首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
REE in the Great Whale River estuary, northwest Quebec   总被引:1,自引:0,他引:1  
We report rare earth element (REE) concentrations of a longitudinal profile within the estuary of the Great Whale River in northwest Quebec and in Hudson Bay. All of the measured REE have concentrations less than those predicted by conservative mixing of seawater and river water, demonstrating removal of the REE from solution. REE removal is rapid, occurring primarily at salinities less than 2‰. Removal of the REE is greatest for the light REE, and ranges from about 7% for the light REE to no more than 40% for the heavy REE. Fe removal is essentially complete at low salinity. The shape of the Fe and REE vs. salinity profiles is not consistent with a simple model of destabilization and coagulation of iron and REE-bearing colloidal material. A linear relationship between the activity of free ion REE3+ and pH is consistent with a simple ion-exchange model for REE removal.Surface and subsurface samples of Hudson Bay seawater are characterized by high REE concentrations and high La/Yb relative to average seawater. The subsurface sample has a Nd concentration of 100 pmol/kg and an εNd of −29.3 ± 0.3. These characteristics are consistent with the high REE concentration, high La/Yb, and low εNd of river inputs into Hudson Bay. These results indicate that rivers draining the Canadian Shield are a major source of non-radiogenic Nd and REE to the Atlantic Ocean. We estimate that outflow of water from Hudson Bay to the Labrador Sea could supply ≈ 30% of the non-radiogenic Nd in North Atlantic Deep Water.  相似文献   

2.
Water samples were collected from Baffin Bay and surrounding areas in order to evaluate this region as a potential source of Nd from old continental material to Atlantic water. The isotopic data ranged from εNd(0) = −9.0 to −26 with most of the data around εNd(0) = −20 compared with values of North Atlantic Deep Water (NADW) with εNd(0) = −13.5. The concentration of Nd in Baffin Bay waters was as high as 6 × 10−12 g/g compared with 2.5 × 10−12 g/g for NADW. The combination of low εNd and high Nd concentration indicates that Baffin Bay may be a significant source of Nd from very old crustal material. A simple box model was used to evaluate the contribution to the Nd budget of NADW and it was concluded that a substantial fraction of the Nd from ancient crustal sources that is required to maintain the isotopic composition of NADW could be supplied by Baffin Bay outflow.  相似文献   

3.
Nd and Sr isotopic variations of Early Paleozoic oceans   总被引:4,自引:0,他引:4  
We report143Nd/144Nd and87Sr/86Sr isotopic data for Lower Paleozoic phosphatic brachiopod and conodont fossils. The data appear to represent the isotopic values of Early Paleozoic seawaters. We show that different paleoceanic water masses can be distinguished on the basis of their εNd signatures. Two sides of what is classically considered one circulating Iapetus Ocean have different εNd signatures from at least the Middle Cambrian until the Late Middle Ordovician. We infer two ocean basins between North America and Baltica separated by an island and/or shoal circulation barrier. Thus, it appears necessary to redefine the area of the Iapetus Ocean. The εNd signature of the redefined smaller Iapetus Ocean ranges from −5 to −9 and the εNd signature of the larger, coeval Panthalassa Ocean, including part of what was formerly called the Iapetus Ocean, ranges from −10 to −20. The first time that the εNd values are identical in these two water masses is coincident with the onset of the Taconic Orogeny of North America. The paleogeographic geometry we infer from this work is consistent with paleogeographic reconstructions having the Baltica continent at very high latitudes in the Early/Middle Ordovician. The εNd and faunal distribution support temperature-controlled conodont faunal provinciality. A rough mean age for exposed continental crust in the Early Paleozoic can be obtained from the average εNd value of Early Paleozoic Oceans. The data suggest that the mean age of the crust as a function of time has remained essentially constant or even decreased during the past 500 Ma, and suggest substantial additions of new crust to the continents through the Phanerozoic.  相似文献   

4.
Clay fractions in the non-calcareous surface sediments from the eastern Pacific were analyzed for clay minerals, REE and 143Nd/144Nd. Montmorillonite/illite ratio (M/I ratio), total REE contents (ΣREE), LREE/HREE ratio and cerium anomaly (δCe) may effectively indicate the genesis of clay minerals. Clay fractions with M/I ratio <1, δCe >0.85, ΣREE <400 μg/g, LREE/HREE ratio ≈4, and REE patterns similar to those of pelagic sediments are terrigenous and autogenetic mixed clay fractions and contain more autogenetic montmorillonite. Clay fractions with M/I ratio >1, δCe=0.86 to 1.5, ΣREE=200 to 350 μg/g, LREE/HREE ratio ≈6 and REE distribution patterns similar to that of China loess are identified as terrigenous clay fraction. The 143Nd/144Nd ratios or ɛNd values of clay fractions inherit the features of terrigenous sources of clay minerals. Clay fractions are divided into 4 types according to ɛNd values. Terrigenous clay minerals of type I with the ɛNd values of ™8 to ™6 originate mainly from North American fluvial deposits. Those of type II with the ε Nd values of ™9 to ™7 are mainly from the East Asia and North American fluvial deposits. Those of type III with ε Nd values of ™6 to ™3 could come from the central and eastern Pacific volcanic islands. Those of type IV with ε Nd values of ™13 to ™12 may be from East Asia eolian. The terrigenous and autogenetic mixed clay fractions show patchy distributions, indicating that there are volcanic or hot-spot activities in the eastern Pacific plate, while the terrigenous clay fractions cover a large part of the study area, proving that the terrigenous clay minerals are dominant in the eastern Pacific.  相似文献   

5.
The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crystalline Complex (GHC) above the MCT, and the Tethyan Himalayan Sequence (THS) juxtaposed by the South Tibet Detachment fault (STD) over the GHC. Due to widespread meta-morphism and intense deformation, differentiating the above three lithologic units is often difficult. This problem has been overcome by the use of Sm-Nd isotopic analysis. The previous studies suggested that the LHS can be clearly distinguished from the GHC and THS by their Nd isotope compositions. However, the lack of detailed and systematic Sm-Nd isotopic studies of the THS across the Himalaya in general has made differentiation of this unit from the nearby GHC impossible, as the two appear to share overlapping Nd compositions and model ages. To address this problem, we systematically sam-pled and analyzed Nd isotopes of the THS in southeastern Tibet directly north of Bhutan. Our study identifies two distinctive fields in a εNd -TDM plot. The first is defined by the εNd(210 Ma) values of -3.45 to -7.34 and TDM values of 1.15 to 1.29 Ga from a Late Triassic turbidite sequence, which are broadly similar to those obtained from the Lhasa block. The second field is derived from the Early Cretaceous meta-sedimentary rocks with εNd(130 Ma) values from -15.24 to -16.61 and TDM values from 1.63 to 2.00 Ga; these values are similar to those obtained from the Greater Himalayan Crystalline Complex in Bhutan directly south of our sampling traverse, which has εNd(130 Ma) values of -10.89 to -16.32 and Nd model ages (TDM) of 1.73 to 2.20 Ga. From the above observations, we suggest that the Late Triassic strata of the southeast Tibetan THS were derived from the Lhasa block in the north, while the Early Cretaceous strata of the THS were derived from a source similar to the High Himalayan Crystalline Complex or Indian craton in the south. Our interpretation is consistent with the existing palaeocurrent data and provenance analysis of the Late Triassic strata in southeastern Tibet, which indicate the sediments derived from a northern source. Thus, we suggest that the Lhasa terrane and the Indian craton were close to one another in the Late Triassic and were separated by a rift valley across which a large submarine fan was transported southward and deposited on the future northern margin of the Indian continent.  相似文献   

6.
Sr and Nd isotope analyses and REE patterns are presented for a suite of well-documented mantle-derived xenoliths from the French Massif Central. The xenoliths include spinel harzburgites, spinel lherzolites and some pyroxenites. They show a wide range of textures from undeformed protogranular material through porphyroclastic to equigranular and recrystallised secondary types. Textural differences are strongly linked to trace element geochemistry and variations in radiogenic isotope ratios. Many undeformed protogranular xenoliths are Type IA LREE-depleted with MORB-type εSr values between − 30.7 and − 23.6, and εNd values + 13.9 to + 9.4. A second group of undeformed xenoliths are Type IB LREE-enriched with higher εSr values (− 22.7 to − 10.6) and lower εNd values (+ 11.9 to + 5.6). Deformed xenoliths with porphyroclastic, equigranular and secondary recrystallised textures are all Type IB (LREE-enriched, εNd < 6.4, εSr > 11.8). It is proposed that two separate events have given rise to the observed mixing arrays: (1) MORB-source depleted mantle was enriched by a component derived from an enriched mantle. Deformation and recrystallisation accompanied this event. (2) Subsequently, unenriched MORB-source mantle interacted with magmas chemically akin to the host basalts, and enrichment occurred with little deformation. Hypotheses of Tertiary mantle diapirism resulting in isochemical deformation and refinement of protogranular mantle to equigranular mantle are untenable because of differences in REE patterns and isotopic ratios between different textural groups.  相似文献   

7.
Records of the past neodymium (Nd) isotope composition of the deep ocean can resolve ambiguities in the interpretation of other tracers. We present the first Nd isotope data for sedimentary benthic foraminifera. Comparison of the ?Nd of core-top foraminifera from a depth transect on the Cape Basin side of the Walvis Ridge to published seawater data, and to the modern dissolved SiO2–?Nd trend of the deep Atlantic, suggests that benthic foraminifera represent a reliable archive of the deep water Nd isotope composition. Neodymium isotope values of benthic foraminifera from ODP Site 1264A (Angola Basin side of the Walvis Ridge) from the last 8 Ma agree with Fe–Mn oxide coatings from the same samples and are also broadly consistent with existing fish teeth data for the deep South Atlantic, yielding confidence in the preservation of the marine Nd isotope signal in all these archives. The marine origin of the Nd in the coatings is confirmed by their marine Sr isotope values. These important results allow application of the technique to down-core samples.The new ?Nd datasets, along with ancillary Cd/Ca and Nd/Ca ratios from the same foraminiferal samples, are interpreted in the context of debates on the Neogene history of North Atlantic Deep Water (NADW) export to the South Atlantic. In general, the ?Nd and δ13C records are closely correlated over the past 4.5 Ma. The Nd isotope data suggest strong NADW export from 8 to 5 Ma, consistent with one interpretation of published δ13C gradients. Where the ?Nd record differs from the nutrient-based records, changes in the pre-formed δ13C or Cd/Ca of southern-derived deep water might account for the difference. Maximum NADW-export for the entire record is suggested by all proxies at 3.5–4 Ma. Chemical conditions from 3 to 1 Ma are totally different, showing, on average, the lowest NADW export of the record. Modern-day values again imply NADW export that is about as strong as at any stage over the past 8 Ma.  相似文献   

8.
Rare earth elements in the pore waters of reducing nearshore sediments   总被引:4,自引:0,他引:4  
The REE are mobile during early diagenesis in reducing nearshore sediments of Buzzards Bay leading to greatly enhanced concentrations in pore waters, e.g. 815 pmol kg−1 Nd and 1910 pmol kg−1 Ce within 30 cm of the sediment-seawater interface, about 10–50 times local seawater values. Two principal diagenetic reactions have been identified. Preferential Ce enrichment (positive Ce anomalies) and preferential heavy REE enrichment (light REE removal) in the pore waters is associated with redox cycling of Fe and Mn within the upper few centimeters of the sediment. Release of REE, without fractionation, from sediments and addition to pore waters occurs deeper within the sediment column. The impact on the bulk sediment chemistry is undetectable but the porewater gradients imply that there are significant dissolved REE fluxes, both internal to the sediment system and across the sediment-seawater interface.  相似文献   

9.
New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average εNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean,εNd(0) ? ?12 ± 2; Indian Ocean,εNd(0) ? ?8 ± 2; Pacific Ocean,εNd(0) ? ?3 ± 2. These values are considerably less than εNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of143Nd between the Pacific and Atlantic Oceans corresponds to ~106 atoms143Nd per gram of seawater. The correspondence between the143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography.Distinctive differences in εNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition.The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans.  相似文献   

10.
REE, Zr, Nb concentrations and Sr, Nd isotope compositions have been measured in Copley basalts and andesites, Balaklala rhyolites, and Mule Mountain trondhjemites (northern California) which represent the deep layers of a well preserved intra-oceanic island arc of Siluro-Devonian age.87Sr/86Sr is shifted towards high values (up to 0.707) whereas Ce is preferentially removed from rhyolites. A large proportion of the analyzed samples including some acidic rocks shows a pronounced depletion in light REE. The εNd(T) values of most Copley, Balaklala, and Mule Mountain rocks fall in the range +6 to +8 which suggests that they originated from a normal MORB-type source (εNd(T) ≈ +9) contaminated with either sediments or an OIB-type component.In modern island arcs, only the shallow levels are accessible: comparison with the Copley-Balaklala-Mule Mountain Series suggests that, at depth, an immature island arc is likely to comprise thick layers of LILE-depleted tholeiites and rhyolites intensely altered by pervasive circulation of seawater. Least-square solutions of trace element models suggest that rhyolites and trondhjemites represent remelting of mafic volcanics from the arc basement rather than residual melts of basalt-andesite differentiation.  相似文献   

11.
Samples dredged from 2 localities near the crest of the Valu Fa ridge, an active back-arc basin spreading centre in the Lau Basin, consist of highly vesicular lava fragments of andesitic composition. The samples are characterized by rare, euhedral An85 plagioclase phenocrysts in a hypocrystalline groundmass of An60 plagioclase laths, brown glass and rare subhedral clinopyroxene. Samples from within and, to a lesser extent, between the dredge hauls show remarkable isotopic and chemical homogeneity, with: 87Sr/86Sr − 0.70330 ± 2; 143Nd/144Nd − 0.51303 ± 2; 206Pb/204Pb − 18.65 ± 2; 207Pb/204Pb − 15.55 ± 1; 208Pb/204Pb − 38.34 ± 4; Sr − 165 ppm; Rb − 7 ppm; Cs − 0.17 ppm; K − 3300 to 4200 ppm; Ba − 96 ppm; and REE — LREE depleted with 12–18 × chondritic abundances. On Sr-Nd, Pb-Pb and Sr-Pb plots the volcanics lie just within or on the edge of the MORB fields, overlapping with island-arc volcanics from the Marianas and Tonga. Compared with MORB and ocean-island basalts, the samples show alkali-element enrichment relative to REE and higher Cs relative to Rb. The isotopic and geochemical characteristics of the Valu Fa Ridge volcanics clearly indicate a minor, but significant, slab-derived component in the back-arc basin mantle source.  相似文献   

12.
Nd and Sr isotopic study of volcanic rocks from Japan   总被引:1,自引:0,他引:1  
Two older granitic rocks and some selected Quaternary volcanic rocks from the Japanese Islands were analyzed in a reconnaissance study for the purpose of examining the relationships between Nd and Sr isotopic abundances and the megatectonic structure around the Japanese Islands. Model ages of ~0.9 AE were determined by the Nd and Sr methods on a Paleozoic gneiss which confirms that a relatively ancient acidic basement exists in the Japanese Islands. The Nd and Sr isotopic data show that the Cretaceous granodiorite is the result of partial melting of older crust.The Nd of tholeiitic rocks from the Izu arc gives εNd ranging from 8.3 to 9.3 and with the corresponding εSr from ?14.5 to ?18.5. These results are identical to those found for the Mariana arc. These values are distinctly lower than typical MORB by around 1~2 εu. This difference in εNd between arcs and MORB is attributed to the contribution of oceanic sediments to the partial melts produced during subduction of oceanic crust. The Hakone volcano is clearly confirmed as belonging to an oceanic source by Nd isotopic results.εSrNd values of the volcanics from a section along the Fossa Magna show a clear indication that they are a blend of oceanic mantle material and continental crustal material. The crustal component clearly increases in going from south to north. Volcanics across the Northeast Japan arc also show a distinct correlation of εSrNd related to the position relative to the active subduction zone but with the opposite trend. These relationships of the present isotopic pattern and the zonal arrangement relative to the subduction zone suggest the former existence of a local spreading center in the Japan Sea.In general there appear to be regular isotopic relationships between the Izu-Mariana oceanic island arc and the continental island arc of Japan which indicates that partially melted or assimilated older continental basement is admixed with young rising oceanic arc magmas.  相似文献   

13.
Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial εNd = +3.8 to −5.7; initial 87Sr/86Sr= 0.7044−0.7072; 206Pb/204Pb= 17.49−19.14; 207Pb/204Pb= 15.55−15.65; 208Pb/204Pb= 37.24−39.11. In PbPb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary PbPb isochron age of ≈ 1000 Ma (μ1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226−0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19–75) that are significantly greater than those of MORB, and low TiO2 (0.39–0.69%)].Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the PbPb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2−3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).  相似文献   

14.
Major, trace and rare earth elements were measured in 27 samples of the Middle to Late Permian limestones from the Tieqiao section located on the marginal zone of an isolated platform (Laibin, South China). Shale-normalized REE+Y patterns of all samples show notably negative Ce anomalies (0.21–0.66, average 0.33), slightly positive Gd anomalies (1.08–1.30, average 1.20), and positive Y anomalies with superchondritic Y/Ho ratios (36–91, average 55), which are consistent with those of modern shallow seawater. Their relative LREEs enrichment with higher NdSN/YbSN ratios (0.58–1.80) than those of modern shallow seawater (0.21–0.50) suggests complicated sources of REEs for all samples. Compared with geochemical features of sediments influenced by terrigenous particles and hydrothermal fluids, it is concluded that ambient shallow seawater was the primary source of REEs in these limestones. Comparing the indicators of REE+Y elements (ΣREE, NdSN/YbSN, Ce/Ce*, Gd/Gd*, Eu/Eu* and Y/Ho) in limestones with those in bedded cherts from the Tieqiao section, we consider that limestone and bedded chert have similar sources of REE+Y elements: ambient shallow seawater with more or less hydrothermal fluids. In addition, there is a completely negative correlation between CaCO3 and SiO2 contents in limestones and bedded cherts. These results imply that precipitation of CaCO3 was inhibited by that of SiO2 which was derived mainly from hydrothermal fluid, especially in bedded cherts from the Tieqiao section.  相似文献   

15.
Clay fractions in the non-calcareous surface sediments from the eastern Pacific were analyzed for clay minerals, REE and 143Nd/144Nd. Montmorillonite/illite ratio (M/I ratio), total REE contents ((REE), LREE/HREE ratio and cerium anomaly (бCe) may effectively indicate the genesis of clay minerals. Clay fractions with M/I ratio >1, бCe (0.85, (REE (400 μg/g, LREE/HREE ratio (4, and REE patterns similar to those of pelagic sediments are terrigenous and autogenetic mixed clay fractions and contain more autogenetic montmorillonite. Clay fractions with M/I ratio <1, бCe=0.86 to 1.5, ΣREE=200 to 350 μg/g, LREE/HREE ratio (6 and REE distribution patterns similar to that of China loess are identified as terrigenous clay fraction. The 143Nd/144Nd ratios or (э)Nd values of clay fractions inherit the features of terrigenous sources of clay minerals. Clay fractions are divided into 4 types according to (э)Nd values. Terrigenous clay minerals of type I with the (э)Nd values of -8 to -6 originate mainly from North American fluvial deposits. Those of type II with the (э)Nd values of -9 to -7 are mainly from the East Asia and North American fluvial deposits. Those of type III with (э)Nd values of -6 to -3 could come from the central and eastern Pacific volcanic islands. Those of type IV with (э)Nd values of -13 to -12 may be from East Asia eolian. The terrigenous and autogenetic mixed clay fractions show patchy distributions, indicating that there are volcanic or hot-spot activities in the eastern Pacific plate, while the terrigenous clay fractions cover a large part of the study area, proving that the terrigenous clay minerals are dominant in the eastern Pacific.  相似文献   

16.
Neogene Yamadağı volcanic rocks consist of basaltic trachyandesite, trachyandesite, andesite, and dacite. The major- and trace-element chemistry indicates that the lavas are dominantly calc-alkaline and mildly alkaline in character, sodic in nature, and intermediate to acidic in composition. REE and trace-element patterns of volcanic rocks are similar to those typical of within plate magmatics. Volcanic rocks have low 87Sr/86Sr (0.70389–0.70633) and high 143Nd/144Nd ratios (0.51267–0.51276) and mostly plot within the mantle array of the isotope ratio diagram. The linear correlations among 87Sr/86Sr143Nd/144Nd, SiO287Sr/86Sr and SiO2143Nd/144Nd isotope ratios in the volcanics suggest that fractional crystallization combined with minor assimilation was an important process within the collision zone.  相似文献   

17.
Sr and Nd isotope and geochemical investigations were performed on a remarkably homogeneous, high-silica rhyolite magma reservoir of the Aira pyroclastic eruption (22,000 years ago), southern Kyushu, Japan. The Aira caldera was formed by this eruption with four flow units (Osumi pumice fall, Tsumaya pryoclastic flow, Kamewarizaka breccia and Ito pyroclastic flow). Quite narrow chemical compositions (e.g., 74.0–76.5 wt% of SiO2) and Sr and Nd isotopic values (87Sr/86Sr=0.70584–0.70599 and Nd=−5.62 to −4.10) were detected for silicic pumices from the four units, with the exception of minor amounts of dark pumices in the units. The high Sr isotope ratios (0.7065–0.7076) for the dark pumices clearly suggest a different origin from the silicic pumices. Andesite to basalt lavas in pre-caldera (0.37–0.93 Ma) and post-caldera (historical) eruptions show lower 87Sr/86Sr (0.70465–0.70540) and higher Nd (−1.03 to +0.96) values than those of the Aira silicic and dark pumices. Both andesites of pre- and post-caldera stages are very similar in major- and trace-element characteristics and isotope ratios, suggesting that the both andesites had a same source and experienced the same process of magma generation (magma mixing between basaltic and dacitic magmas). Elemental and isotopic signatures deny direct genetic relationships between the Aira pumices and pre- and post-caldera lavas. Relatively upper levels of crust (middle–upper crust) are assumed to have been involved for magma generation for the Aira silicic and dark pumices. The Aira silicic magma was derived by partial melting of a separate crust which had homogeneous chemistry and limited isotope compositions, while the magma for the Aira dark pumice was generated by AFC mixing process between the basement sedimentary rocks and basaltic parental magma, or by partial melting of crustal materials which underlay the basement sediments. The silicic magma did not occupy an upper part of a large magma body with strong compositional zonation, but formed an independent magma body within the crust. The input and mixing of the magma for dark pumices to the base of the Aira silicic magma reservoir might trigger the eruptions in the upper part of the magma body and could produce a slight Sr isotope gradient in the reservoir. An extremely high thermal structure within the crust, which was caused by the uprise and accumulation of the basaltic magma, is presumed to have formed the large volume of silicic magma of the Aira stage.  相似文献   

18.
High precision trace element data obtained by inductively coupled plasma mass spectrometry and Sr–Nd isotope analyses are presented for mafic volcanic rocks from Gough Island, South Atlantic. The new data reveal negative Ce anomalies, with Ce/Ce? values in Gough lavas extending down to ~ 0.92. Ce is only fractionated from other rare earth elements (REE) due to formation of Ce4+ under oxidizing conditions of near-surface environments while other REE remain trivalent. Ce anomalies in convergent margin magmas have been shown to indicate a contribution of a subducted sediment component. In contrast, Ce anomalies in intra-plate basalts have been attributed to weathering processes, but can be excluded here based on element–element systematics indicating magmatic trends rather than weathering-induced element mobility. Shallow-level contamination by local marine sediments with negative Ce anomaly inherited from seawater can be excluded because Gough lavas with increasingly negative Ce anomalies do not trend towards low Ce/Pb ratios characterizing such sediments. Rather, it is argued that the negative Ce anomalies in Gough Island lavas are consistent with variable amounts of a sediment component in the mantle plume source. Mixtures between estimates of subducting sediment columns with negative Ce anomaly and mantle capable of giving rise to Gough Island magmas without Ce anomalies reproduce the Gough compositional array with the exception of highly fluid-mobile elements. The calculated trace element composition of the deeply recycled sediment in the Gough plume source is depleted in fluid-mobile elements such as Ba and Pb relative to the composition of some present-day subducting sediments. This loss is attributed to the dehydration or flushing of sediment in the subduction factory, consistent with constraints from arc magmas.  相似文献   

19.
Abstract Whole‐rock chemical and Sr and Nd isotope data are presented for gabbroic and dioritic rocks from a Cretaceous‐Paleogene granitic terrain in Southwest Japan. Age data indicate that they were emplaced in the late Cretaceous during the early stages of a voluminous intermediate‐felsic magmatic episode in Southwest Japan. Although these gabbroic and dioritic rocks have similar major and trace element chemistry, they show regional variations in terms of initial Sr and Nd isotope ratios. Samples from the South Zone have high initial 87Sr/86Sr (0.7063–0.7076) and low initial Nd isotope ratios (?Nd, ?2.5 to ?5.3); whereas those from the North Zone have lower initial 87Sr/86Sr (usually less than 0.7060) and higher Nd isotope ratios (?Nd, ?0.8 to + 3.3). Regional variations in Sr and Nd isotope ratios are similar to those observed in granitic rocks, although gabbroic and dioritic rocks tend to have slightly lower Sr and higher Nd isotope ratios than granitic rocks in the respective zones. Limited variations in Sr and Nd isotope ratios among samples from individual zones may be attributed partly to a combination of upper crustal contamination and heterogeneity of the magma source. Contamination of magmas by upper crustal material cannot, however, explain the observed Sr and Nd isotope variations between samples from the North and South Zones. Between‐zone variations would reflect geochemical difference in magma sources. The gabbroic and dioritic rocks are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), showing similar normal‐type mid‐ocean ridge basalt (N‐MORB) normalized patterns to arc magmas. Geochronological and isotopic data may suggest that some gabbroic and dioritic rocks are genetically related to high magnesian andesite. Alternatively, mantle‐derived mafic or intermediate rocks which were underplated beneath the crust may be also plausible sources for gabbroic and dioritic rocks. The magma sources (the mantle wedge and lower crust) were isotopically more enriched beneath the South Zone than the North Zone during the Cretaceous‐Paleogene. Sr and Nd isotope ratios of the lower crustal source of the granitic rocks was isotopically affected by mantle‐derived magmas, resulting in similar initial Sr and Nd isotope ratios for gabbroic, dioritic and granitic rocks in each zone.  相似文献   

20.
The Nanling Mountains lying in the southern part of South China are an economically important gran-ite-related multi-metallogenic province. The Nanling Mountains granites can be described as: temporally spanning from Caledonian to Yanshanian and spatially distributed as three EW trending zones: the north one in Zhuguangshan-Qingzhangshan, the middle one in Dadongshan-Guidong, and the south one in Fogang-Xinfengjiang with two neighboring zones’ midline having an interval of ca. latitude …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号