首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviour of pulsars at low radio-frequencies (below ≈ 50 MHz) remains poorly understood mainly due to very limited observational data on pulsars at these frequencies. We report here our measurements of pulse profiles at 34.5 MHz of 8 pulsars using the Gauribidanur Radio Telescope. None of the 8 pulsars show any significant interpulse emission at this frequency which conflicts with an earlier claim from 25 MHz observations. With the exception of one pulsar (PSR 0943 + 10) all the observed pulsars show turnovers at frequencies above 35 MHz in their spectra. We also report our attempts to study the short and long term variations in the pulsar signals at this low frequency.  相似文献   

2.
A theory of pulsar radio emission generation, in which the observed waves are produced directly by the maser-type plasma instabilities on the anomalous cyclotron-Cherenkov resonance and the Cherenkov-drift resonance , is capable of explaining the main observational characteristics of pulsar radio emission. The instabilities are due to the interaction of the fast particles of the primary beam and from the tail of the distribution with the normal modes of a strongly magnetized one-dimensional electron-positron plasma. The waves emitted at these resonances are vacuum-like electromagnetic waves that may leave the magnetosphere directly. The cyclotron-Cherenkov instability is responsible for core emission pattern and the Cherenkov-drift instability produces conal emission. The conditions for the development of the cyclotron-Cherenkov instability are satisfied for the both typical and millisecond pulsars provided that the streaming energy of the bulk plasma is not very high γ p = 5 ÷ 10. In a typical pulsar the cyclotron-Cherenkov and Cherenkov-drift resonances occur in the outer parts of magnetosphere at r res ≈ 109cm. This theory can account for various aspects of pulsar phenomenology including the morphology of the pulses, their polarization properties and spectral behavior. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The measurements of pulsar frequency second derivatives have shown that they are 102−106 times larger than expected for standard pulsar spin-down law, and are even negative for about half of pulsars. We explain these paradoxical results on the basis of the statistical analysis of the rotational parameters ν, and of the subset of 295 pulsars taken mostly from the ATNF database. We have found a strong correlation between and for both and , as well as between ν and . We interpret these dependencies as evolutionary ones due to being nearly proportional to the pulsars’ age. The derived statistical relations as well as “anomalous” values of are well described by assuming the long-time variations of the spin-down rate. The pulsar frequency evolution, therefore, consists of secular change of ν ev(t), and according to the power law with n≈5, the irregularities, observed within a timespan as a timing noise, and the variations on the timescale larger than that—several decades. This work has been supported by the Russian Foundation for Basic Research (grant No 04-02-17555), Russian Academy of Sciences (program “Evolution of Stars and Galaxies”), and by the Russian Science Support Foundation. The authors would also like to thank the anonymous referee for valuable comments.  相似文献   

4.
We determined the features of pulsars that were disregarded in standard amplitude-calibration procedures for VLBI observations. We suggest additional amplitude-calibration methods. These methods were used to process the VLBI observations of the pulsar PSR B0329+54 carried out with the HALCA ground—space interferometer. Data from the space radio telescope are corrected for a nonuniform reception band. We estimated the diameter of the scattering disk for this pulsar at a frequency of 1600 MHz: \( < 1\mathop .\limits^{''} 8 \times 10^{ - 3}\).  相似文献   

5.
We report on 10 yr of monitoring of the 8.7-s Anomalous X-ray Pulsar 4U 0142+61 using the Rossi X-Ray Timing Explorer (RXTE). This pulsar exhibited stable rotation from 2000 until February 2006: the RMS phase residual for a spin-down model which includes ν, , and is 2.3%. We report a possible phase-coherent timing solution valid over a 10-yr span extending back to March 1996. A glitch may have occurred between 1998 and 2000, but it is not required by the existing data. We also report that the source’s pulse profile has been evolving in the past 6 years, such that the dip of emission between its two peaks has been getting shallower since 2000, almost as if the profile is recovering to its pre-2000 morphology, in which there was no clear distinction between the peaks. These profile variations are seen in the 2–4 keV band but not in 6–8 keV. Finally, we present the pulsed flux time series of the source in 2–10 keV. There is evidence of a slow but steady increase in the source’s pulsed flux since 2000. The pulsed flux variability and the narrow-band pulse profile changes present interesting challenges to aspects of the magnetar model. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) PGSD scholarship to R.D. F.P.G. holds a National Research Council Research Associateship Award at NASA Goddard Space Flight Center. Additional support was provided by NSERC Discovery Grant Pgpin 228738-03 NSERC Steacie Supplement Smfsu 268264-03, FQRNT, CIAR, and CFI. V.M.K. is a Canada Research Chair.  相似文献   

6.
Two investigations of millisecond pulsar radiation are discussed: average total intensity pulse morphology and individual pulse to pulse fluctuations. The average emission profiles of millisecond pulsars are compared with those of slower pulsars in the context of polar cap models. In general the full widths of pulsar emission regions continue to widen inversely with periodP as P-(0.30-0.5) as expected for dipole polar cap models. Many pulse components are very narrow. The period scaling of pulsar profiles -separations and widths -can tell us about the angular distribution of radiating currents. An investigation of individual pulses from two millisecond pulsars at 430 MHz shows erratic pulse to pulse variations similar to that seen in slow pulsars. PSR B1937+21 displays occasional strong pulses that are located in the trailing edge of the average profile with relative flux densities in the range of 100 to 400. These are similar to the giant pulses seen in the Crab pulsar.  相似文献   

7.
The MRT pulsar observing system set-up in July 1996 has been used to observe about 30 pulsars at our low observing frequency of 150MHz. From the data considered so far, we have detected 10 pulsars, including the bright millisecond pulsar (MSP) J0437-4715. This is the only MSP observable at such a low frequency making its study specially interesting and more so that it has some apparently unusual properties. In this paper, we discuss some of our main results obtained on the MSP J0437-4715 and on the ‘core-single’ normal pulsarsJ1453-6413 and J1752-2806. Our results are also compared with those obtained at other frequencies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Radio-quiet γ-ray pulsars like Geminga may account for a number of the unidentified EGRET sources in the Galaxy. The number of Geminga-like pulsars is very sensitive to the geometry of both the γ-ray and radio beams. Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1–10%) of their light cylinder radius. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the γ-ray beams predicted by slot gap and outer gap models. From the results of this study, one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the γ-ray pulsar population.   相似文献   

9.
Analysis of the arrival directions of extensive air showers (EASs) detected on the EAS MSU array and the prototype of the EAS-1000 array has revealed a region of enhanced flux of cosmic rays with PeV energies toward the pulsars PSR J1840+5640 and LAT PSR J1836+5925 at a confidence level up to 4.5σ. The first pulsar was discovered almost 30 years ago and is a well-studied old radio pulsar at a distance of 1.7 kpc from the Solar system. The second pulsar belongs to a new class of pulsars discovered by the Fermi Gamma-Ray Observatory whose pulsations are seen neither in the X-ray nor in the radio bands, but only in the gamma-ray energy range (gamma-ray-only pulsars). In our opinion, the existence of a region of enhanced cosmic-ray flux in the data sets obtained on two different arrays suggests that the pulsars can make a noticeable contribution to the flux of Galactic cosmic rays with PeV energies.  相似文献   

10.
We report the results of the measurements and analysis of the pulse broadening due to interstellar scattering on 43 pulsars at 102 MHz. This is the largest uniform sample of direct measurements of pulsar scatteringτsc, which make it feasible to analyze the dependence of this value on other pulsar parameters. The measured dependence of τscon dispersion measure τsc (DM)=40(DM/100)2.1 is close to theoretically expected relation τsc (DM)∝ DM2. A frequency dependence of the scattering pulse broadening is weaker than commonly accepted τsc ∝ ν-4.4. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The properties of powerful (flux >10−19 W m−2 Hz−1) type III bursts observed in July – August 2002 by the radio telescope UTR-2 at frequencies 10 – 30 MHz are analyzed. Most bursts have been registered when the active regions associated to these bursts were located near the central meridian or at 40° – 60° to the East or West from it. All powerful type III bursts drift from high to low frequencies with frequency drift rates 1 – 2.5 MHz s−1. It is important to emphasize that according to our observations the drift rate is linearly increasing with frequency. The duration of the bursts changes mainly from 6 s at frequency 30 MHz up to 12 s at 10 MHz. The instantaneous frequency bandwidth does not depend on the day of observations, i.e. on the disk location of the source active region, and is increasing with frequency.  相似文献   

12.
Intensities of carbon radio recombination lines are analytically described as function of line number, temperature and medium concentration. Accounting for the process of dielectronic recombination the balance equations for highly excited carbon populations as b n-factors are solved by the diffusional approximation. To determine medium temperature and density with the experimental amplification coefficients the system of boundary condition equations is formulated as . Analytically found in the range of temperatures T e = 25-100, 104 K the line amplification coefficients are compared with the numerical solutions. By the method of radio lines intensity ratio of carbon for the observations at frequencies 34.5–25 MHz the density magnitudes are calculated towards Cassiopeia A as function of temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We make a statistical analysis of the periodsP and period-derivativesP of pulsars using a model independent theory of pulsar flow in theP-P diagram. Using the available sample ofP andP values, we estimate the current of pulsars flowing unidirectionally along theP-axis, which is related to the pulsar birthrate. Because of radio luminosity selection effects, the observed pulsar sample is biased towards lowP and highP. We allow for this by weighting each pulsar by a suitable scale factor. We obtain the number of pulsars in our galaxy to be 6.05−2.80 +3.32 × 105 and the birthrate to be 0.048−0.011 +0.014 pulsars yr−1 galaxy−1. The quoted errors refer to 95 per cent confidence limits corresponding to fluctuations arising from sampling, but make no allowance for other systematic and random errors which could be substantial. The birthrate estimated here is consistent with the supernova rate. We further conclude that a large majority of pulsars make their first appearance at periods greater than 0.5 s. This ‘injection’, which runs counter to present thinking, is probably connected with the physics of pulsar radio emission. Using a variant of our theory, where we compute the current as a function of pulsar ‘age’ (1/2P/P), we find support for the dipole braking model of pulsar evolution upto 6 × 106 yr of age. We estimate the mean pulsar braking index to be 3.7−0.8 +0.8.  相似文献   

14.
Zongjun Ning  H. Wu  F. Xu  X. Meng 《Solar physics》2007,242(1-2):101-109
We analyze the pulses in high-frequency drift radio structures observed by the spectrometer at Purple Mountain Observatory (PMO) over the frequency range of 4.5 – 7.5 GHz during the 18 March 2003 solar flare. A number of individual pulses are determined from the drifting radio structures after the detected gradual component subtraction. The frequency distributions of microwave pulse occurrence as functions of peak flux, duration, bandwidth, and time interval between two adjacent pulses exhibit a power-law behavior, i.e. . From regression fitting in log-log space, we obtain the power-law indexes, α P=7.38±0.40 for the peak flux, α D=5.39±0.86 for the duration, and α B=6.35±0.56 for the bandwidth. We find that the frequency distribution for the time interval displays a broken power law. The break occurs at about 500 ms, and their indexes are α W1=1.56±0.08 and α W2=3.19±0.12, respectively. Our results are consistent with the previous findings of hard X-ray pulses, type III bursts, and decimetric millisecond spikes.  相似文献   

15.
We have developed a method of searching for the connections between the isolated radio pulsars and supernova remnants, based on the analysis of their kinematic characteristics. We investigate fairly young (τ ch ≲ 106 yr) radio pulsars with known proper motions and estimated distances (dispersion measures), and supernova remnants located no more than 1–2 kpc away from them. Using a standard empirical radial velocity distribution, we have constructed 100–200 thousand trajectories for each of these pulsars, tracing back their possible motion in the Galactic gravitational field on a time-scale of a few million years. The probabilities of their close encounters with the SNRs at epochs consistent with the age of the pulsar are analyzed. When these probabilities exceed considerably their reference values, obtained by assuming a purely random encounter between the objects, we conclude that the pulsars may have originated in the SNRs under consideration. Out of eight preselected pairs of pulsar-SNR association candidates, two pairs, J 1829-1751 / G16.2-2.7 and J 1833-0827 / G24.7-0.6 may have a common origin with a high probability.  相似文献   

16.
The aim of this paper is to determine the flux emergence rate due to small-scale magnetic features in the quiet Sun using high-resolution Hinode SOT NFI data. Small-scale magnetic features are identified in the data using two different feature identification methods (clumping and downhill); then three methods are applied to detect flux emergence events. The distribution of the intranetwork peak emerged fluxes is determined. When combined with previous emergence results, from ephemeral regions to sunspots, the distribution of all fluxes are found to follow a power-law distribution which spans nearly seven orders of magnitude in flux (1016 – 1023 Mx) and 18 orders of magnitude in frequency. The power-law fit to all these data is of the form
\fracdNdY = \fracn0Y0\fracYY0-2.7,\frac{\mathrm{d}N}{\mathrm{d}\Psi} = \frac{n_0}{\Psi_0}\frac{\Psi}{\Psi _0}^{-2.7},  相似文献   

17.
Using equations from the theory of pulsar radio emission, the radio luminosities of pulsars and the magnetic moments of neutron stars are calculated from existing observational data. Translated from Astrofizika, Vol. 42, No. 3, pp. 433–437, July–September, 1999.  相似文献   

18.
From 2000 to 2010, monitoring of radio emission from the Crab pulsar at Xinjiang Observatory detected a total of nine glitches. The occurrence of glitches appears to be a random process as described by previous researches. A persistent change in pulse frequency and pulse frequency derivative after each glitch was found. There is no obvious correlation between glitch sizes and the time since last glitch. For these glitches Δν p and D[(n)\dot]p\Delta\dot{\nu}_{p} span two orders of magnitude. The pulsar suffered the largest frequency jump ever seen on MJD 53067.1. The size of the glitch is ∼6.8×10−6 Hz, ∼3.5 times that of the glitch occurred in 1989 glitch, with a very large permanent changes in frequency and pulse frequency derivative and followed by a decay with time constant ∼21 days. The braking index presents significant changes. We attribute this variation to a varying particle wind strength which may be caused by glitch activities. We discuss the properties of detected glitches in Crab pulsar and compare them with glitches in the Vela pulsar.  相似文献   

19.
Pulsar emission     
  相似文献   

20.
The on-going Parkes multibeam survey has been astoundingly successful (Manchesteret al. 2001), and its discovery of over 600 pulsars has opened up new avenues for probing the Galaxy’s electron content and magnetic field. Here we report on recent observations made with the Arecibo 305-m telescope, where 80 distant, high dispersion measure pulsars (of which 35 are from the multibeam survey) were studied at multiple frequency bands in the range 0.4–2.4 GHz, in order to determine their scattering properties, rotation measures and spectral indices. The results will be used to meet a variety of science goals; viz., creating an improved model of the electron density, mapping out the Galactic magnetic field, and modeling the pulsar population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号