首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the invariant manifold and its application in transfer trajectory problem from a low Earth parking orbit to the Sun-Earth \(L_{1}\) and \(L_{2}\)-halo orbits with the inclusion of radiation pressure and oblateness. Invariant manifold of the halo orbit provides a natural entrance to travel the spacecraft in the solar system along some specific paths due to its strong hyperbolic character. In this regard, the halo orbits near both collinear Lagrangian points are computed first. The manifold’s approximation near the nominal halo orbit is computed using the eigenvectors of the monodromy matrix. The obtained local approximation provides globalization of the manifold by applying backward time propagation to the governing equations of motion. The desired transfer trajectory well suited for the transfer is explored by looking at a possible intersection between the Earth’s parking orbit of the spacecraft and the manifold.  相似文献   

2.
This paper analyses three types of artificial orbits around Mars pushed by continuous low-thrust control: artificial frozen orbits, artificial Sun-Synchronous orbits and artificial Sun-Synchronous frozen orbits. These artificial orbits have similar characteristics to natural frozen orbits and Sun-Synchronous orbits, and their orbital parameters can be selected arbitrarily by using continuous low-thrust control. One control strategy to achieve the artificial frozen orbit is using both the transverse and radial continuous low-thrust control, and another to achieve the artificial Sun-Synchronous orbit is using the normal continuous low-thrust control. These continuous low-thrust control strategies consider J 2, J 3, and J 4 perturbations of Mars. It is proved that both control strategies can minimize characteristic velocity. Relevant formulas are derived, and numerical results are presented. Given the same initial orbital parameters, the control acceleration and characteristic velocity taking into account J 2, J 3, and J 4 perturbations are similar to those taking into account J 2 perturbations for both Mars and the Earth. The control thrust of the orbit around Mars is smaller than that around the Earth. The magnitude of the control acceleration of ASFOM-4 (named as Artificial Sun-Synchronous Frozen Orbit Method 4) is the lowest among these strategies and the characteristic velocity within one orbital period is only 0.5219 m/s for the artificial Sun-Synchronous frozen orbit around Mars. It is evident that the relationship among the control thrusts and the primary orbital parameters of Martian artificial orbits is always similar to that of the Earth. Simulation shows that the control scheme extends the orbital parameters’ selection range of three types of orbits around Mars, compared with the natural frozen orbit and Sun-Synchronous orbit.  相似文献   

3.
This paper describes design of the trajectory and analysis of the stability of collinear point L 2 in the Sun-Earth system. The modified restricted three body problem with additional gravitational potential from the belt is used as the model for the Sun-Earth system. The effect of radiation pressure of the Sun and oblate shape of the Earth are considered. The point L 2 is asymptotically stable up to a specific value of time t correspond to each set of values of parameters and initial conditions. The results obtained from this study would be applicable to locate a satellite, a telescope or a space station around the point L 2.  相似文献   

4.
There exist cislunar and translunar libration points near the Moon, which are referred to as the LL 1 and LL 2 points, respectively. They can generate the different types of low-energy trajectories transferring from Earth to Moon. The time-dependent analytic model including the gravitational forces from the Sun, Earth, and Moon is employed to investigate the energy-minimal and practical transfer trajectories. However, different from the circular restricted three-body problem, the equivalent gravitational equilibria are defined according to the geometry of the instantaneous Hill boundary due to the gravitational perturbation from the Sun. The relationship between the altitudes of periapsis and eccentricities is achieved from the Poincaré mapping for all the captured lunar trajectories, which presents the statistical feature of the fuel cost and captured orbital elements rather than generating a specified Moon-captured segment. The minimum energy required by the captured trajectory on a lunar circular orbit is deduced in the spatial bi-circular model. The idea is presented that the asymptotical behaviors of invariant manifolds approaching to/traveling from the libration points or halo orbits are destroyed by the solar perturbation. In fact, the energy-minimal cislunar transfer trajectory is acquired by transiting the LL 1 point, while the energy-minimal translunar transfer trajectory is obtained by transiting the LL 2 point. Finally, the transfer opportunities for the practical trajectories that have escaped from the Earth and have been captured by the Moon are yielded by the transiting halo orbits near the LL 1 and LL 2 points, which can be used to generate the whole of the trajectories.  相似文献   

5.
Impulsive time-free transfers between halo orbits   总被引:1,自引:0,他引:1  
A methodology is developed to design optimal time-free impulsive transfers between three-dimensional halo orbits in the vicinity of the interior L 1 libration point of the Sun-Earth/Moon barycenter system. The transfer trajectories are optimal in the sense that the total characteristic velocity required to implement the transfer exhibits a local minimum. Criteria are established whereby the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The optimality of a reference two-impulse transfer can be determined by examining the slope at the endpoints of a plot of the magnitude of the primer vector on the reference trajectory. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The optimal time of flight on the time-free transfer, and consequently, the departure and arrival locations on the halo orbits are determined by the unconstrained minimization of a function of two variables using a multivariable search technique. Results indicate that the cost can be substantially diminished by the allowance for coasts in the initial and final libration-point orbits.An earlier version was presented as Paper AIAA 92-4580 at the AIAA/AAS Astrodynamics Conference, Hilton Head Island, SC, U.S.A., August 10–12, 1992.  相似文献   

6.
Many asteroids with a semimajor axis close to that of Mars have been discovered in the last several years. Potentially some of these could be in 1:1 resonance with Mars, much as are the classic Trojan asteroids with Jupiter, and its lesser-known horseshoe companions with Earth. In the 1990s, two Trojan companions of Mars, 5261 Eureka and 1998 VF31, were discovered, librating about the L5 Lagrange point, 60° behind Mars in its orbit. Although several other potential Mars Trojans have been identified, our orbital calculations show only one other known asteroid, 1999 UJ7, to be a Trojan, associated with the L4 Lagrange point, 60° ahead of Mars in its orbit. We further find that asteroid 36017 (1999 ND43) is a horseshoe librator, alternating with periods of Trojan motion. This asteroid makes repeated close approaches to Earth and has a chaotic orbit whose behavior can be confidently predicted for less than 3000 years. We identify two objects, 2001 HW15 and 2000 TG2, within the resonant region capable of undergoing what we designate “circulation transition”, in which objects can pass between circulation outside the orbit of Mars and circulation inside it, or vice versa. The eccentricity of the orbit of Mars appears to play an important role in circulation transition and in horseshoe motion. Based on the orbits and on spectroscopic data, the Trojan asteroids of Mars may be primordial bodies, while some co-orbital bodies may be in a temporary state of motion.  相似文献   

7.
This paper is devoted to the study of the transfer problem from a libration point orbit of the Earth–Moon system to an orbit around the Moon. The transfer procedure analysed has two legs: the first one is an orbit of the unstable manifold of the libration orbit and the second one is a transfer orbit between a certain point on the manifold and the final lunar orbit. There are only two manoeuvres involved in the method and they are applied at the beginning and at the end of the second leg. Although the numerical results given in this paper correspond to transfers between halo orbits around the \(L_1\) point (of several amplitudes) and lunar polar orbits with altitudes varying between 100 and 500 km, the procedure we develop can be applied to any kind of lunar orbits, libration orbits around the \(L_1\) or \(L_2\) points of the Earth–Moon system, or to other similar cases with different values of the mass ratio.  相似文献   

8.
In this paper, computation of the halo orbit for the KS-regularized photogravitational circular restricted three-body problem is carried out. This work extends the idea of Srivastava et al. (Astrophys. Space Sci. 362: 49, 2017) which only concentrated on the (i) regularization of the 3D-governing equations of motion, and (ii) validation of the modeling for small out-of-plane amplitude (\(A_z =110000\) km) assuming the third-order analytical approximation as an initial guess with and without differential correction. This motivated us to compute the halo orbits for the large out-of-plane amplitudes and to study their stability analysis for the regularized motion. The stability indices are described as a function of out-of-plane amplitude, mass reduction factor and oblateness coefficient. Three different Sun–planet systems: the Sun–Earth, Sun–Mars and the Sun–Jupiter are chosen in this study. Stable halo orbits do not exist around the \(L_{1}\) point, however, around the \(L_{2}\) point stable halo orbits are found for the considered systems.  相似文献   

9.
Due to the specific dynamics, the probes located at the halo orbits or Lissajous orbits around the Earth-Moon collinear libration point L1 or L2 are always studied in the synodic system to understand their trajectories. In fact, they are also orbiting the Earth in a distant Keplerian ellipse. Because of their intrinsic orbital instability, in the orbit prediction the initial errors propagate more prominently than those of the normal orbiting satellites, this requires special attention in the orbit design, maneuver, and control. Despite of all this, they are similar to the normal orbiting satellites in orbit determination and hardly require other special attentions. In this paper, the quantitative results of error propagation under the unstable dynamics, together with the theoretical analysis are presented. The results of precise orbit determination and short-arc orbit predictions are also shown, and compared with the results from the Beijing Aerospace Control Center.  相似文献   

10.
In this article, we introduce a novel three-step approach for solving optimal control problems in space mission design. We demonstrate its potential by the example task of sending a group of spacecraft to a specific Earth L 2 halo orbit. In each of the three steps we make use of recently developed optimization methods and the result of one step serves as input data for the subsequent one. Firstly, we perform a global and multi-objective optimization on a restricted class of control functions. The solutions of this problem are (Pareto-)optimal with respect to ΔV and flight time. Based on the solution set, a compromise trajectory can be chosen suited to the mission goals. In the second step, this selected trajectory serves as initial guess for a direct local optimization. We construct a trajectory using a more flexible control law and, hence, the obtained solutions are improved with respect to control effort. Finally, we consider the improved result as a reference trajectory for a formation flight task and compute trajectories for several spacecraft such that these arrive at the halo orbit in a prescribed relative configuration. The strong points of our three-step approach are that the challenging design of good initial guesses is handled numerically by the global optimization tool and afterwards, the last two steps only have to be performed for one reference trajectory.  相似文献   

11.
We consider periodic halo orbits about artificial equilibrium points (AEP) near to the Lagrange points L 1 and L 2 in the circular restricted three body problem, where the third body is a low-thrust propulsion spacecraft in the Sun–Earth system. Although such halo orbits about artificial equilibrium points can be generated using a solar sail, there are points inside L 1 and beyond L 2 where a solar sail cannot be placed, so low-thrust, such as solar electric propulsion, is the only option to generate artificial halo orbits around points inaccessible to a solar sail. Analytical and numerical halo orbits for such low-thrust propulsion systems are obtained by using the Lindstedt Poincaré and differential corrector method respectively. Both the period and minimum amplitude of halo orbits about artificial equilibrium points inside L 1 decreases with an increase in low-thrust acceleration. The halo orbits about artificial equilibrium points beyond L 2 in contrast show an increase in period with an increase in low-thrust acceleration. However, the minimum amplitude first increases and then decreases after the thrust acceleration exceeds 0.415 mm/s2. Using a continuation method, we also find stable artificial halo orbits which can be sustained for long integration times and require a reasonably small low-thrust acceleration 0.0593 mm/s2.  相似文献   

12.
We present a continuation of our numerical study on planetary systems with similar characteristics to the Solar System. This time we examine the influence of three giant planets on the motion of terrestrial-like planets in the habitable zone (HZ). Using the Jupiter–Saturn–Uranus configuration we create similar fictitious systems by varying Saturn’s semi-major axis from 8 to 11 AU and increasing its mass by factors of 2–30. The analysis of the different systems shows the following interesting results: (i) Using the masses of the Solar System for the three giant planets, our study indicates a maximum eccentricity (max-e) of nearly 0.3 for a test-planet placed at the position of Venus. Such a high eccentricity was already found in our previous study of Jupiter–Saturn systems. Perturbations associated with the secular frequency g 5 are again responsible for this high eccentricity. (ii) An increase of the Saturn-mass causes stronger perturbations around the position of the Earth and in the outer HZ. The latter is certainly due to gravitational interaction between Saturn and Uranus. (iii) The Saturn-mass increased by a factor 5 or higher indicates high eccentricities for a test-planet placed at the position of Mars. So that a crossing of the Earth’ orbit might occur in some cases. Furthermore, we present the maximum eccentricity of a test-planet placed in the Earth’ orbit for all positions (from 8 to 11 AU) and masses (increased up to a factor of 30) of Saturn. It can be seen that already a double-mass Saturn moving in its actual orbit causes an increase of the eccentricity up to 0.2 of a test-planet placed at Earth’s position. A more massive Saturn orbiting the Sun outside the 5:2 mean motion resonance (a S  ≥9.7 AU) increases the eccentricity of a test-planet up to 0.4.  相似文献   

13.
Photogravitational Restricted Three-Body Problem (PGRTBP) is considered and halo orbits are generated in the vicinity of the Sun–Mars L1 Lagrangian point. Deviation of properties such as time period, size and velocity variation in the halo orbits with Sun as a source of radiation are discussed. With increase in solar radiation pressure, the halo orbits are found to elongate and move towards the Sun and the time period of the halo orbits is found to increase. The variation in the behaviour of invariant manifolds with change in radiation pressure is also computed and it is found that as the radiation pressure increases, the transition from Mars-centric path to heliocentric path is delayed. Certain implications of the velocity profile of the invariant manifolds are also discussed.  相似文献   

14.
We investigate the weak stability boundary(WSB) for a new primary, Mars,in the framework of the planar circular restricted 3-body problem, and also in the planar bicircular restricted 4-body problem by including a perturbation due to Jupiter. For the sake of a simple stability/instability criterion, our computations have been done using the equations of motion in polar coordinates. It is found that the relative size of the weakly stable sets around Mars is much larger than that of the Earth-Moon and the Sun-Jupiter systems, as the mass ratio of the Sun-Mars system is significantly smaller.We propose that this difference could be scaled by the Hill radius. In an enlarged view of the domain close to Mars, the geometry of the WSB has been presented for various parameters and compared to previous works. Our results also show that Jupiter’s gravitational force would strongly affect the Martian stable regions and should be taken into account to design a ballistic capture trajectory.  相似文献   

15.
Halo orbits for solar sails at artificial Sun–Earth L1 points are investigated by a third order approximate solution. Two families of halo orbits are explored as defined by the sail attitude. Case I: the sail normal is directed along the Sun-sail line. Case II: the sail normal is directed along the Sun–Earth line. In both cases the minimum amplitude of a halo orbit increases as the lightness number of the solar sail increases. The effect of the z-direction amplitude on x- or y-direction amplitude is also investigated and the results show that the effect is relatively small. In case I, the orbit period increases as the sail lightness number increases, while in case II, as the lightness number increases, the orbit period increases first and then decreases after the lightness number exceeds ~0.01.  相似文献   

16.
The purpose of this paper is to study a transfer strategy from the vicinity of the Earth to a halo orbit around the equilibrium pointL 1 of the Earth-Sun system. The study is done in the real solar system (we use the DE-118 JPL ephemeris in the simulations of motion) although some simplified models, such as the restricted three body problem (RTBP) and the bicircular problem, have been also used in order to clarify the geometrical aspects of the problem. The approach used in the paper makes use of the hyperbolic character of the halo orbits under consideration. The invariant stable manifold of these orbits enables the transfer to be achieved with, theoretically, only one manoeuvre: the one of insertion into the stable manifold. For the total v required, the figures obtained are similar to the ones given by the standard procedures of optimization.  相似文献   

17.
This paper presents a comprehensive analysis of the Mars orbital phase of the Mariner 9 trajectory as determined from Earth based radio data. Both the method and accuracy of the orbit determination process are reviewed. Analysis is presented to show the effects of Mars gravity model and node in the plane of the sky errors on the accuracy of orbit determination. In addition the long term evolution of the orbit from insertion through the first 500 revolutions is presented, and decomposed into effects from the Mars garvity field,n-body perturbations, and solar radiation pressure. Since the orbit period is nearly commensurable with the Mars rotational period, the orbit experiences significant resonance perturbations. The primary perturbation is in-track with a maximum amplitude of 1000 km and a wavelength of 39 spacecraft revolutions.This paper was presented at the AIAA/AAS Astrodynamics Conference, Palo Alto, California, September 11 and 12, 1972. At this time Mariner 9 operations were still underway. The operational life of Mariner 9 ended October 27, 1972, when the supply of nitrogen gas, used for attitude stabilization, was depleted. This paper represents one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, under NASA Contract No. NAS 7-100.  相似文献   

18.
Of the three collinear libration points of the Sun–Earth Circular Restricted Three-Body Problem (CR3BP), L3 is that located opposite to the Earth with respect to the Sun and approximately at the same heliocentric distance. Whereas several space missions have been launched to the other two collinear equilibrium points, i.e., L1 and L2, taking advantage of their dynamical and geometrical characteristics, the region around L3 is so far unexploited. This is essentially due to the severe communication limitations caused by the distant and permanent opposition to the Earth, and by the gravitational perturbations mainly induced by Jupiter and the close passages of Venus, whose effects are more important than those due to the Earth. However, the adoption of a suitable periodic orbit around L3 to ensure the necessary communication links with the Earth, or the connection with one or more relay satellites located at L4 or L5, and the simultaneous design of an appropriate station keeping-strategy, would make it possible to perform valuable fundamental physics and astrophysics investigations from this location. Such an opportunity leads to the need of studying the ways to transfer a spacecraft (s/c) from the Earth’s vicinity to L3. In this contribution, we investigate several trajectory design methods to accomplish such a transfer, i.e., various types of two-burn impulsive trajectories in a Sun-s/c two-body model, a patched conics strategy exploiting the gravity assist of the nearby planets, an approach based on traveling on invariant manifolds of periodic orbits in the Sun–Earth CR3BP, and finally a low-thrust transfer. We examine advantages and drawbacks, and we estimate the propellant budget and time of flight requirements of each.  相似文献   

19.
WSO/UV(世界空间紫外天文台)以及监测太阳活动的特殊探测器(Solar Sentinel)都需要在日-地(月)系的平动点附近运行,且相对日-地(月)系要求其几何位置几乎保持不变,因此有必要阐明平动点的动力学特征及其附近的运动状况。基于这一点,对限制性三体模型下,日-地(月)系中平动点附近扰动运动的稳定性作了详尽的分析,尤其讨论了共线平动点具有不稳定动力学特征时,如何使WSO/UV这类空间探测器保持在其附近的情况;同时阐明了轨道保持不变的条件和相应的轨控措施。  相似文献   

20.
The concept of Space Manifold Dynamics is a new method of space research. We have applied it along with the basic idea of the method of Ott, Grebogi, and York (OGY method) to stabilize the motion of a spacecraft around the triangular Lagrange point L5 of the Earth‐Moon system. We have determined the escape rate of the trajectories in the general three‐ and four‐body problem and estimated the average lifetime of the particles. Integrating the two models we mapped in detail the phase space around the L5 point of the Earth‐Moon system. Using the phase space portrait our next goal was to apply a modified OGY method to keep a spacecraft close to the vicinity of L5. We modified the equation of motions with the addition of a time dependent force to the motion of the spacecraft. In our orbit‐keeping procedure there are three free parameters: (i) the magnitude of the thrust, (ii) the start time, and (iii) the length of the control. Based on our numerical experiments we were able to determine possible values for these parameters and successfully apply a control phase to a spacecraft to keep it on orbit around L5. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号