have been revisited using two earthquake recurrence models namely constant seismicity and constant moment release. For constant moment release model, the strain rates have been derived from global strain rate model and are converted into seismic moment of earthquake events considering the geometry of the finite source and the rates being consumed fully by the contemporary seismicity. Probability of earthquake occurrence with time has been estimated for each region using both models and compared assuming Poissonian distribution. The results show that seismicity for North-West region is observed to be relatively less when estimated using constant seismicity model which implies that either the occupied accumulated stress is not being unconfined in the form of earthquakes or the compiled earthquake catalogue is insufficient. Similar trend has been observed for seismic gap area but with lesser difference reported from both methods. However, for the Nepal region, the estimated seismicity by the two methods has been found to be relatively less when estimated using constant moment release model which implies that in the Nepal region, accumulated strain is releasing in the form of large earthquake occurrence event. The partial release in second event of May 2015 of similar size shows that the physical process is trying to release the energy with large earthquake event. If it would have been in other regions like that of seismic gap region, the fault may not have released the energy and may be inviting even bigger event in future. It is, therefore, necessary to look into the seismicity from strain rates also for its due interpretation in terms of predicting the seismic hazard in various segments of Himalayas.  相似文献   

7.
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G–R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.  相似文献   

8.
The paper describes an integrated approach to seismic hazard assessment, which was applied for the Taiwan region. First, empirical modelsfor ground motion estimation in the region were obtained on the basisof records from recent (1993-1999) earthquakes. The databaseincludes strong-motion data collected during the recent Chi-Chiearthquake (M=7.6, 21 September 1999) and large (M=6.8)aftershocks. The ground-motion database was also used for evaluationof generalised site amplification functions for typical soil classes(B, C and D). Second, the theoretical seismic catalogue (2001–2050)for the Taiwan region had been calculated using the 4D-model(location, depth, time) for dynamic deformation of the Earth' crustand 5D-model (location, depth, time, magnitude) for seismic process.The models were developed on the basis of available geophysical andgeodynamic data that include regional seismic catalogue. Third, theregion & site & time-dependent seismic analysis, which is basedon schemes of probable earthquake zones evaluated from the theoreticalcatalogue, regional ground motion models, and local site responsecharacteristics, has been performed. The seismic hazard maps arecompiled in terms of Peak Ground Acceleration (PGA) and ResponseSpectra (RS) amplitudes. The maps show distribution of amplitudesthat will not be exceeded with certain probability in condition oftypical soil classes during all possible earthquakes that may occur inthe region during time period of 2003–2025. The approach allowsintroducing new parameter that describes dependency of seismichazard on time, so-called 'period of maximum hazard'. Theparameter shows the period, during which every considered sitewill be subjected by the maximum value of ground motioncharacteristic (PGA or RS).  相似文献   

9.
震级-频度分布(FMD)是地震学研究中最重要的经验公式之一,相关系数b是构造学和地震危险性评估的重要因子,具有表征前震和余震的特性。辽宁省地震多发生在金州断裂附近,自1975年海城7.3级地震发生后,与金州断裂交汇的海城河—大洋河断裂开启活跃模式,其东南端岫岩附近在1999年又发生5.6级地震。近年来盖州附近地震活动也在增强。因此,本文利用b值空间分布特征对海城及其邻区的应力分布特点进行研究。震源定位准确与否直接影响b值计算,双差定位后的数据与常规目录相比具有更高的精度,但是完整性有一定下降。本文收集了中国地震台网1981—2005年的辽宁省地震目录,并进行双差定位,比较分析了常规目录数据和双差数据的b值分布差异,认为在地震密集区,双差定位后的数据可以被用来获得更准确的b值。对主要研究区进行网格划分,使用双差数据,得到b值的水平和垂直分布特征。结果表明:b值为0.6~1.8,随深度增加而降低;岫岩和盖州震区具有较低的b值,意味着具有较高的地震危险性;浑河震区与海城河—大洋河断裂东南方向具有较高的b值,说明该区域未来发生大地震的概率很低;与金州断裂交汇区域的b值在1.0附近,说明该地区应力暂时处于稳定状态,未来具有较低的地震危险性。  相似文献   

10.
Twenty years of paleoseismology in Italy   总被引:1,自引:0,他引:1  
Italy has one of the most complete and historically extensive seismic catalogues in the World due to a unique and uninterrupted flow of written sources that have narrated its seismic history since about the end of the Iron Age. Seismic hazard studies have therefore always been mainly based upon this huge mass of data. Nevertheless, the Italian catalogue probably “lacks” many M ≥ 6.5 events, the seismogenetic structures responsible for which are characterized by recurrence times that are longer than the time span covered by our historical sources. For these reasons, and as in other countries, earthquake data that in Italy have been derived from paleoseismological studies should finally become a necessary ingredient in seismic risk assessment. Indeed, over the past 20 years, some hundred trenches have been excavated, supplying reliable and conclusive data on the recent activities of many faults. Through to many robust datings of surface fault events, these studies have provided the ages of several unknown or poorly known M ≥ 6.5 earthquakes. Here, we summarize the state of the art of paleoseismology in Italy, and present a first catalogue of 56 paleoearthquakes (PCI) that occurred mainly in the past 6 kyr. The PCI integrates the historical/instrumental seismic catalogue, and extends it beyond the recurrence time of the seismogenetic faults (2000 ± 1000 yr). We feel confident that the use of the PCI will enhance future probabilistic seismic hazard assessment, and thus contribute to more reliable seismic risk mitigation programs.  相似文献   

11.
The Sultanate of Oman forms the southeastern part of the Arabian plate, which is surrounded by relatively high active tectonic zones. Studies of seismic risk assessment in Oman have been an important on-going socioeconomic concern. Using the results of the seismic hazard assessment to improve building design and construction is an effective way to reduce the seismic risk. In the current study, seismic hazard assessment for the Sultanate of Oman is performed through the deterministic approach with particular attention on the uncertainty analysis applying a recently developed method. The input data set contains a defined seismotectonic model consisting of 26 seismic zones, maximum magnitudes, and 6 alternative ground motion prediction equations that were used in four different tectonic environments: obduction zone earthquake (Zagros fold thrust belt), subduction zone earthquakes (Makran subduction zones), normal and strike-slip transform earthquakes (Owen and Gulf of Aden zones), and stable craton seismicity (Arabian stable craton). This input data set yielded a total of 76 scenarios at each point of interest. A 10 % probability that any of the 76 scenarios may exceed the largest median ground acceleration is selected. The deterministic seismic hazards in terms of PGA, 5 % damped spectral acceleration at 0.1, 0.2, 1.0 and 2.0 s are performed at 254 selected points. The ground motion was calculated at the 50th and 84th percentile levels for selected probability of exceeding the median value. The largest ground motion in the Sultanate of Oman is observed in the northeastern part of the country.  相似文献   

12.
The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.  相似文献   

13.

Seismicity analysis is very much pertinent for Indian subcontinent and its adjoining region which is seismically active including many great earthquakes associated with collision and subduction tectonics in the northern, north-eastern part of the subcontinent and in the Andaman and Nicobar Island. An earthquake catalogue has been generated for South Asia covering the period 1900–2014 by compiling the records of earthquake occurrences from International Seismological Center, Global Centroid Moment Tensor (GCMT), US Geological Survey, India Meteorological Department and published literature. The uniform magnitude scaling in moment magnitude M W,GCMT is achieved through connecting relationships between different magnitude types. These relationships are derived by orthogonal standard regression analysis on available data pairs. The derived relationships have been compared with the existing equations already reported by others. The catalogue is subsequently subjected to a seismicity declustering algorithm to identify the foreshocks, main-shocks and aftershocks. The catalogue thus compiled is envisaged to be a useful resource for seismotectonic and seismic hazard studies in the region.

  相似文献   

14.
Earthquakes constitute one of the most powerful forces to which most civil engineering structures and historical constructions will ever be subjected; and thus designing and preserving structures to resist these forces is of utmost importance. The goal of earthquake-resistant design is to produce a structure or facility that can withstand a certain level of shaking without excessive damage. Seismic hazard analyses involve the quantitative estimation of ground shaking hazards at a particular site.The main objective of this study is to develop a homogeneous earthquake catalogue for the low seismic region Warangal from 1800 to 2016 by considering a circular radius of 500 km. The catalogue is declustered using the algorithm proposed by Uhrhammer (1986) for removal of foreshocks and aftershocks. All the events have been converted to moment magnitude scale for homogenization. Completeness analysis has been carried out using the method proposed by Stepp (1972) to determine the time interval in which the data is complete over different magnitude ranges. The analysis shows that for the magnitude range of 3.0 ≤ M ≤ 3.49, 3.5 ≤ M ≤ 3.99, 4.0 ≤ M ≤ 4.49, 4.5 ≤ M ≤ 4.99, 5.0 ≤ M ≤ 5.49 and M ≤ 5.49, the data is complete for the last 50 years (1967-2016), 60 years (1957-2016), 140 years (1867-2016) and 180 years (1837-2016) respectively. This study will provide a significant under-standing in distribution of earthquakes in Warangal region as well as the assessment of seismic hazard for the region.  相似文献   

15.

The state of Chiapas (SE México) conforms a territory of complex tectonics and high seismic activity. The interaction among the Cocos, North American and Caribbean tectonic plates, as well as the active crustal deformation inside Chiapas, determines a variety of seismogenic sources of distinct characteristics and particular strong ground motion attenuation. This situation makes the assessment of seismic hazard in the region a challenging task. In this work, we follow the methodology of probabilistic seismic hazard analysis, starting from the compilation of an earthquake catalogue, and the definition of seismogenic source-zones based on the particular seismotectonics of the region: plate-subduction-related sources (interface and intraslab zones), active crustal deformation zones and the shear zone between the North American and Caribbean plates formed by the Motagua, Polochic and Ixcán faults. The latter source is modelled in two different configurations: one single source-zone and three distinct ones. We select three ground motion prediction equations (GMPEs) recommended for South and Central America, plus two Mexican ones. We combine the GMPEs with the source-zone models in a logic tree scheme and produce hazard maps in terms of peak ground acceleration and spectral acceleration for the 500-, 1000- and 2500-year return periods, as well as uniform hazard spectra for the towns of Tuxtla Gutiérrez, Tapachula and San Cristóbal. We obtain higher values in comparison with previous seismic hazard studies and particularly much higher than the output of the Prodisis v.2.3 software for seismic design in México. Our results are consistent with those of neighbouring Guatemala obtained in a recent study for Central America.

  相似文献   

16.
The planned Yunnan–Tibet railway goes through the northwest of Yunnan Province and the southeast of the Tibet Autonomous Region. Because of its location near the collision belt of the Eurasian and Indian plates, complex engineering geological conditions and difficult engineering geological problems are encountered. The study is aimed at making the zoning assessment of crustal stability along the railway line so as to provide a better base for its construction, especially its line selection. For this purpose, the following seven influencing factors of crustal stability were selected and quantified by grading and scoring: active fault, seismic activity, geo-stress field, geo-strain field, geothermal field, geo-hazard, and lithologic character. Of these factors, the active fault, seismic activity and geo-hazard are the three most prominent factors influencing the railway construction. Along the railway line there are 1731703 calculation units to be divided. The zoning assessment calculation was completed by ArcGIS-based information fusion method. The assessment results aid railway line selection and show that there are 10 stable sectors, 28 relatively stable sectors, 23 relatively unstable sectors, and 20 unstable sectors along the Yunnan–Tibet railway line.  相似文献   

17.
This article presents probabilistic seismic hazard analyses of northern Pakistan region carried out to produce macro-seismic hazard maps for the region that define new regional ground motion design parameters for 95-, 475-, 975- and 2475-year return period earthquakes as regional contour maps and horizontal uniform hazard at important cities. The Cornell–McGuire approach (Cornell in Bull Seismol Soc Am 58(05):1583–1606, 1968; McGuire in FORTRAN computer program for seismic risk analysis. US Geological Survey, Open file Report, 76-6768, 1976) is used to carry out the analyses at 0.1° rectangular grid. The seismotectonic model of the region used in analysis consists of shallow and deep area zones differentiated based on the focal depths of the earthquakes. Earthquake catalogue compiled and used in the analysis is a composite catalogue composed of 19,373 events. Ground motion prediction equations (GMPEs) used are calibrated using goodness-of-fitness measures and visual inspection with local strong motion data. Epistemic uncertainty in the GMPEs is taken into account through the logic tree approach. Comparison of ground motions due to deep earthquakes is made for the first time for the region. The comparison between ground motion due to shallow and deep earthquakes indicates that the seismic hazard would be underestimated if the deep earthquakes are excluded. Ground motion values obtained in this study considering all the earthquakes suggest ground motions are dominant towards the north east of the region. The proposed study indicates that the ground motion hazard values suggested by the current Building Code of Pakistan underestimate the seismic hazard. Final results of this study are in close agreement with the recent studies on the region.  相似文献   

18.
Intermediate-depth earthquakes in the Vrancea region occur in response to stress generation due to descending lithosphere beneath the southeastern Carpathians. In this article, tectonic stress and seismicity are analyzed in the region on the basis of a vast body of observations. We show a correlation between the location of intermediate-depth earthquakes and the predicted localization of maximum shear stress in the lithosphere. A probabilistic seismic hazard assessment (PSHA) for the region is presented in terms of various ground motion parameters on the utilization of Fourier amplitude spectra used in engineering practice and risk assessment (peak ground acceleration, response spectra amplitude, and seismic intensity). We review the PSHA carried out in the region, and present new PSHA results for the eastern and southern parts of Romania. Our seismic hazard assessment is based on the information about the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect in the region. Spectral models and characteristics of site-response on earthquake ground motions are obtained from the regional ground motion data including several hundred records of small and large earthquakes. Results of the probabilistic seismic hazard assessment are consistent with the features of observed earthquake effects in the southeastern Carpathians and show that geological factors play an important part in the distribution of the earthquake ground motion parameters.  相似文献   

19.
Kijko  A.  Retief  S. J. P.  Graham  G. 《Natural Hazards》2002,26(2):175-201
In this part of our study the probabilistic seismic hazard analysis (PSHA) for Tulbagh was performed. The applied procedure is parametric and consists essentially of two steps. The first step is applicable to the area in the vicinity of Tulbagh and requires an estimation of the area-specific parameters, which, in this case, is the mean seismic activity rate, , the Gutenberg-Richter parameter, b, and the maximum regional magnitude, mmax. The second step is applicable to the Tulbagh site, and consists of parameters of distribution of amplitude of the selected ground motion parameter. The current application of the procedure provides an assessment of the PSHA in terms of peak ground acceleration (PGA) and spectral acceleration (SA). The procedure permits the combination of both historical and instrumental data. The historical part of the catalogue only contains the strongest events, whereas the complete part can be divided into several subcatalogues, each assumed complete above a specified threshold of magnitude. In the analysis, the uncertainty in the determination of the earthquake was taken into account by incorporation of the concept of `apparent magnitude'. The PSHA technique has been developed specifically for the estimation of seismic hazard at individual sites without the subjective judgement involved in the definition of seismic source zones, when the specific active faults have not been mapped or identified, and where the causes of seismicity are not well understood. The results of the hazard assessment are expressed as probabilities that specified values of PGA will be exceeded during the chosen time intervals, and similarly for the spectral accelerations. A worst case scenario sketches the possibility of a maximum PGA of 0.30g. The results of the hazard assessment can be used as input to a seismic risk assessment.  相似文献   

20.
Quantification of seismic activity is one of the most challenging problems faced by earthquake engineers in probabilistic seismic hazard analysis. Currently, this problem has been attempted using empirical approaches which are based on the regional earthquake recurrence relations from the available earthquake catalogue. However, at a specified site of engineering interest, these empirical models are associated with large number of uncertainties due to lack of sufficient data. Due to these uncertainties, engineers need to develop mechanistic models to quantify seismic activity. A wide range of techniques for modeling continental plates provides useful insights on the mechanics of plates and their seismic activity. Among the different continental plates, the Indian plate experiences diffused seismicity. In India, although Himalaya is regarded as a plate boundary and active region, the seismicity database indicates that there are other regions in the Indian shield reporting sporadic seismic activity. It is expected that mechanistic models of Indian plate, based on finite element method, simulate stress fields that quantify the seismic potential of active regions in India. This article explores the development of a finite element model for Indian plate by observing the simulated stress field for various boundary conditions, geological and rheological conditions. The study observes that the magnitude and direction of stresses in the plate is sensitive to these conditions. The numerical analysis of the models shows that the simulated stress field represents the active seismic zones in India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号