首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A semi-analytical scheme is proposed to parametrize the Obukhov stability parameter \(\zeta \) (= \(z/L\) ; \(z\) is the height above the ground and \(L\) is the Obukhov length) in terms of the bulk Richardson number ( \(R_{iB}\) ) in unstable conditions within the framework of Monin–Obukhov similarity (MOS) theory. The scheme involves, (i) a solution of a cubic equation in \(\zeta \) whose coefficients depend on the gradient Richardson number ( \(R_{i}\) ), and (ii) a relationship between \(R_{i}\) and \(R_{iB}\) . The proposed scheme is applicable for a wide range (i) \(-5\le R_{iB}\le 0\) , (ii) \(0\le \hbox {ln}(z_{0}/z_{h})\le 29.0\) , and (iii) \(10\le z/z_{0}\le 10^{5}\) and performs relatively better than all other schemes in terms of accuracy in computation of surface-layer transfer coefficients. The absolute errors in computing the transfer coefficients do not exceed 7 %. The analysis presented here is found to be valid for different \(\gamma _{m}\) and \(\gamma _{h}\) appearing in the expressions of the similarity functions \(\varphi _{m}\) and \(\varphi _{h}\) (representing non-dimensional wind and temperature profiles), so long as the ratio of \(\gamma _{m}\) to \(\gamma _{h} \ge 1\) . The improved scheme can be easily employed in atmospheric modelling for a comprehensive range of \(R_{iB}\) and a variety of surfaces.  相似文献   

2.
Sensible heat fluxes ( \(Q_{H}\) ) are determined using scintillometry and eddy covariance over a suburban area. Two large-aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2–4 \(\text {km}^{2}\) , whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5–10 \(\text {km}^{2}\) . These large-scale heat fluxes are compared with local-scale eddy-covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly \(Q_{H}\) is related to the meteorological conditions. At shorter time scales the response of \(Q_{H}\) to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation ( \(Q^{*}\) ) coincide with greater differences between heat fluxes. For clear days \(Q_{H}\) lags \(Q^{*}\) , thus the ratio of \(Q_{H}\) to \(Q^{*}\) increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.  相似文献   

3.
A great variety of similarity functions for the structure parameter of temperature ( \(C_{T}^2\) ) have been proposed in the literature. They differ in the way they were derived from the data and in the characteristics of the dataset used for their derivation (surface type, observation level, stability range). In this study, we use one single dataset (CASES-99 experiment) and investigate the impact on the similarity functions of applying various regression approaches, and measuring at different heights and within different stability ranges. We limit ourselves to similarity functions under unstable conditions, and evaluate only the most common shape that describes the relation with two coefficients ( \(f\left( z/L\right) =c_{1} \left( 1-c_{2} {z}/{L}\right) ^{-2/3}\) , where \(z\) is the height, and \(L\) is the Obukhov length and a measure of the stability, and \(c_{1}\) and \(c_{2}\) are the regression coefficients). The results show that applying various regression approaches has an impact on the regression coefficients \(c_{1}\) and \(c_{2}\) . Thus studies should always specify the regression approach when presenting similarity relations. We suggest use of an orthogonal distance regression method such that uncertainties in \(-z/L\) are also taken into account, to apply this to the logarithmic transformation of both dimensionless groups, and to use a weighted dataset such that unreliable data points have a smaller influence on the fit. Dividing the dataset into eight height ( \(z\) ) and eight stability ( \(-{1/L}\)  classes) classes, we show that the observation height and the stability range has an impact on the coefficients too. This implies that variations in \(c_{1}\) and \(c_{2}\) found in the literature may result from variations in the height and stability ranges among the datasets. Furthermore, application of the coefficients on a dataset obtained at a different height or within a different stability range has to be made with care. Finally, the variation in the coefficients between the classes indicates that the Monin–Obukhov similarity function for \(C_{T}^2\) is not sufficiently described by the two-coefficient function used here.  相似文献   

4.
The large-eddy simulation mode of the Weather Research and Forecasting model is employed to simulate the planetary boundary-layer characteristics and mesoscale circulations forced by an ideal urban heat island (UHI). In our simulations, the horizontal heterogeneity of the UHI intensity distribution in urban areas is considered and idealized as a cosine function. Results indicate that the UHI heating rate and the UHI intensity heterogeneity affect directly the spatial distribution of the wind field; a stronger UHI intensity produces a maximum horizontal wind speed closer to the urban centre. The strong advection of warm air from the urban area to the rural area in the upper part of the planetary boundary-layer causes a more stable atmospheric stratification over both the urban and rural areas. The mesoscale sensible heat flux caused by the UHI circulation increases with UHI intensity but vanishes when the background wind speed is sufficiently high $(>$ 3.0  $\mathrm{{m\,s}}^{-1})$ .  相似文献   

5.
Forecasting of low cloud continues to challenge numerical weather prediction. With this in mind, surface and airborne observations were made over East Anglia, UK, during March 2011 to investigate stratus and stratocumulus advecting from the sea over land. Four surface sites were deployed at various distances inland aligned approximately along the flow. In situ data include cloud-droplet measurements from an aircraft operating off the coast and a tethered balloon 100 km inland. Comparisons of thermodynamic and cloud properties are made with Met Office operational model simulations at horizontal resolutions of 4 and 1.5 km. The clouds contained droplet concentrations up to 600 cm \(^{-3}\) within polluted outflow off Europe. These measurements were compared to three different model schemes for predicting droplet concentration: two of them perform well at low to moderate concentrations but asymptote to 375 cm \(^{-3}\) . Microwave radiometers at the ground sites retrieved liquid water paths that reduced with distance inland and were generally below 200 g m \(^{-2}\) . The modelled water path performs well upstream but more erratically far inland. Comparisons of thermodynamic profiles are made within both Lagrangian and Eulerian frameworks and show the model predicted changes in equivalent potential temperature generally within 1 K, with occasional errors of 2 K or more. The modelled cloud-top temperatures were in good agreement with the observations down to \(-\) \(^{\circ }\) C, but the magnitude of the temperature inversion, although good at times, was too small by on average 1.6 K. The different simulations produced different cloud-top water contents due to a combination of resolution and scientific upgrades to the model, but they generally underestimate the amount of cloud water. Major changes, such as the mesoscale temporary cloud breaks on 2 March 2011 and the complete clearance on 4 March, were seemingly predicted by the model for the correct reasons.  相似文献   

6.
A dataset obtained using a wind-profile radar located at the Yangtze River Delta in China ( $31.14^{\circ }$ N, $121.81^{\circ }$ E) in 2009 was used to investigate the characteristics and evolution of low-level jets (LLJs) along the east China coast. The study investigated the daily and seasonal structures of LLJs as well as several possible causes. A total of 1,407 1-h LLJ periods were detected based on an adaptive definition that enabled determination of four LLJ categories. The majority (77 %) of LLJs were found to have speeds $<$ 14.0 m s $^{-1}$ (maximum of 34.6 m s $^{-1})$ and occur at an average altitude below 600 m (76 % of the observed LLJs). The dominant direction of the LLJs was from the south-south-west, which accounted for nearly 32 %, with the second most common wind direction ranging from $040^{\circ }$ to $100^{\circ }$ , albeit with a number of stronger LLJs from the west-south-west. A comparison of LLJs and South-west Jets revealed that the frequencies of occurrence in summer are totally different. Results also revealed that in spring and summer, most LLJs originate from the south-south-west, whereas in autumn and winter, north-east is the dominant direction of origin. The peak heights of LLJs tended to be higher in winter than in other seasons. The horizontal wind speed and peak height of the LLJs displayed pronounced diurnal cycles. The Hilbert–Huang transform technique was applied to demonstrate that the intrinsic mode functions with a cycle of nearly 23 h at levels below 800 m, and the instantaneous amplitudes of inertial events (0.0417–0.0476 h $^{-1}$ frequencies) have large values at 300–600 m. The variations in the occurrences of LLJs suggested connections between the formation mechanisms of LLJs and the South-west Jet stream, steady occupation of synoptic-scale pressure system, and land–sea temperature contrasts.  相似文献   

7.
The air–sea transfer velocity of $\mathrm{CO}_{2}\, (k_{\mathrm{CO}_{2}})$ was investigated in a shallow estuary in March to July 2012, using eddy-covariance measurements of $\mathrm{CO}_{2}$ fluxes and measured air–sea $\mathrm{CO}_{2}$ partial-pressure differences. A data evaluation method that eliminates data by nine rejection criteria in order to heighten parametrization certainty is proposed. We tested the data evaluation method by comparing two datasets: one derived using quality criteria related solely to the eddy-covariance method, and the other derived using quality criteria based on both eddy-covariance and cospectral peak methods. The best parametrization of transfer velocity normalized to a Schmidt number of 600 $(k_{600})$ was determined to be: $k_{600} = 0.3\,{U_{10}}^{2.5}$ where $U_{10}$ is the wind speed in m $\mathrm{s}^{-1}$ at 10 m; $k_{600}$ is based on $\mathrm{CO}_{2}$ fluxes calculated by the eddy-covariance method and including the cospectral peak method criteria. At low wind speeds, the transfer velocity in the shallow water estuary was lower than in other coastal waters, possibly a symptom of low tidal amplitude leading to low intensity water turbulence. High transfer velocities were recorded above wind speeds of 5 m $\mathrm{s}^{-1}$ , believed to be caused by early-breaking waves and the large fetch (6.5 km) of the estuary. These findings indicate that turbulence in both air and water influences the transfer velocity.  相似文献   

8.
In October 2012 Hurricane Sandy devastated New York City and its vicinity caused mainly by the storm surge, which is the water height above normal astronomical tide level. The meteorological conditions were as follows: minimum central pressure, 962 hPa, highest sustained wind speed 27.1 m s $^{-1}$ ? 1 and maximum gust 37.8 m s $^{-1}$ ? 1 . The peak storm surge was at 3.9 m and the peak storm tide at 4.4 m (which is referenced above mean lower low water). The wind-stress tide relation shows that $S=K\,V^{2}$ S = K V 2 , where $S$ S is the storm surge, $V$ V is the wind speed and $K$ K is the coefficient. It is found that with $S$ S in units of m, and $V$ V in  m s $^{-1}$ ? 1 , $K = 0.0051$ K = 0.0051 with $R^{2}= 0.91$ R 2 = 0.91 ( $R$ R is the correlation coefficient) indicating that 91 % of the total variation of the storm surge can be explained by variations in the wind stress, which is proportional to $V^{2}$ V 2 . Similar results were obtained during Hurricane Irene in 2011, which also affected the New York area. Therefore, this simple wind stress-tide relation should be useful in coastal engineering, urban planning, and emergency management.  相似文献   

9.
10.
The structure parameters of temperature and humidity are important in scintillometry as they determine the structure parameter of the refractive index of air, the primary atmospheric variable obtained with scintillometers. In this study, we investigate the variability of the logarithm of the Monin-Obukhov-scaled structure parameters (denoted as $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ ) of temperature and humidity. We use observations from eddy-covariance systems operated at three heights (2.5, 50, and 90 m) within the atmospheric surface layer under unstable conditions. The variability of $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ depends on instability and on the size of the averaging window over which $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ is calculated. If instability increases, differences in $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ between upward motions (large $C_{s}^2$ ) and downward motions (small $C_{s}^2$ ) increase. The differences are, however, not sufficiently large to result in a bimodal probability density function. If the averaging window size increases, the variances of $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ decrease. A linear regression of the variances of $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ versus the averaging window size for various stability classes shows an increase of both the offset and slope (in absolute sense) with increasing instability. For temperature, data from the three heights show comparable results. For humidity, in contrast, the offset and slope are larger at 50 and 90 m than at 2.5 m. In the end we discuss how these findings could be used to assess whether observed differences in $C_{s}^2$ along a scintillometer path or aircraft flight leg are just within the range of local variability in $C_{s}^2$ or could be attributed to surface heterogeneity. This is important for the interpretation of data measured above a heterogeneous surface.  相似文献   

11.
Large-eddy simulations of the atmospheric boundary layer (ABL) under a wide range of stabilities are conducted to educe very-large-scale motions and then to study their dynamics and how they are influenced by buoyancy. Preliminary flow visualizations suggest that smaller-scale motions that resemble hairpins are embedded in much larger scale streamwise meandering rolls. Using simulations that represent more than 150 h of physical time, many snapshots in the \(xy\) -, \(yz\) - and \(xz\) -planes are then collected to perform snapshot proper orthogonal decomposition and further investigate the large structures. These analyses confirm that large streamwise rolls that share several features with the very-large-scale motions observed in laboratory studies arise as the dominant modes under most stabilities, but the effect of the surface kinematic buoyancy flux on the energy content of these dominant modes is very significant. The first two modes in the \(yz\) -plane in the neutral case contain up to 3 % of the total turbulent kinetic energy; they also have a vertical tilt angle in the \(yz\) -plane of about 0 to 30 \(^\circ \) due to the turning effect associated with the Coriolis force. Unstable cases also feature streamwise rolls, but in the convective ABL they are strengthened by rising plumes in between them, with two to four rolls spanning the whole domain in the first few modes; the Coriolis effect is much weaker in the unstable ABL. These rolls are no longer the dominant modes under stable conditions where the first mode is observed to contain sheet-like motions with high turbulent kinetic energy. Using these proper orthogonal decomposition modes, we are also able to extract the vertical velocity fields corresponding to individual modes and then to correlate them with the horizontal velocity or temperature fields to obtain the momentum and heat flux carried by individual modes. Structurally, the fluxes are explained by the topology of their corresponding modes. However, the fraction of the fluxes produced by the modes is invariably smaller than the fraction of energy they contain, particularly under stable conditions where the first modes are found to perform weak counter-gradient fluxes.  相似文献   

12.
The characteristics of the temporal and height variations of the temperature structure parameter $C_\mathrm{T}^{2}$ in strongly convective situations derived from the sodar echo-signal intensity measurements were analyzed for the first 100 m. It was corroborated that the probability density function (pdf) of the logarithm of $C_\mathrm{T}^{2}$ in the lower convective boundary layer is markedly non-Gaussian, whereas turbulence theory predicts it to be normal. It was also corroborated that the sum of two weighted Gaussians, which characterize the statistics of $C_\mathrm{T}^{2}$ within convective plumes and in their environment and the probability of plume occurrence, well approximates the observed pdfs. It was shown that the height behaviour of the arithmetic mean of $ C_\mathrm{T}^{2}$ (both total and within plumes) follows well a power law $C_\mathrm{T}^{2} (z) \sim z^{-q}$ with the exponent $q$ close to the theoretically predicted value of 4/3. But for the geometrical means of $C_\mathrm{T}^{2}$ (both total and within the plumes), $q$ is close to 1. The difference between arithmetically and geometrically averaged $C_\mathrm{T}^{2}$ profiles was analyzed. The vertical profiles of the standard deviation, skewness and kurtosis of $\hbox {ln}C_\mathrm{T}^{2}$ pdfs were analyzed to show their steady behaviour with height. The standard deviations of the logarithm of $C_\mathrm{T}^{2}$ within the plumes and between them are similar and are 1.5 times less than the total standard deviation. The estimate of the variability index $F_\mathrm{T}$ and its height behaviour were obtained, which can be useful to validate some theoretical and modelling predictions. The vertical profiles of the skewness and kurtosis show the negative asymmetry of pdfs and their flatness, respectively. The spectra of variations in $\hbox {ln}C_\mathrm{T}^{2}$ are shown to be satisfactorily fitted by the power law $f^{-\gamma } $ in the frequency range 0.02 and 0.2 Hz, with the average exponent $\approx $ 1.27  $\pm $  0.22.  相似文献   

13.
Forcing relationships in steady, neutrally stratified atmospheric boundary-layer (ABL) flow are thoroughly analyzed. The ABL flow can be viewed as balanced between a forcing and a drag term. The drag term results from turbulent stress divergence, and above the ABL, both the drag and the forcing terms vanish. In computational wind engineering applications, the ABL flow is simulated not by directly specifying a forcing term in the ABL but by specifying boundary conditions for the simulation domain. Usually, these include the inflow boundary and the top boundary conditions. This ‘boundary-driven’ ABL flow is dynamically different from its real counterpart, and this is the major reason that the simulated boundary-driven ABL flow does not maintain horizontal homogeneity. Here, first a dynamical approach is proposed to develop a neutrally stratified equilibrium ABL flow. Computational fluid dynamics (CFD) software (Fluent 6.3) with the standard \(k\) \(\varepsilon \) turbulence model is employed, and by applying a driving force profile, steady equilibrium ABL flows are simulated by the model. Profiles of wind speed and turbulent kinetic energy (TKE) derived using this approach are reasonable in comparison with the conventional logarithmic law and with observational data respectively. Secondly, the equilibrium ABL profiles apply as inflow conditions to simulate the boundary-driven ABL flow. Simulated properties between the inlet and the outlet sections across a fetch of 10 km are compared. Although profiles of wind speed, TKE, and its dissipation rate are consistently satisfactory under higher wind conditions, a deviation of TKE and its dissipation rate between the inlet and outlet are apparent (7–8 %) under lower wind-speed conditions (2 m s \(^{-1}\) at 10 m). Furthermore, the simulated surface stress systematically decreases in the downwind direction. A redistribution of the pressure field is also found in the simulation domain, which provides a different driving pattern from the realistic case in the ABL.  相似文献   

14.
We applied three approaches to estimate the zero-plane displacement $d$ through the aerodynamic measurement height $z$ (with $z = z_{m}- d$ and $z_{m}$ being the measurement height above the surface), and the aerodynamic roughness length $z_{0}$ , from single-level eddy covariance data. Two approaches (one iterative and one regression-based) were based on the universal function in the logarithmic wind profile and yielded an inherently simultaneous estimation of both $d$ and $z_{0}$ . The third approach was based on flux–variance similarity, where estimation of $d$ and consecutive estimation of $z_{0}$ are independent steps. Each approach was further divided into two methods differing either with respect to the solution technique (profile approaches) or with respect to the variable (variance of vertical wind and temperature, respectively). All methods were applied to measurements above a large, growing wheat field where a uniform canopy height and its frequent monitoring provided plausibility limits for the resulting estimates of time-variant $d$ and $z_{0}$ . After applying, for each approach, a specific data filtering that accounted for the range of conditions (e.g. stability) for which it is valid, five of the six methods were able to describe the temporal changes of roughness parameters associated with crop growth and harvest, and four of them agreed on $d$ to within 0.3 m most of the time. Application of the same methods to measurements with a more heterogeneous footprint consisting of fully-grown sugarbeet and a varying contribution of adjacent harvested fields exhibited a plausible dependence of the roughness parameters on the sugarbeet fraction. It also revealed that the methods producing the largest outliers can differ between site conditions and stability. We therefore conclude that when determining $d$ for canopies with unknown properties from single-level measurements, as is increasingly done, it is important to compare the results of a number of methods rather than rely on a single one. An ensemble average or median of the results, possibly after elimination of methods that produce outliers, can help to yield more robust estimates. The estimates of $z_{0}$ were almost exclusively physically plausible, although $d$ was considered unknown and estimated simultaneously with the methods and results described above.  相似文献   

15.
Similarity Scaling Over a Steep Alpine Slope   总被引:5,自引:5,他引:0  
In this study, we investigate the validity of similarity scaling over a steep mountain slope (30–41 $^\circ $ ). The results are based on eddy-covariance data collected during the Slope Experiment near La Fouly (SELF-2010); a field campaign conducted in a narrow valley of the Swiss Alps during summer 2010. The turbulent fluxes of heat and momentum are found to vary significantly with height in the first few metres above the inclined surface. These variations exceed by an order of magnitude the well-accepted maximum 10 % required for the applicability of Monin–Obukhov similarity theory in the surface layer. This could be due to a surface layer that is too thin to be detected or to the presence of advective fluxes. It is shown that local scaling can be a useful tool in these cases when surface-layer theory breaks down. Under convective conditions and after removing the effects of self-correlation, the normalized standard deviations of slope-normal wind velocity, temperature and humidity scale relatively well with $z/\varLambda $ , where $z$ is the measurement height and $\varLambda (z)$ the local Obukhov length. However, the horizontal velocity fluctuations are not correlated with $z/\varLambda $ under all stability regimes. The non-dimensional gradients of wind velocity and temperature are also investigated. For those, the local scaling appears inappropriate, particularly at night when shallow drainage flows prevail and lead to negative wind-speed gradients close to the surface.  相似文献   

16.
In studies of lake–atmosphere interactions, the fluxes of momentum, water vapour and sensible heat are often parametrized as being proportional to the differences in wind, humidity and air temperature between the water surface and a reference height above the surface. Here, the proportionality via transfer coefficients in these relationships was investigated with the eddy-covariance method at three sites within an eddy-covariance mesonet across Lake Taihu, China. The results indicate that the transfer coefficients decreased with increasing wind speed for weak winds and approached constant values for strong winds. The presence of submerged macrophytes reduced the momentum transfer (drag) coefficient significantly. At the two sites free of submerged macrophytes, the 10-m drag coefficients under neutral stability were 1.8 $(\pm \,0.4) \times \,10^{-3}$ ( ± 0.4 ) × 10 ? 3 and $1.7\,(\pm \,0.3) \times \,10^{-3 }$ 1.7 ( ± 0.3 ) × 10 ? 3 at the wind speed of $9\,\text{ m } \text{ s }^{-1}$ 9 m s ? 1 , which are 38 and 34 % greater than the prediction by the Garratt model for the marine environment.  相似文献   

17.
We derive the turbulent structure parameters of temperature $C_{T}^2$ and humidity $C_q^2$ from high-resolution large-eddy simulations (LES) of a homogeneously-heated convective boundary layer. Boundary conditions and model forcing were derived from measurements at Cabauw in The Netherlands. Three different methods to obtain the structure-parameters from LES are investigated. The shape of the vertical structure-parameter profiles from all three methods compare well with former experimental and LES results. Depending on the method, deviations in the magnitude up to a factor of two are found and traced back to the effects of discretization and numerical dissipation of the advection scheme. Furthermore, we validate the LES data with airborne and large-aperture scintillometer (LAS) measurements at Cabauw. Virtual path measurements are used to study the variability of $C_{T}^2$ in the mixed layer and surface layer and its implications for airborne and LAS measurements. A high variability of $C_{T}^2$ along a given horizontal path in the LES data is associated with plumes (high values) and downdrafts (low values). The path average of $C_{T}^2$ varies rapidly in time due to the limited path length. The LES results suggest that measured path averages require sufficient temporal averaging and an adequate ratio of path length to height above the ground for the LAS in order to approach the domain average of $C_{T}^2$ .  相似文献   

18.
In 2005 the Study of Stable Boundary Layer Environment at Dome C (STABLEDC) experimental campaign was conducted at the plateau station of Concordia at Dome C, Antarctica. Temperature profiles measured with a microwave radiometer were used to study the characteristics of surface-based temperature inversions over the course of a year. Statistics of temperature profiles for every month are discussed; the difference between daytime and nocturnal cases observed during the summer months disappears during winter. Surface-based temperature inversions occurred in 70 % of the time during summer, and almost all of the time during winter. During winter the occurrence of warming events leads to a decrease in the temperature difference between the top and the base of the inversion (i.e. the inversion strength). The inversion strength maxima ranged between $3\,^{\circ }\mathrm{C}$ (December) and $35\,^{\circ }\mathrm{C}$ (August) corresponding to gradients of 0.1 and $0.3\,^{\circ }\mathrm{C}\, \mathrm{m}^{-1}$ , respectively. The average surface-based inversion height presents a daily cycle during the summer months with values up to 200 m in the morning hours, while it affects a layer always deeper than 100 m during the winter months. The relationships between inversion strength and the downward longwave radiative flux, absolute temperature, and wind speed are examined. The inversion strength decreases as the longwave radiation increases. A clear anti-correlation between inversion strength and near-surface temperature is evident throughout the year. During the winter, the largest inversion strength values were observed under low wind-speed conditions; in contrast, a clear dependence was not found during the summer.  相似文献   

19.
Heat flux density at the soil surface (G 0) was evaluated hourly on a vegetal cover 0.08 m high, with a leaf area index of 1.07 m2 m?2, during daylight hours, using Choudhury et al. (Agric For Meteorol 39:283–297, 1987) ( $ G_0^{\text{rn}} $ ), Santanello and Friedl (J Appl Meteorol 42:851–862, 2003) ( $ G_0^{\text{s}} $ ), and force-restore ( $ G_0^{\text{fr}} $ ) models and the plate calorimetry methodology ( $ G_0^{\text{pco}} $ ), where the gradient calorimetry methodology (G 0R ) served as a reference for determining G 0. It was found that the peak of G 0R was at 1 p.m., with values that ranged between 60 and 100 W m?2 and that the G 0/Rn relation varied during the day with values close to zero in the early hours of the morning and close to 0.25 in the last hours of daylight. The $ G_0^{\text{s}} $ model presented the best performance, followed by the $ G_0^{\text{rn}} $ and $ G_0^{\text{fr}} $ models. The plate calorimetry methodology showed a similar behavior to that of the gradient calorimetry referential methodology.  相似文献   

20.
Vertical mixing of the nocturnal stable boundary layer (SBL) over a complex land surface is investigated for a range of stabilities, using a decoupling index ( $0 < D_{rb} < 1$ ) based on the 2–50 m bulk gradient of the ubiquitous natural trace gas radon-222. The relationship between $D_{rb}$ and the bulk Richardson number ( $R_{ib}$ ) exhibits three broad regions: (1) a well-mixed region ( $D_{rb} \approx 0.05$ ) in weakly stable conditions ( $R_{ib} < 0.03$ ); (2) a steeply increasing region ( $0.05 < D_{rb} < 0.9$ ) for “transitional” stabilities ( $0.03 < R_{ib} < 1$ ); and (3) a decoupled region ( $D_{rb} \approx 0.9$ –1.0) in very stable conditions ( $R_{ib} > 1$ ). $D_{rb}$ exhibits a large variability within individual $R_{ib}$ bins, however, due to a range of competing processes influencing bulk mixing under different conditions. To explore these processes in $R_{ib}$ $D_{rb}$ space, we perform a bivariate analysis of the bulk thermodynamic gradients, various indicators of external influences, and key turbulence quantities at 10 and 50 m. Strong and consistent patterns are found, and five distinct regions in $R_{ib}$ $D_{rb}$ space are identified and associated with archetypal stable boundary-layer regimes. Results demonstrate that the introduction of a scalar decoupling index yields valuable information about turbulent mixing in the SBL that cannot be gained directly from a single bulk thermodynamic stability parameter. A significant part of the high variability observed in turbulence statistics during very stable conditions is attributable to changes in the degree of decoupling of the SBL from the residual layer above. When examined in $R_{ib}$ $D_{rb}$ space, it is seen that very different turbulence regimes can occur for the same value of $R_{ib}$ , depending on the particular combination of values for the bulk temperature gradient and wind shear, together with external factors. Extremely low turbulent variances and fluxes are found at 50 m height when $R_{ib} > 1$ and $D_{rb} \approx 1$ (fully decoupled). These “quiescent” cases tend to occur when geostrophic forcing is very weak and subsidence is present, but are not associated with the largest bulk temperature gradients. Humidity and net radiation data indicate the presence of low cloud, patchy fog or dew, any of which may aid decoupling in these cases by preventing temperature gradients from increasing sufficiently to favour gravity wave activity. The largest temperature gradients in our dataset are actually associated with smaller values of the decoupling index ( $D_{rb} < 0.7$ ), indicating the presence of mixing. Strong evidence is seen from enhanced turbulence levels, fluxes and submeso activity at 50 m, as well as high temperature variances and heat flux intermittencies at 10 m, suggesting this region of the $R_{ib}$ $D_{rb}$ distribution can be identified as a top-down mixing regime. This may indicate an important role for gravity waves and other wave-like phenomena in providing the energy required for sporadic mixing at this complex terrain site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号