首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of empirical and physically based hydrological models has been used to analyze historical data on rainfall and debris-flow occurrence in western Campania, to examine the correlation between rainfall and debris-flow events.

Rainfall data from major storms recorded in recent decades in western Campania were compiled, including daily series from several rain gauges located inside landslide areas, supplemented by hourly rainfall data from some of the principal storms.

A two-phase approach is proposed. During phase 1, soil moisture levels have been modelled as the hydrological balance between precipitation and evapotranspiration, on a daily scale, using the method of Thornthwaite [Geograph. Rev. 38 (1948) 55].

Phase 2 is related to the accumulation of surplus moisture from intense rainfall, leading to the development of positive pore pressures. These interactions take place on an hourly time scale by the “leaky barrel” (LB) model described by Wilson and Wiezoreck [Env. Eng. Geoscience, 1 (1995) 11]. In combination with hourly rainfall records, the LB model has been used to compare hydrological effects of different storms. The critical level of retained rain water has been fixed by the timing of debris-flow activity, related to recorded storm events.

New rainfall intensity–duration thresholds for debris-flow initiation in western Campania are proposed. These thresholds are related to individual rain gauge and assume a previously satisfied field capacity condition. The new thresholds are somewhat higher than those plotted by previous authors, but are thought to be more accurate and thus need less conservatism.  相似文献   


2.
史晓亮  杨志勇  绪正瑞  李颖 《水文》2014,34(6):26-32
降雨输入对分布式流域水文模拟具有重要影响。针对流域降雨资料不完整的情况,以武烈河流域为例,基于反距离加权平均法对雨量站降雨资料进行插补延长,并结合SWAT模型研究了降雨输入不确定性对分布式流域水文模拟的影响。结果表明:不同降雨输入对流域平均降雨量的影响较小,但基于气象站资料的降雨数据在降雨空间差异显著的年份会明显低估面雨量,且在夏季汛期表现更为显著;不同降雨输入对分布式流域水文模拟的影响较大;在雨量站降雨资料不完整的情况下,通过对雨量站降雨数据进行插补延长,相对于直接利用气象站降雨资料,在一定程度上可以提高径流模拟精度,满足降雨资料欠缺流域分布式水文模拟的实际需求。  相似文献   

3.
Runoff peak and volume in flood studies are estimated relying on temporal rainfall distribution from various storm patterns. Usually, SCS distributions types (I, II, III, IA) are commonly used. Using these distributions in runoff calculations assume that the in situ temporal rainfall pattern typically behaves as the one described by the SCS-type distribution, which is due to cyclonic frontal storms and actually developed in temperate environment. To what extent such assumption is valid in the arid environment? How much the impacts of rainfall temporal patterns are reflected in runoff volumes and peaks? The aim objectives of the current study are to answer the above two questions and clarify the validity of aforementioned assumption and exemplify such effect. Real rainfall data collected from rain gauges of Makkah Al-Mukkramah region over a period of more than 20 years are utilized. Temporal rainfall patterns and their parameters are deduced. Many hydrological simulations are performed and comparisons, in terms of runoff volume and peak flows, are made to show the effects of the common rainfall storm patterns and the developed rainfall storm patterns in the region based on the current study. Results indicate that major bursts of the design rainfall storm pattern are located in the first time of the storm period in the two quartiles which is mainly due to convective rainfall type in thunderstorms unlike the commonly used by SCS types relying on frontal cyclonic storms. Makkah Al-Mukkramah temporal rainfall pattern does not behave as the “typical pattern” assumed by SCS distributions that are deduced from different environments. The impacts of the temporal pattern reflected as an overestimate in the runoff peak reached to 68 %. The developed hyetographs and tables presented in the current study are recommended to enhance economical and rational design practice in watersheds of Makkah Al-Mukkramah region.  相似文献   

4.
The major obstacles for modelling flood processes in karst areas are a lack of understanding and model representations of the distinctive features and processes associated with runoff generation and often a paucity of field data. In this study, a distributed flood-modelling approach, WetSpa, is modified and applied to simulate the hydrological features and processes in the karst Suoimuoi catchment in northwest Vietnam. With input of topography, land use and soil types in a GIS format, the model is calibrated based on 15 months of hourly meteorological and hydrological data, and is used to simulate both fast surface and conduit flows, and groundwater discharges from karst and non-karst aquifers. Considerable variability in the simulation accuracy is found among storm events and within the catchment. The simulation results show that the model is able to represent reasonably well the stormflows generated by rainfall events in the study catchment.  相似文献   

5.
Understanding the hydrological response of small and large river basins is crucial for regional climate and hydrology studies. Also, rainfall space–time variability (Known in semi arid climate) has a major influence on hydrological dynamics. As consequent, we developed a software application (with MATLAB) in order to take into account the rainfall space-time variability, and that open a major prospects of studying hydrometeorological effects such scale effect and moving storms. In this context, in order to asses scale and dynamic rainy events effect in hydrologic modelling, this study focuses on instantaneous rainy data in central Tunisia (Merguellil and Skhira watershed): a rainfall runoff modelling was done to investigate basins responses and a developed geomorphology-based transfer function, was applied. A systematic hydro-meteorological analysis have been implemented to understand different types of variability and rainy fields dynamic, the relevance of rainfall network and scale effects. As result, two different behaviours of studied basins are detected. Responses of studied areas are much related to event dynamic (East/West and West/East) and hydrographs change according to event direction.  相似文献   

6.
Impact of climate change on extreme rainfall events and flood risk in India   总被引:8,自引:0,他引:8  
The occurrence of exceptionally heavy rainfall events and associated flash floods in many areas during recent years motivate us to study long-term changes in extreme rainfall over India. The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts of central and north India while they are increasing in peninsular, east and north east India. The study tries to bring out some of the interesting findings which are very useful for hydrological planning and disaster managements. Extreme rainfall and flood risk are increasing significantly in the country except some parts of central India.  相似文献   

7.
开展不同海绵设施在中国长三角气候模式下的水文效益研究, 对增强城市应对内涝能力从而提高城市对变化环境的适应性具有重要科学意义。选择国家首批海绵试点城市镇江海绵基地4种典型海绵设施作为研究案例, 采用径流系数、削减率、削峰率及洪峰流量等指标, 评估场次降雨与海绵设施出流相关性, 分析海绵设施在不同降水量级和降雨雨型下的水文性能, 以及运行时间对海绵设施水文效益的影响。结果表明: ①透水铺装类海绵设施的降雨—径流关系呈单一式; 而绿植类则表现为分段式, 即在场次降水量超过一定临界暴雨量之后关系线发生转折, 其中平均径流系数增加了8.4~38.5倍, 平均削峰率和削减率分别减少了50.4%和44.6%。②暴雨条件下不同海绵设施的产流能力和洪峰流量最大, 对径流总量消减能力及洪峰流量削减能力最弱, 且从暴雨到大雨变化规律比大雨到中雨变化规律更显著。③海绵设施的水文性能受到降雨雨型、平均降雨强度和最大单位降雨强度等因子多重复合影响。除雨水花园外, 其他海绵设施的径流系数对上述影响因子变化最为敏感, 洪峰流量次之, 削减率第3, 削峰率的敏感性显著低于前面三者。④车行透水砖运行1 a后, 其产流能力与洪峰流量分别显著增加1.7~2.1倍和1.9~2.5倍; 径流控制能力显著减弱, 其中消减能力降低了16%。  相似文献   

8.
Towards hydrological triggering mechanisms of large deep-seated landslides   总被引:3,自引:3,他引:0  
It is a widely accepted idea that hydrologically triggered deep-seated landslides are initiated by an increase in pore-water pressure on potential slip surface induced by rising groundwater level after prolonged period of intense rainfall although the process is not fully understood. In order to contribute to better understanding, the rainfall–groundwater relationships, hydrogeological monitoring and repeated geoelectrical imaging were carried out from March 2007 to April 2011 in large deep-seated landslide near ?ubietová (Western Carpathians) catastrophically reactivated at the end of February 1977. Based on our observations, groundwater level (GWL) response to precipitation differs considerably with respect to both overall hydrological conditions and GWL mean depth. While the rate of GWL increase up to 25 cm/day were measured after some rainfall events during wet periods, noticeably lower recharge rate (up to 1–2 cm/day) and delayed GWL response to rainfall (usually from 2 weeks to 2–4 months) were observed at the beginning of the wet season after considerable depression of GWLs due to previous effective rainfall deficit. Likewise, slow GWL fluctuations without short-term oscillations are typical for deeper GWLs. Thus, long-term (several seasons to several years) hydrological conditions affect markedly groundwater response to rainfall events in the studied landslide and can be crucial for its behaviour. Comparison of hydrological conditions characterising the analysed period with those that accompanied the landslide reactivation in 1977 allow us to assume that slightly above-average rainy season following the prolonged wet period can be far more responsible for movement acceleration (and possibly failure initiation) in deep landslides than the isolated season of extreme precipitation following a longer dry period. This is true especially for landslides in regions with significant seasonal temperature changes where potential effective precipitation (PEP), calculated as excess of precipitation (P) over potential evapotranspiration (PET), may be efficiently used for estimation of slope saturation condition.  相似文献   

9.
This paper presents the derivation of the design storm hyetograph patterns for the Kingdom of Saudi Arabia based on real rainfall events from meteorological stations distributed throughout the Kingdom. Two thousand twenty-seven rainfall storms for a 20–28-year period were collected and analyzed covering 13 regions of the Kingdom. Four distinct dimensionless rainfall hyetograph patterns have been obtained over the Kingdom, while two patterns have been obtained for each individual region because of the lack of data for long-duration storms in individual regions. The resulting dimensionless rainfall patterns for each region can be used to develop storm hyetographs for any design duration, total rainfall depth and return period. It has been shown that the developed storm hyetographs have different features from other storm patterns that are commonly used in arid zones. The study recommends using these curves for the design of hydraulic structures in Kingdom of Saudi Arabia and regions alike.  相似文献   

10.
Crucial to most landslide early warning system (EWS) is the precise prediction of rainfall in space and time. Researchers are aware of the importance of the spatial variability of rainfall in landslide studies. Commonly, however, it is neglected by implementing simplified approaches (e.g. representative rain gauges for an entire area). With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on deterministic and geostatistical methods. With kriging usually being a labour-intensive, manual task, a simplified variogram modelling routine was applied for the automated processing of up-to-date point information data. Validation showed quite satisfactory results, yet it also revealed the drawbacks that are associated with univariate geostatistical interpolation techniques which solely rely on rain gauges (e.g. smoothing of data, difficulties in resolving small-scale, highly intermittent rainfall). In the perspective, the potential use of citizen scientific data is highlighted for the improvement of studies on landslide EWS.  相似文献   

11.
The Western Ghats plays a pivotal role in determining the hydrological and hydroclimatic regime of Peninsular India. The mountainous catchments of the Ghats are the primary contributors of flow in the rivers that sustains the life and agricultural productivity in the area. Although many studies have been conducted in the past decades to understand long term trends in the meteorological and hydrological variables of major river basins, not much attention have been made to unfold the relationship existing among rainfall and river hydrology of natural drainages on either side of the Western Ghats which host one of the unique biodiversity hotspots across the world. Therefore, an attempt has been made in this paper to examine the short term (last three decades) changes in the rainfall pattern and its influence on the hydrological characteristics of some of the important rivers draining the southern Western Ghats as a case study. The short term, annual and seasonal trends in the rainfall, and its variability and discharge were analyzed using Mann-Kendall test and Sen’s estimator of slope. The study showed a decreasing trend in rainfall in the southwest monsoon while a reverse trend is noticed in northeast monsoon. Correspondingly, the discharge of the west and east flowing rivers also showed a declining trend in the southwest monsoon season. The runoff coefficient also followed the trends in the discharge. The runoff coefficient of the Periyar river showed a decreasing trend, whereas the Cauvery river exhibited an increasing trend. A high-resolution analysis of rainfall data revealed that the number of moderate rainfall events showed a decreasing trend throughout the southern Western Ghats, whereas the high intensity rainfall events showed an opposite trend. The decline in groundwater level in the areas which recorded an increase in high intensity rainfall events and decrease in moderate rainfall events showed that the groundwater recharge process is significantly affected by changes in the rainfall pattern of the area.  相似文献   

12.
Rainfall patterns for shallow landsliding in perialpine Slovenia   总被引:2,自引:0,他引:2  
This paper presents two types of analysis: an antecedent rainfall analysis based on daily rainfall and an intensity-duration analysis of rainfall events based on hourly data in perialpine Slovenia in the ?kofjelo?ko Cerkljansko hills. For this purpose, eight rainfall events that are known to have caused landslides in the period from 1990 to 2010 were studied. Over the observed period, approximately 400 records of landslides were collected. Rainfall data were obtained from three rain gauges. The daily rainfall from the 30 days before landslide events was investigated based on the type of landslides and their geo-environmental setting, the dates of confirmed landslide activity and different consecutive rainfall periods. The analysis revealed that the rainfall events triggering slope failure can be divided into two groups according to the different antecedent periods. The first group of landslides typically occurred after short-duration rainstorms with high intensity, when the daily rainfall exceeded the antecedent rainfall. The second group comprises the rainfall events with a longer antecedent period of at least 7 days. A comparison of the plotted peak and mean intensities indicates that the rainfall patterns that govern slope failure are similar but do not necessarily reflect the rainfall intensity at the time of shallow landslides in the Dav?a or Poljane areas, where the majority of the landslides occurred. Because of several limitations, the suggested threshold cannot be compared and evaluated with other thresholds.  相似文献   

13.
Severe storms in desert regions, especially along the coastal area of the Chilean desert, produce very destructive mud flows that last a few hours and constitute the only surface run-off in these events. To date, there is no simple or practical methodology for assessing such mud flows. Given the settlement of mining fields and creation of desert campgrounds, it is increasingly necessary to understand how these water and/or mud flows behave in order to develop structural and non-structural mitigation plans. Thus, herein, we present software known as PVCS, which provides a system for calculating mud volumes after a strong storm. This hydrological and computer tool allows us to calculate the structure and volume of mud passing through the mouth of a hydrographic watershed after a desert rainstorm. To use this software, it is necessary to know the hydrological, meteorological, and morphometric parameters of the watershed under study. These data are entered into a model that estimates the amount of mud that will pass through the mouth with each hour of rain. Simulations can be done with historical data or data designed for future events, thereby allowing the preparation of measures to protect people and property. We use the watershed Quebrada La Cadena to exemplify the use of this software. This drainage basin is located on the western slope of the Chilean Coastal Range in Antofagasta, a city in northern Chile. Here, rain in June 1991 produced a destructive flood that killed nearly one hundred people living at the main mouth of the watershed and caused huge economic losses. Data from this catastrophe have significantly improved the understanding of such flows, and this has been incorporated into the software. The principal value of PVCS lies in its ability to forecast the volume of mud that will result from a storm and hourly outflows that will pass through a specific populated area, mining camp, or industrial plant located in the mouth of a watershed of any size. This information is used to determine the most critical moment, i.e., the time of the largest outflows, which can then be used to organize timely evacuations to safe places for people, animals, and machines. Moreover, the program is methodologically valuable since, in order to implement PVCS, the user must structure information in a hydrological way. In summary, this program simulates different rain scenarios, thereby allowing us to design structural mitigation projects and contingency plans.  相似文献   

14.
一种时变分布式单位线计算方法   总被引:1,自引:0,他引:1       下载免费PDF全文
孔凡哲  郭良 《水科学进展》2019,30(4):477-484
为了解决由降雨强度引起的径流汇流的非线性问题,提出一种基于SCS(United States Department of Agriculture-Soil Conservation Service)流速公式的时变分布式单位线计算方法。引入参考雨强表征SCS公式中流速系数对应的水力条件。由降雨过程的时段雨强与参考雨强的比值构成一个量纲一因子,将该因子加入SCS公式后使其能够考虑降雨对流速的影响。改进后的流速公式用于计算一次降雨过程中不同降雨时段对应的时变分布式单位线,时变分布式单位线与新安江模型的产流模块构成降雨径流模型,将模型用于裴河流域率定参考雨强。率定后的模型用于谭家河流域进行应用检验,结果显示,确定性系数大于等于0.9的洪水场次,由时不变单位线的42%增大为83%。提出的方法能够显著提高流域水文模型的降雨径流模拟能力。  相似文献   

15.
Monitoring of extreme events requires accurate measurement of rainfall intensities and merging weather radar data with ground information is a very common technique used to obtain the required precision. In order to do this, several methods exist but very few open source implementations are available. CondMerg is the first open source software developed in R language implementing the conditional merging method and some other experimental variants based on it. It is a cross-platform software, easily adaptable to different needs, optimized for batch processing of multiple events but also usable in near real time applications. For its execution it requires two inputs: a CSV file with rain gauges measurements and a geo-referred TIF file with weather radar quantitative precipitation estimations; main outputs are TIF files with merged observations although the code also returns information about cross-validation, with scatter plots and indexes. All TIF files are ready to be managed by common GIS software for easy visualization and analysis. Use of the program is very simple: execution can be interactive or non-interactive and, in both cases, it just requires to set some parameters at the beginning of the program and run it. The code has been tested on different extreme rain events occurred in the Piedmont region (northwestern Italy) showing improved accuracy of reconstructed rainfall fields.  相似文献   

16.
Debris flow is commonly initiated by torrential rain and its triggering is correlated to the hydrological, geological, and geomorphic conditions on site. In spite of the important effects of geology and topography, rainfall characteristic is the main external triggering factor to debris flow and is a predominant parameter for real-time monitoring. Due to the scarcity of sufficient spatial ground-based rainfall data in hill areas, quantitative precipitation estimation using remote-sensing techniques such as radar and satellite is needed for debris flow pre-warning. The QPESUMS (Quantitative Precipitation Estimation and Segregation Using Multiple Sensors) system was acquired to retrieve spatial rainfall data during the rainfall period from June 30 to July 6 in 2004 when Typhoon Mindulle and southwesterly flow struck Taiwan. The retrieved data were used for setting up the debris flow monitoring algorithm. With the aid of multiple platforms of meteorological observations, a rainfall threshold isohyet in a pilot area was mapped for debris flow monitoring. The rainfall monitoring algorithm based on QPESUMS provides more detailed information than the limited number of ground-based rainfall stations for interpreting the spatial distributions of rainfall events, and therefore is more suitable for debris-flow monitoring.  相似文献   

17.
18.
A rainfall-induced debris flow warning is implemented employing real-time rain gauge data. The pre-warning for the time of landslide triggering derives the threshold or critical rainfall from historical events involving regional rainfall patterns and geological conditions. In cases of debris flow, the time taken cumulative runoff, to yield abundant water for debris triggering, is an important index that needs monitoring. In gathered historical cases, rainfall time history data from the nearest rain gauge stations to debris-flow sites connected to debris flow are used to define relationships between the rainfall intensity and duration. The effects by which the regional rainfall patterns (antecedent rainfall, duration, intensity, cumulative rainfall) and geological settings combine together to trigger a debris-flow are analyzed for real-time monitoring. The analyses focused on 61 historical hazard events with the timing of debris flow initiation and rainfall duration to burst debris-flow characteristics recorded. A combination of averaged rainfall intensity and duration is a more practical index for debris-flow monitoring than critical or threshold rainfall intensity. Because, the outburst timing of debris flows correlates closely to the peak hourly rainfall and the forecasting of peak hourly rainfall reached in a meteorological event could be a valuable index for real-time debris-flow warning.  相似文献   

19.
Rainfall variability is an important feature of semiarid climates with major effects on hydrology, and beyond on key water-dependent societal aspects. Eventual changes in rainfall variability are a strong driver of change of hydrological processes, resources, and hazards, up to catchment signatures and spatial arrangements. We deal with observed precipitations and subsequent statistical coefficients available from a network of 15 rainfall gauges over and around the Merguellil catchment (1175 km2), with series ranging up to the 1961–2013 period. We look for eventual annual trends and breakpoints with a set of methods: Mann Kendall test, Pettitt test, Hubert segmentation procedure, Buishand U statistic, and Lee Heghinian Bayesian procedure. The results underline oscillation of dry and wet periods; several studied rain gauges (Tella, Oueslatia forêt, Majbar, Kesra forêt, Henchir Bhima, and Haffouz DGRE) denote significant trends in annual precipitation. Some breaks are detected but they are not synchronous. These methods reveal the variability of rainfall regimes in the semiarid region and provide a synoptic view of detection and no-detection of symptoms of change. This work gives opportunities to water stakeholders and climate experts in understanding the relationships between climate variability and water availability.  相似文献   

20.
Zhou  Hong  Zhao  Wen Zhi 《Hydrogeology Journal》2021,29(6):2127-2147

Evolution of soil-water movement patterns following rare and extreme rainfall events in arid climates is not well understood, but it has significant effects on water availability for desert plants and on the hydrological cycle at small scale. Here, field data and the Hydrus-1D model were used to simulate the mechanisms of soil water and vapor transport, and the control factors associated with temporal variability in the soil water and temperature were analyzed. The results showed that thermal vapor transport with a no rainfall scenario determined daily variability in water content at the soil surface. During rainfall, isothermal liquid water fluctuated as a result of dry sandy soils and matric potential in the upper soil (0–25 cm), and thermally driven vapor played a key role in soil-water transport at 40–60 cm soil depth. After an extreme rainfall event, thermal vapor flux increased and accounted for 11.8% of total liquid and vapor fluxes in daytime with a steep temperature gradient; this was very effective in improving long-term soil-water content after the rain. The simulated results revealed that thermal water vapor greatly contributed to the soil-water balance in the vadose zone of desert soil. This study provided an alternative approach to describing soil-water movement processes in arid environments, and it increased understanding of the availability of water for a desert plant community.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号