首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The self-similar is a common phenomena arising in the field of geology.It has been shown that geochemical element data,mineral deposits,and spacial distribution conform to a fractal structure.A fractal distribution requires that the number of objects larger than a specified size have a power-law dependence on size.This paper shows that a number of distributions,including power-function,Pareto, lognormal,and Zipf,display fractal properties under certain conditions and that this may be used as the mathemat...  相似文献   

2.
The compressibility of shale matrix reflects the effects of reservoir lithology, material composition, pore structure and tectonic deformation. It is important to understand the factors that influence shale matrix compressibility (SMC) and their effects on pore size distribution (PSD) heterogeneity in order to evaluate the properties of unconventional reservoirs. In this study, the volumes of pores whose diameters were in the range 6–100 nm were corrected for SMC for 17 shale samples from basins in China using high-pressure mercury intrusion and low-temperature nitrogen gas adsorption analyses, in order to investigate the factors influencing the SMC values. In addition, the variations in fractal dimensions before and after pore volume correction were determined, using single and multifractal models to explain the effects of SMC on PSD heterogeneity. In this process, the applicability of each fractal model for characterizing PSD heterogeneity was determined using statistical analyses. The Menger and Sierpinski single fractal models, the thermodynamic fractal model and a multi-fractal model were all used in this study. The results showed the following. The matrix compression restricts the segmentation of the fractal dimension curves for the single fractal Menger and Sierpinski models, which leads to a uniformity of PSD heterogeneity for different pore diameters. However, matrix compression has only a weak influence on the results calculated using a thermodynamic model. The SMC clearly affects the multifractal value variations, showing that the fractal dimension values of shale samples under matrix compression are small. Overall PSD heterogeneity becomes small for pores with diameters below 100 nm and the SMC primarily affects the PSD heterogeneity of higher pore volume areas. The comparison of fractal curves before and after correction and the variance analysis indicate that the thermodynamic model is applicable to quantitatively characterize PSD heterogeneity of shale collected from this sampling area. The results show that PSD heterogeneity increases gradually as micro-pore volumes increase.  相似文献   

3.
Epigenesis of Pb-Zn Deposits in the Xicheng Ore Field,Western Qinling   总被引:1,自引:0,他引:1  
It was previously considered that all of the Pb-Zn deposits in the Xicheng orefield belong to Devonian hydrothermal-sedimentary deposits or their reworked ones. Study proves that the host strata, besides the Devonian, include the Palaeoproterozoic. The super-large Changba-Lijiagou Pb-Zn deposit occurs in the Palaeoproterozoic strata. The deposits in this district are not hydrothermal-sedimentary deposits or their reworked ones, but Yanshanian-Himalayan epigenetic hydrothermal deposits. The modes of occurrence, sizes and positions of all the deposits in the Xicheng orefield are completely controlled by the choula (draw)-thrust sheet Therefore the previous grounds for the model of the Qinling-type Pb-Zn deposits cannot hold good. The authors propose that the Changba-type and Bijiashan-type Pb-Zn deposits be used to represent two mineral deposit models with different characteristics in the Xicheng orefield.  相似文献   

4.
Quantitative analyses of the spatial distribution of fault structures can provide a theoretical basis for forecasting prospective ore deposits. Characteristics and complexity of fault structure distribution in the Qitianling area, Southern Hunan Province, China, were quantitatively calculated and appraised by fractal and multifractal methods to evaluate the relation between fault structures and ore-prospecting potential. The results show that the lengths of faults can be modeled as multifractals. Multifractal spectra evidently reflect the characteristics of the scaling of fault structures. The boxcounting dimension value(D) of fault structures is equal to 1.656, as indicates complexity of the spatial distribution of faults and favorable structural conditions for the formation of ore deposits. Moreover, the D values of sub-regions were calculated and isopleths of their fractal dimension values were plotted accordingly. Overlay analyses of isopleths of fractal dimension values and distributions of known ore deposits show that areas with the larger fractal dimension values of fault structures have more ore deposits. This spatial coupling relationship between D values and ore deposits can be used to forecast and explore other ore deposits. On the basis of complexity theory for ore-forming systems, three exploration targets with high D values were delineated as prospective ore deposits.  相似文献   

5.
This paper discusses the enrichment and depletion regularities for porphyry copper-molybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.  相似文献   

6.
Cu and Fe skarns are the world’s most abundant and largest skarn type deposits, especially in China, and Au-rich skarn deposits have received much attention in the past two decades and yet there are few papers focused on schematic mineral deposit models of Cu–Fe–Au skarn systems. Three types of Au-rich deposits are recognized in the Edongnan region, Middle–Lower Yangtze River metallogenic belt: ~140 Ma Cu–Au and Au–Cu skarn deposits and distal Au–Tl deposits; 137–148 Ma Cu–Fe; and 130–133 Ma Fe skarn deposits. The Cu–Fe skarn deposits have a greater contribution of mantle components than the Fe skarn deposits, and the hydrothermal fluids responsible for formation of the Fe skarn deposits involved a greater contribution from evaporitic sedimentary rocks compared to Cu–Fe skarn deposits. The carbonate-hosted Au–Tl deposits in the Edongnan region are interpreted as distal products of Cu–Au skarn mineralization. A new schematic mineral deposit model of the Cu–Fe–Au skarn system is proposed to illustrate the relationship between the Cu–Fe–Au skarn mineralization, the evaporitic sedimentary rocks, and distal Au–Tl deposits. This model has important implications for the exploration for carbonate–hosted Au–Tl deposits in the more distal parts of Cu–Au skarn systems, and Fe skarn deposits with the occurrence of gypsum-bearing host sedimentary rocks in the MLYRB, and possibly elsewhere.  相似文献   

7.
The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurrences. Those deposits are mainly clustered(from west to east) within the Tongguanshan, Shizishan, Xinqiao, Fenghuangshan, and Shatanjiao orefields. Until recently, the majority of these deposits were thought to be skarn-or porphyry–skarn-type deposits; however there have been recent discoveries of numerous vein-type Au, Ag, and Pb-Zn deposits that do not fall into either of these categories. This indicates that there is some uncertainty over this classification. Here, we present the results of several systematic geological studies of representative deposits in the Tongling ore district. From investigation of the ore-controlling structures, lithology of the host rock, mineral assemblages, and the characteristics of the mineralization and alteration within these deposits, three genetic types of deposits(skarn-, porphyry-, and vein-type deposits) have been identified. The spatial and temporal relationships between the orebodies and Yanshanian intrusions combined with the sources of the ore-forming fluids and metals, as well as the geodynamic setting of this ore district, indicate that all three deposit types are genetically related each other and constitute a magmatic–hydrothermal system. This study outlines a model that relates the polymetallic copper–gold porphyry-, skarn-, and vein-type deposits within the Tongling ore district. This model provides a theoretical basis to guide exploration for deep-seated and concealed porphyry-type Cu(–Mo, –Au) deposits as well as shallow vein-type Au, Ag, and Pb–Zn deposits in this area and elsewhere.  相似文献   

8.
Prospectivity analyses are used to reduce the exploration search space for locating areas prospective for mineral deposits.The scale of a study and the type of mineral system associated with the deposit control the evidence layers used as proxies that represent critical ore genesis processes.In particular,knowledge-driven approaches(fuzzy logic)use a conceptual mineral systems model from which data proxies represent the critical components.These typically vary based on the scale of study and the type of mineral system being predicted.Prospectivity analyses utilising interpreted data to represent proxies for a mineral system model inherit the subjectivity of the interpretations and the uncertainties of the evidence layers used in the model.In the case study presented,the prospectivity for remobilised nickel sulphide(NiS)in the west Kimberley,Western Australia,is assessed with two novel techniques that objectively grade interpretations and accommodate alternative mineralisation scenarios.Exploration targets are then identified and supplied with a robustness assessment that reflects the variability of prospectivity value for each location when all models are considered.The first technique grades the strength of structural interpretations on an individual line-segment basis.Gradings are obtained from an objective measure of feature evidence,which is the quantification of specific patterns in geophysical data that are considered to reveal underlying structure.Individual structures are weighted in the prospectivity model with grading values correlated to their feature evidence.This technique allows interpreted features to contribute prospectivity proportional to their strength in feature evidence and indicates the level of associated stochastic uncertainty.The second technique aims to embrace the systemic uncertainty of modelling complex mineral systems.In this approach,multiple prospectivity maps are each generated with different combinations of confidence values applied to evidence layers to represent the diversity of processes potentially leading to ore deposition.With a suite of prospectivity maps,the most robust exploration targets are the locations with the highest prospectivity values showing the smallest range amongst the model suite.This new technique offers an approach that reveals to the modeller a range of alternative mineralisation scenarios while employing a sensible mineral systems model,robust modelling of prospectivity and significantly reducing the exploration search space for Ni.  相似文献   

9.
Lineament extraction and analysis is one of the routine work in mapping medium and large areas using remote sensing data, most of which are satellite images. Landsat Enhanced Thematic Mapper (ETM) of 945×1 232 pixels subscene acquired on 21 March 2000 covering the northwestern part of Yunnan Province has been digitally processed using ER Mapper software. This article aims to produce lineament density map that predicts favorable zones for hydrothermal mineral occurrences and quantify spatial associations between the known hydrothermal mineral deposits. In the process of lineament extraction a number of image processing techniques were applied. The extracted lineaments were imported into MapGIS software and a suitable grid of 100 m×100 m was chosen. The Kriging method was used to create the lineament density map of the area. The results show that remote sensing data could be useful to extract the lineaments in the area. These lineaments are closely correlated with the faults obtained through other geological investigation methods. On comparing with field data the lineament-density map identifies two important high prospective zones, where large-scale deposits are already existing. In addition the map highlights unrecognized target areas that require follow up investigation.  相似文献   

10.
《地学前缘(英文版)》2020,11(3):719-738
Concept-based orogenic gold exploration requires a scale-integrated approach using a robust mineral system model.Most genetic hypotheses for orogenic gold deposits that involve near-surface or magmatic-hydrothermal fluids are now negated in terms of a global mineral system model.Plausible models involve metamorphic fluids,but the fluid source has been equivocal.Crustal metamorphic-fluid models are most widely-accepted but there are serious problems for Archean deposits,and numerous Chinese provinces,including Jiaodong,where the only feasible fluid source is sub-crustal.If all orogenic gold deposits define a coherent mineral system,there are only two realistic sources of fluid and gold,based on their syn-mineralization geodynamic settings.These are from devolatilization of a subducted oceanic slab with its overlying gold-bearing sulfide-rich sedimentary package,or release from mantle lithosphere that was metasomatized and fertilized during a subduction event,particularly adjacent to craton margins.In this model,CO_2 is generated during decarbonation and S and ore-related elements released from transformation of pyrite to pyrrhotite at about 500 ℃.This orogenic gold mineral system can be applied to conceptual exploration by first identifying the required settings at geodynamic to deposit scales.Within these settings,it is then possible to define the critical gold mineralization processes in the system:fertility,architecture,and preservation.The geological parameters that define these processes,and the geological,geophysical and geochemical proxies and responses for these critical parameters can then be identified.At the geodynamic to province scales,critical processes include a tectonic thermal engine and deep,effective,fluid plumbing system driven by seismic swarms up lithosphere-scale faults in an oblique-slip regime during uplift late in the orogenic cycle of a convergent margin.At the district to deposit scale,the important processes are fluid focussing into regions of complex structural geometry adjacent to crustal-scale plumbing systems,with gold deposition in trap sites involving complex conjugations of competent and/or reactive rock sequences and structural or lithological fluid caps.Critical indirect responses to defined parameters change from those generated by geophysics to those generated by geochemistry with reduction in scale of the mineral system-driven conceptual exploration.  相似文献   

11.
成秋明 《地球科学》2006,31(3):337-348
介绍了“奇异性-广义自相似性-分形谱系”(“3S”: Singularity-generalized self-Similarity-fractal Spectrum)为核心的多重分形现代成矿预测理论与模型(Multifractal Mineralization Prediction Theory and Models)的基本内容和前沿研究方向.讨论了作为非线性、复杂性理论的重要领域之一, 多重分形理论所提供的“奇异性-广义自相似性-分形谱系”等概念和相关的模型.这些新概念和模型不仅能够合理地描述成矿系统、成矿过程、成矿富集规律、矿产资源时空分布, 还提供了定量模拟和识别成矿异常(地质、地球物理、地球化学、遥感异常)的有效模型和实用方法.将多重分形原理与成矿过程、矿产资源分布规律、矿产资源信息获取研究相结合, 可形成具有良好应用前景的现代成矿预测理论与模型.采用该多重分形矿产资源预测理论和在此基础上所开发的专用地学非线性空间信息GeoDASGIS技术, 对国内外多个金属成矿区带进行了矿产资源勘查与评价, 均取得了较理想的预测效果, 表明对开展矿产资源勘查和评价是有效和可行的.   相似文献   

12.
成矿过程奇异性与矿产预测定量化的新理论与新方法   总被引:5,自引:0,他引:5  
成秋明 《地学前缘》2007,14(5):42-53
在分析地震、滑坡、洪水、暴雨、森林火灾等一系列非线性地球系统过程共同特征的基础上,笔者提出了成矿过程作为奇异性过程的命题。探讨了成矿过程奇异性、广义自相似性、自组织临界性等基本非线性特征的内在联系。从多重分形理论出发给出了:(1)度量成矿域空间结构不均匀性的局部奇异性分析模型;(2)度量成矿多样性与自相似性关系的系列广义自相似性度量模型;(3)首次给出了奇异性指标作为度量控矿要素与矿床分布相关关系的非线性模型,提出了从奇异性出发计算成矿后验概率的新的对数概率模型;(4)介绍了成矿奇异性的动力学模拟过程。详细介绍了非线性矿产资源预测理论和方法的基本内容和模型。  相似文献   

13.
本研究的目的是应用非线性理论和高新信息处理技术获取矿产资源预测综合信息, 开展以有色金属和贵金属矿产资源潜力评价和预测靶区圈定, 提交个旧及周边地区矿产资源潜力分布图.围绕该研究任务, 重点开展了如何应用奇异性理论和方法, 对比个旧东西矿区的异同.由于区域构造和岩体分布等空间变化性, 导致东西区成矿背景存在较大差异, 受出露地表或近地表矿体分布和矿山开采的影响, 东西区的成矿异常强度和大小都存在较大差异, 东区总体呈高背景而西区为低背景, 因而, 对东西区的成矿信息对比研究和异常圈定相对困难.采用局部奇异性分析方法从地球化学分形密度的角度圈定了局部异常, 在东西区均较好地反映了致矿地球化学异常的分布, 同时采用广义自相似分析方法分解了综合地球化学异常和背景.结果表明, 东西区地球化学背景差异悬殊, 而局部异常具有显著的自相似性.据此在东西区同时圈定的局部异常具有内在的相似性和表现形式上的多样性, 以此为依据所圈定的靶区均具有找矿意义.   相似文献   

14.
湖南省金银矿床分布的多重分形分析   总被引:1,自引:0,他引:1  
矿床的空间分布具有很强的复杂性和自相似性,分形理论则是人类对具有相似性的复杂现象进行定量描述的一种新方法.目前人们主要采用单一分维模型在不同的尺度范围内求取矿床分布的容量维,本文采用多重分维模型,根据1:200万的湖南省金银矿床分布图分别对29个大中型矿床和全部75个矿床做了多重分形分析,分别获得了其多重分维谱,并对该多重维谱与理论上的多重分维谱进行了比较,分析了其差异形成的原因.研究显示湖南省仍有较好的金银找矿前景.  相似文献   

15.
新疆阿尔泰地区断裂控矿的多重分形机理   总被引:3,自引:2,他引:1  
新疆阿尔泰地区断裂构造非常发育并对热液成矿有重要控制作用。分形分析表明该区断裂和矿床的空间分布均为多重分形分布,断裂的奇异指数为1.597~2.403,多重分维谱值为0.551~1.706;矿床的奇异指数为0.925~2.287,分维谱值为0.138~1.363。断裂的高的奇异指数和分维谱值表明该区断裂构造具有较高的成熟度和连通性,有利于提高岩石渗透性、促进流体流动和热液矿床的形成。断裂构造的多重分形分布导致该区热液成矿作用的多重分形分布。断裂体系演化过程中不同断裂部位变形和渗透性存在明显差异,数值模拟表明断裂与岩性和流体之间存在强烈的耦合作用并导致不同岩性的断裂具有明显不同的断裂渗透率。断裂-脉体系演化是一个自组织过程,元胞自动机模拟表明只有在分形渗透临界以上连通性较好的脊骨断裂部位是最有利于流体流动和成矿作用的。因此只有在部分有利的断裂部位才能形成矿床,并导致了断裂构造的奇异指数和多重分维谱值明显高于矿床。  相似文献   

16.
空间模式的广义自相似性分析与矿产资源评价   总被引:20,自引:3,他引:17  
成秋明 《地球科学》2004,29(6):733-744
尺度不变性(scale invariance)包括自相似性(各向同性)、自仿射性(成层结构)、广义自相似性(各向异性标度不变性),是由各种地质过程和地质事件所产生的地质特征和模式的本质属性.尺度不变性可用分形和多重分形模型来表征.这些尺度特征的定量化可为刻画地质空问模式和模式识别提供有力的工具.例如。热液矿床的群聚现象可以用局部分形特征(局部奇异性)来刻画.通过在特征空问中(如频率空问)识别空问模式的广义自相似性.可以将空间混合模式进行分解或异常的识别.介绍了几种相关的分形模型和方法。包括度量空问模式广义尺度独立性(GSI)的线性模型;基于广义尺度独立性的异常分解S—A方法;度量空问模式的局部奇异性方法;以及如何利用分形特征预测未发现矿床的2种方法.有些方法已应用于许多矿产资源评价实例中.给出了对加拿大Nova Scotia省西南部湖泊沉积物样品中的4种元素As、Pb、Zn和Cu的地球化学数据处理分析结果。证明了局部奇异性分析和S—A异常分解方法对地球化学异常的增强和分离的有效性.研究表明:由S—A方法分解的异常往往具有多重分形的特点,而且普遍具有局部奇异性.研究区内具有明显奇异性的地区(元素含量富集区)是金矿异常区域。它们与金矿成矿作用和已知矿床的赋存密切相关.  相似文献   

17.
http://www.sciencedirect.com/science/article/pii/S1674987110000368   总被引:1,自引:0,他引:1  
In this paper,we show that geo-anomalies can be delineated for mineral deposit prediction according to singularity theories developed to characterize nonlinear mineralization processes.Associating singularity and geo-anomalies makes it possible to quantitatively study geo-anomalies with modern nonlinear theories and methods.This paper introduces a newly developed singularity analysis of nonlinear mineralization processes and nonlinear methods for characterizing and mapping geo-anomalies for mineral depos...  相似文献   

18.
新疆阿尔泰地区矿床分布的多重分形分析   总被引:5,自引:1,他引:4  
对新疆阿尔泰地区 175个热液金、铜、铅、锌、稀有金属矿床的研究表明 ,该区矿床的空间分布为多重分形分布。在 q=- 2~ 14范围内 ,标度指数为 - 5.4 915~ 12 .80 71,奇异指数 a( q)随 q值变化较大 ,为 0 .92 4 8~ 2 .2 865,分维谱具单峰曲线特征。q=0时 ,在 1~ 150 km尺度范围内出现二个分形关系 ,在 1~ 16km尺度范围内 D0 值为 0 .2 3,在 16~ 150 km尺度范围内 D0 值为 1.51。导致该区矿床多重分形分布的主要原因是在不同尺度下矿床的形成控制机理的不同和矿床的勘探研究程度较低 ,该区还有较大的找矿前景。  相似文献   

19.
分形不变分布及其在山东地区金矿床中的应用   总被引:5,自引:0,他引:5  
申维 《地学前缘》2008,15(4):65-70
自相似性(标度不变性)是地学中的一个普遍现象。研究表明,地球化学元素含量、矿床储量规模及其空间分布具有分形结构。分形不变分布的特点要求大于某一尺度物体的数目与物体大小之间存在幂指数关系。论证了幂函数分布、帕累托分布、对数正态分布和齐波夫定律在一定条件下具有分形不变性质,它们是分形模型的数学基础。基于分形模型,用求和方法确定中国山东省金地球化学元素异常值范围。等值线大于或等于金地球化学元素临界值(200×10-9)围成的异常面积包含了已知的大型、超大型金矿床。  相似文献   

20.
The use of mineral deposit density regression models to estimate the number of undiscovered deposits is gaining acceptance in mineral resources assessments. The deposit density regression models currently in use are based on well-established power law relationships between deposit density (deposits/km2) and the areal extent of the host rocks in well explored regions (control areas) worldwide. Although these generalized or global deposit density models can generate guideline estimates that are useful at the terrane scale, locally-derived terrane-based deposit density regression models may potentially yield more relevant estimates at the terrane scale. Using 12 selected komatiite-defined control areas in the Kalgoorlie Terrane, Western Australia, we found that the size (km2) of the control areas had power law relationships with (i) nickel sulphide deposit density, and (ii) nickel endowment density (nickel metal/km2). Regression analyses showed that both power law relationships are statistically significant at the 5% level. This suggests that nickel sulphide deposit and endowment density models could be used to estimate the number of undiscovered nickel sulphide deposits and amount of nickel metal endowment in less explored komatiites in the Kalgoorlie Terrane. This study shows that global geological relationships can be viably downscaled onto local geological terranes thereby supporting the hypothesis that the processes of mineral deposit formation and preservation are scale-independent and self-similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号