首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this study,an electron microprobe analyzer(EMPA) was used to map the spatial distribution and the occurrence of invisible gold in pyrite from the Liulincha gold ore belt.EPMA data show that gold mainly occurs as submicroscopic-microscopic inclusions.From the contrast of the major guide elements of pyrite from the Liulincha gold ore belt and those from four hydrothermal-type gold deposits in the Jiaodong region,we can see the pyrites were formed in two stages:the pyrite from wall rock is mainly sedimentogenic,with simple structure;and the pyrite from ore body experienced early sedimentary process to late hydrothermal activity,the pyrite is regular in crystal form and exhibits fractured structure.  相似文献   

2.
The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the δ13CPDB ranges from 2.01 to 3.34 (‰) whereas the δ18O SMOW ranges from 6.96 to 18.95 (‰). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181℃, with salinity values of 1.06 to 8.04 wt% NaCl eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42-(F-, Cl-)-H2O system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.  相似文献   

3.
The theory of dissipative structures is applied in this paper to probing into the dynamics, temporal struc-tures and spatial structures of ore-forming processes and the inherent relationships among them. Areas of oreformation are large dynamic systems in development and evolution. The core of ore formation is the "onset ofore-forming processes". and the crux of it is the "transition from mineralization to ore formation". The theoryof bifurcation and theory of fluctuation make possible the access to the solution of this problem. The multiord-er or successive bifurcation of dissipative structures introduces dynamic geochemical processes into geosciencesand inverses the dynamic evolution and temporal rhythms of ore-forming processes. The localization ofdissipative structures introduces dynamic geochemical fields into geosciences and brings to light the causes andmechanisms of the formation and development of geochemical areas of ore formation (regions and zones of oreformation) and their spatial dynamic patterns.  相似文献   

4.
By applying the ‘theory of synchronization’ from the science of complexity to studying the regional regularity of ore formation within the Nanling region of South China, a characteristic target-pattern regional ore zonality has been discovered. During the early and late Yanshanian epoch (corresponding respectively to the Jurassic and Cretaceous periods), two centers of ore formation emerged successively in the Nanling region; the former is mainly for rare metals (W, Sn, Mo, Bi, Nb) and one rareearth element (La) and was generated in the Jurassic period; whereas the latter is mainly for base metals (Cu, Pb, Zn, Sb, Hg), noble metals (Au, Ag), and one radioactive element (U) and was generated in the Cretaceous period. Centers of ore formation were brought about by interface dynamics respectively at the Qitianling and Jiuyishan districts in southern Hunan Province. The characteristic giant nonlinear targetpattern regional ore zonality was generated respectively from the two centers of ore formation by the spatio-temporal synchronization process of the Nanling complex metallogenic system. It induced the collective dynamics and cooperative behavior of the system and displayed the configuration of the regional ore zonality. Then dynamical clustering transformed the configuration into rudimentary ordered coherent structures. Phase dynamics eventually defined the spatio-temporal structures of the target-pattern regional ore zonality and determined their localization and distribution. The integral successive processes of synchronization-dynamical clustering-phase dynamics accomplished the regional ore zonality by way of “multiple field dynamics” of spatio-temporal superposition of multiple coupled pulsatory solitary wave trains of the zonal sequences of different ores. A new methodology for revealing regional ore zonality is developed, which will encourage further investigation of the formation of deep-seated ore resources and the onset of large-scale mineralization.  相似文献   

5.
By applying the ’theory of synchronization’ from the science of complexity to studying the regional regularity of ore formation within the Nanling region of southern China,a characteristic target-pattern regional ore zonality has been discovered.During the early and late Yanshanian epoch(corresponding respectively to the Jurassic and Cretaceous periods),two centers of ore formation emerged successively in the Nanling region;the former is mainly for rare metals(W,Sn,Mo,Bi,Nb) and one rare-earth element (La) and was generated in the Jurassic period;whereas the latter is mainly for base metals(Cu,Pb,Zn,Sb, Hg),noble metals(Au,Ag),and one radioactive element(U) and was generated in the Cretaceous period. Centers of ore formation were brought about by interface dynamics respectively at the Qitianling and Jiuyishan districts in southern Hunan Province.The characteristic giant nonlinear target-pattern regional ore zonality was generated by spatio-temporal synchronization process of the Nanling complex metallo-genic system.It induced the collective dynamics and cooperative behavior of the system and displayed the configuration of the regional ore zonality.Then dynamical clustering transformed the configuration into rudimentary ordered coherent structures.Phase dynamics eventually defined the spatio-temporal structures of the target-pattern regional ore zonality and determined their localization and distribution.A new methodology for revealing regional ore zonality is developed,which will encourage further investigation of the formation of deep-seated ore resources and the onset of large-scale mineralization.  相似文献   

6.
By applying the ‘theory of synchronization’ from the science of complexity to studying the regional regularity of ore formation within the Nanling region of southern China, a characteristic targetpattern regional ore zonality has been discovered. During the early and late Yanshanian epoch (corresponding respectively to the Jurassic and Cretaceous periods), two centers of ore formation emerged successively in the Nanling region; the former is mainly for rare metals (W, Sn,Mo, Bi, Nb) and one rare-earth element (La) and was generated in the Jurassic period; whereas the latter is mainly for base metals (Cu, Pb, Zn, Sb, Hg), noble metals (Au, Ag), and one radioactive element (U) and was generated in the Cretaceous period. Centers of ore formation were brought about by interface dynamics respectively at the Qitianling and Jiuyishan districts in southernHunan province. The characteristic giant nonlinear target-pattern regional ore zonality was generated by spatio-temporal synchronization process of the Nanling complex metallogenic system. It induced the collective dynamics and cooperative behavior of the system and displayed the configuration of the regional ore zonality. Then dynamical clustering transformed the configuration into rudimentary ordered coherent structures. Phase dynamics eventually defined the spatio-temporal structures of the target-pattern regional ore zonality and determined their localization and distribution. A new methodology for revealing regional ore zonality is developed, which will encourage further investigation of the formation of deep-seated ore resources and the onset of large-scale mineralization.  相似文献   

7.
The NaCl-H_2O binary system is a major component of solutions coexisting with ores. Observation ofsaturated solutions of NaCl-H_2O by using the method of hydrothermal diamond anvil cell (HDAC) is a new approach tothe study of ore-forming fluids. The salinities of NaCl-H_2O solutions in experimental observation are in a range of 32-55%. The observed temperature range is 25℃-850℃, and the pressure range 1 atm-10 kb. In this temperature-pressure range, the supercritical single phase, two phases (L,V) close to the critical state and two-phased (L+V) immis-cible region were observed. And for the salinity of 35% the two phase L+V immiscible region of NaCl-H_2O solutionwas observed in a range of 253-720℃. Another temperature range, 400-817℃, was observed for the immiscible two-phased region of 50% salinity solution. In the high-temperature part of the two-phased immiscible region, the phase na-ture is very unstable. A "critical phenomenon" was observed when the heating path was very close to the critical state.It is possible to observe a 'critical phenomenon': an "explosion" occurred almost constantly at the interface between theliquid and vapour and the interface is rather obscure. A continuous transition between phases L and V could be foundin the immiscible L+V phase while heating continuously. Moreover, as the NaCl-H_2O solution was separated into liq-uid and vapour phases, static charges surrounding each vapour bubble could be seen, and these bubbles were attractedtogether by the static charges to form a special solution structure. Besides, critical states of different salinities of NaCl-H_2O were observed in order to study the properties of the fluids occurring in the rocks in the earth interior, the origin ofore-bearing fluids and the significance of supercritical fluid with respect to the ore formation. The comparison of the sa-linity data of the fluid inclusions in the minerals of ore deposits with observations of NaCl-H_2O under HDAC in theconditions of high temperatures and pressures, combined with further thermodynamic analysis of ore-formation condi-tions would explain in depth the factors determining the ore formation.  相似文献   

8.
Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and  相似文献   

9.
Generally, sandstone-type uranium deposits can be divided into three zones according to their redox conditions: oxidized zone, ore zone and reduced zone. The Dongsheng uranium deposit belongs to this type. In order to study its geochemical characteristics, 11 samples were taken from the three zones of the Dongsheng uranium deposit. Five samples of them were collected from the oxidized zone, four samples from the ore zone and two samples from the reduced zone. These samples were analyzed using organic and inorganic geochemical methods. The results of GC traces and ICP-MASS indicate that the three zones show different organic and inorganic geochemical characteristics.  相似文献   

10.
The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.  相似文献   

11.
潘建  李贵义 《吉林地质》2019,38(3):55-58
通过对南祁连天峻县阳康曲一带1∶20万水系沉积物ZHs-12号Au异常的查证,在该异常范围内圈出了AS22号1:5万Au异常,又对AS22号1:5万Au异常进行查证,采用1:1万土壤测量,又圈出了AP3、AP4两个土壤异常,在AP4号土壤异常中发现了多条金矿体,最终发现了青海省天峻县阳康曲陇王玛珠金、铁多金属矿,该矿床的发现表明了在该地区利用不同的地球化学方法进行找矿效果非常明显,对具有相类似的1:20万或1:5万水系沉积物异常进行查证,最终发现矿体,具有重要的指导意义。  相似文献   

12.
胶东金矿集中区岩石圈结构与深部成矿作用   总被引:10,自引:0,他引:10       下载免费PDF全文
杨立强  邓军 《地球科学》2000,25(4):421-427
利用胶东及其邻区1∶2 0万重力异常和1∶10万航磁异常探测资料, 结合地震各向异性研究成果, 解析其三维岩石圈结构.在此基础上, 综合深部结构和矿床地质特征, 探讨深部作用与成矿动力学, 深化矿床成因认识, 为科学找矿提供决策依据.研究表明, 壳幔结构的不均一性制约着成矿系统物质和能量的交换, 反映在其结构、构造和演化等多个方面.矿集区为地幔隆起带的坳陷区, 幔坳与幔隆接触部位成矿强度大, 幔隆区的局部隆起部位成矿强度小; 金矿床主要分布于花岗岩变薄部位与变质岩的接触带上; 印支中晚期郯庐断裂带深切上地幔, 通过壳-幔相互作用, 将含矿流体系统输运到更高的层位, 发生蚀变、矿化作用.艾山岩体所处构造部位的特殊性, 反映了它可能是壳幔岩浆对流侵位中心.   相似文献   

13.
为在甘肃北山西段覆盖区寻找隐伏铁矿,深入研究了古堡泉铁矿区的1:5万航磁资料,依据航磁圈定的异常结果,在重点地区进行1:5000地面磁法测量,划分出两个异常带,圈定出C1 ~ C8地磁异常,对这8个磁异常进行推断解释,再进行工程验证,最终发现了古堡泉铁矿床.分析航磁异常、地磁异常和矿体三者间的对应关系,认为外围还有一些航磁异常具有进一步工作的价值.  相似文献   

14.
在1∶5万水系沉积物测量基础上,对新疆碱泉子一带成矿元素分布特征进行研究,认为研究区寻找Au,Cu,Zn,B矿潜力较大。通过元素异常特征,结合成矿地质条件、异常查证结果及已知矿点信息,认为该区成矿类型主要有3类,即构造破碎蚀变岩型金矿、火山岩型铅锌矿、火山岩型铜硼矿,划分出恰坎达坂金铜硼成矿远景区,阿克克尔金铜铅锌多金属成矿远景区。  相似文献   

15.
青海祁漫塔格地区航磁异常特征及找矿前景   总被引:1,自引:0,他引:1  
利用青海祁漫塔格地区1:5万高精度航磁资料,结合成矿地质背景、构造特征分析了该区航磁异常特征,并依据知矿(床)点的分布及成矿规律对祁漫塔格地区成矿带进行了划分,筛选了一批重点找矿异常,建立了以航磁异常信息为主的综合找矿标志,进而圈定了多个多金属找矿远景区段。对该区下一步矿产勘查部署提供重要依据,并为地面找矿工作提供重要的找矿线索。  相似文献   

16.
基于地质异常单元金矿找矿有利地段圈定与评价   总被引:19,自引:1,他引:18  
赵鹏大  陈永清 《地球科学》1999,24(5):443-448
许多大型,超大型内生金属矿床通常位于壳昨杂的区域,如不同类型岩石圈板块的边界等,从而形成一些诸如环太平洋金属成矿带等全球规模的成矿域,对一些内生热液金属矿床就位的地质条件的统计分析表明:几乎所有被调查的主要工业矿床的矿田地质结构与其周围地区相比都是具有显著差异,而表现异常的特征。  相似文献   

17.
笔者以湖南大根垄钨多金属矿为试验研究区,以20 m点距在已知矿体上方取土壤样,并按照24 h提取时间、1 000 mL HNO3提取液、50 cm电极间距等工作条件进行了地电提取试验。结果表明,地电提取前后土壤中的元素含量变化不大,被提取到的金属元素应属土壤金属总量的一部分。次生晕与地电提取的异常形态对比发现:Co、Ni较清晰,W次之,Cr无异常;元素的异常特征主要取决于土壤中该元素的活性形式所占比例。综合分析认为地电提取异常与矿体的相对位置有关:矿体的下坡位置以及控矿断裂附近容易形成异常,距离原生矿体太近则会对异常有明显干扰。在本矿区,矿体风化程度越高对Co、Ni的地电提取异常越有利;其异常宽度一般比次生晕窄。  相似文献   

18.
易门式大型铜矿床构造成矿动力学模型   总被引:5,自引:1,他引:5  
针对金属矿床隐伏矿定位预测的关键问题,在提出构造成矿动力学的分支学术方向的基础上,以易门式大型铜矿床为例,从成矿地质背景、矿田构造、构造地球化学和成矿构造应力场等方面进行构造成矿动力学研究,阐述在构造应力场控制下成矿流体运移和聚集的规律。构造地球化学研究认为,构造地球化学异常反映矿体的原生晕;构造地球化学异常受构造控制,其分带特征可指示成矿流体的流向,并提供矿床成因和隐伏矿(化)体相对埋深的信息。构造应力场的控矿特征主要表现在:构造应力场导致控矿构造的形成,并驱动成矿流体的运移;构造应力场控制了成矿能量场;应力和能量的高值集中区分布特点可反映某些构造型式。在此基础上建立构造成矿动力学模型,概括隐伏矿成矿预测准则,据此提出若干重点找矿靶区和靶位,其中部分靶区得到工程验证,表明构造成矿动力学方法对隐伏矿定位预测和评价具有重要的指导意义。  相似文献   

19.
分析了哈德营子铜-银多金属矿矿区地质背景、成矿地质条件及地球化学异常特征,认为该区火山活动十分强烈,而且具有脉动性、复合性,特别是在黄岗梁-乌兰浩特大断裂与脑德木-水泉大断裂交汇部位附近,放射状火山构造与EW向断裂系统的多次叠加复合,形成良好的导矿构造及容矿构造;该区1:20万金属量异常、1:10万原生晕异常、1:5万分散流异常与现有地质矿化信息吻合性好,其地质特征与该成矿带其它大中型铜-银多金属矿床极为相似,具有寻找次火山岩型大中型铜-银多金属矿床的潜力.  相似文献   

20.
赵志芳  郭富达 《云南地质》2010,29(4):434-437
分析总结惠民铁矿区赋矿地层惠民组火山岩、弧形构造内缘北西向构造交汇部位、铁染羟基异常等成矿、控矿条件的遥感影纹、色调等标志,根据矿化遥感异常信息圈定3处找矿远景地段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号